Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response

Abstract

Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established 1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical evaluation of treatment modalities and enhance our ability to predict clinical trial responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Novartis Institutes for Biomedical Research patient-derived tumor xenograft encyclopedia (NIBR PDXE).
Figure 2: Systematic approach for in vivo compound profiling using PDXs (PCT), and its reproducibility.
Figure 3: PCT predicts _targeted therapy response and validates predictive gene signature.
Figure 4: Combination therapies increase the overall response rate and progression-free survival.
Figure 5: IGF1R inhibitor does not potentiate anti-tumor activities of _targeted therapy in vivo.

Similar content being viewed by others

References

  1. Arrowsmith, J. & Miller, P. Trial watch: phase II and phase III attrition rates 2011–2012. Nat. Rev. Drug Discov. 12, 569 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Arrowsmith, J. Trial watch: Phase II failures: 2008–2010. Nat. Rev. Drug Discov. 10, 328–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. DiMasi, J.A., Reichert, J.M., Feldman, L. & Malins, A. Clinical approval success rates for investigational cancer drugs. Clin. Pharmacol. Ther. 94, 329–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Paul, S.M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Tentler, J.J. et al. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9, 338–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siolas, D. & Hannon, G.J. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 73, 5315–5319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosfjord, E., Lucas, J., Li, G. & Gerber, H.P. Advances in patient-derived tumor xenografts: from _target identification to predicting clinical response rates in oncology. Biochem. Pharmacol. 91, 135–143 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Hidalgo, M. et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 4, 998–1013 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bertotti, A. et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic _target in cetuximab-resistant colorectal cancer. Cancer Discov. 1, 508–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Migliardi, G. et al. Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas. Clin. Cancer Res. 18, 2515–2525 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. DeRose, Y.S. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat. Med. 17, 1514–1520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eirew, P. et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Hennessey, P.T. et al. Promoter methylation in head and neck squamous cell carcinoma cell lines is significantly different than methylation in primary tumors and xenografts. PLoS ONE 6, e20584 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Julien, S. et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin. Cancer Res. 18, 5314–5328 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Mattie, M. et al. Molecular characterization of patient-derived human pancreatic tumor xenograft models for preclinical and translational development of cancer therapeutics. Neoplasia 15, 1138–1150 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Einarsdottir, B.O. et al. Melanoma patient-derived xenografts accurately model the disease and develop fast enough to guide treatment decisions. Onco_target 5, 9609–9618 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. de Plater, L. et al. Establishment and characterisation of a new breast cancer xenograft obtained from a woman carrying a germline BRCA2 mutation. Br. J. Cancer 103, 1192–1200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

    Article  CAS  Google Scholar 

  21. Therasse, P. et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl. Cancer Inst. 92, 205–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Sosman, J.A. et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366, 707–714 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ascierto, P.A. et al. Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J. Clin. Oncol. 31, 3205–3211 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Kaplan, F.M., Shao, Y., Mayberry, M.M. & Aplin, A.E. Hyperactivation of MEK-ERK1/2 signaling and resistance to apoptosis induced by the oncogenic B-RAF inhibitor, PLX4720, in mutant N-RAS melanoma cells. Oncogene 30, 366–371 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Halaban, R. et al. PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell Melanoma Res. 23, 190–200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Flaherty, K.T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367, 1694–1703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Robert, C. et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 372, 30–39 (2015).

    Article  PubMed  CAS  Google Scholar 

  28. Shi, H. et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 4, 80–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Shi, H. et al. Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat. Commun. 3, 724 (2012).

    Article  PubMed  CAS  Google Scholar 

  30. Wagle, N. et al. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discov. 4, 61–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Rizos, H. et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin. Cancer Res. 20, 1965–1977 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Papadopoulos, K.P. et al. Unexpected hepatotoxicity in a phase I study of TAS266, a novel tetravalent agonistic nanobody _targeting the DR5 receptor. Cancer Chemother. Pharmacol. 75, 887–895 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Fritsch, C. et al. Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol. Cancer Ther. 13, 1117–1129 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Juric, D. et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 518, 240–244 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Sasai, K. et al. Shh pathway activity is down-regulated in cultured medulloblastoma cells: implications for preclinical studies. Cancer Res. 66, 4215–4222 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Flanigan, S.A. et al. Overcoming IGF1R/IR resistance through inhibition of MEK signaling in colorectal cancer models. Clin. Cancer Res. 19, 6219–6229 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Molina-Arcas, M., Hancock, D.C., Sheridan, C., Kumar, M.S. & Downward, J. Coordinate direct input of both KRAS and IGF1 receptor to activation of PI3 kinase in KRAS-mutant lung cancer. Cancer Discov. 3, 548–563 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ebi, H. et al. Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. J. Clin. Invest. 121, 4311–4321 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Friedbichler, K. et al. Pharmacodynamic and antineoplastic activity of BI 836845, a fully human IGF ligand-neutralizing antibody, and mechanistic rationale for combination with rapamycin. Mol. Cancer Ther. 13, 399–409 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Moran, T. et al. Activity of dalotuzumab, a selective anti-IGF1R antibody, in combination with erlotinib in unselected patients with Non-small-cell lung cancer: a phase I/II randomized trial. Exp. Hematol. Oncol. 3, 26 (2014).

    Article  PubMed  CAS  Google Scholar 

  41. Scagliotti, G.V. et al. Randomized, phase III trial of figitumumab in combination with erlotinib versus erlotinib alone in patients with nonadenocarcinoma nonsmall-cell lung cancer. Ann. Oncol 26, 497–504 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Brana, I. et al. A parallel-arm phase I trial of the humanised anti-IGF-1R antibody dalotuzumab in combination with the AKT inhibitor MK-2206, the mTOR inhibitor ridaforolimus, or the NOTCH inhibitor MK-0752, in patients with advanced solid tumours. Br. J. Cancer 111, 1932–1944 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Di Cosimo, S. et al. Combination of the mTOR inhibitor ridaforolimus and the anti-IGF1R monoclonal antibody dalotuzumab: preclinical characterization and phase I clinical trial. Clin. Cancer Res. 21, 49–59 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Das Thakur, M. et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494, 251–255 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Korpal, M. et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov. 3, 1030–1043 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  47. Lawrence, M.S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sathirapongsasuti, J.F. et al. Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics 27, 2648–2654 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lehár, J. et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27, 659–666 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Gruenenfelder, M. Lechevalier and D. Thomis for project management; R. Mosher and M. Murakami for their advice on the pathology of PDXs; L. Barys, P. Fordjour, M. Gallagher, B. Gorbatcheva, N. Houde, E. Kurth, J.A. Kwon, Y. Oei, K. O'Malley, D. Rakiec and C. Tauras for their technical support; D. Fox for IT support; S.-M. Maira, C. Fritsch and M. Yao for their helpful discussion; M. Stump, L. Kifule and P. Zhu for support with in vitro proliferation screens; J. Ledell for Chalice software development; and J. Steiger for data interpretation and project management. We received tumor specimens from the US National Disease Research Interchange, the US National Cancer Institute, the Maine Medical Center, the Tufts Medical Center, the Mt Group Inc. and GenenDesign, and we are grateful to the people who consented to donate their tissues to support this work.

Author information

Authors and Affiliations

Authors

Contributions

H.G., S.F., Y.W., M.S., C.Z., C.S., G.Y., S.B., H.C., S. Chatterjee, S.M.C., S.D.C., N.E., M.E., C.K., E. Lorenzana, M.P., C.R., F. Salangsang, F. Santacroce, Y.T., W.T., S.T., R.V., F.V.A., Z.W., D.W. and F.X. performed the PCT trials; H.G., G.Y., Y.Z., S.M.C., J.G., C.K., A.L., R.V., Z.W. and F.X. performed PDX model development; E.D., Y.L., M.E.M. and R.M. performed histopathologic analysis; J.M.K. and E.R.M. led the genomic landscape analysis; J.M.K., F.C., S. Chuai, A.K., J.M., J.L., A.R. and K.V. performed computational biology and bioinformatics analysis; O.A.B., D.Y.C., R.J.L. and A.P.S. performed pan-cancer panel analysis for melanoma resistance; J.E.M., J.G., T.L.N. and D.A.R. performed or directed nuclear acid extraction, quality control and genomic data generation; H.Q.W. performed the PK analysis of the encorafenib and LEE011 combination; M.W. led the in vitro combination screens; H.G., J.M.K., J.M., A.R., O.A.B., D.Y.C. prepared figures and tables for the main text and supplementary information; H.G., J.M.K., J.E.M., S.F., M.S., C.S., O.A.B., A.P.S., D.Y.C., M.W., H.B., J.A.W. and W.R.S. wrote and edited the main text and supplementary information; P.A., R.C., M.R.J., N.K.P., J.A.W., E. Li, E. Lees, F.H., N.K. and W.R.S. contributed to project oversight and advisory roles; J.A.W. and W.R.S. provided overall project leadership.

Corresponding author

Correspondence to Juliet A Williams.

Ethics declarations

Competing interests

This research was funded by Novartis, Inc. and all authors were employees thereof at the time the study was performed. The authors declare no other competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 (PDF 1451 kb)

Supplementary Table 1

Genomic profiling of PDXs and raw response and curve metrics of PCTs. (XLSX 119485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Korn, J., Ferretti, S. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med 21, 1318–1325 (2015). https://doi.org/10.1038/nm.3954

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3954

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer
  NODES
Association 1
chat 4
INTERN 1
Note 1
Project 4
twitter 1