Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide

Abstract

Wilson disease is caused by accumulation of Cu2+ in cells, which results in liver cirrhosis and, occasionally, anemia. Here, we show that Cu2+ triggers hepatocyte apoptosis through activation of acid sphingomyelinase (Asm) and release of ceramide. Genetic deficiency or pharmacological inhibition of Asm prevented Cu2+-induced hepatocyte apoptosis and protected rats, genetically prone to develop Wilson disease, from acute hepatocyte death, liver failure and early death. Cu2+ induced the secretion of activated Asm from leukocytes, leading to ceramide release in and phosphatidylserine exposure on erythrocytes, events also prevented by inhibition of Asm. Phosphatidylserine exposure resulted in immediate clearance of affected erythrocytes from the blood in mice. Accordingly, individuals with Wilson disease showed elevated plasma levels of Asm, and displayed a constitutive increase of ceramide- and phosphatidylserine-positive erythrocytes. Our data suggest a previously unidentified mechanism for liver cirrhosis and anemia in Wilson disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cu2+ induces ceramide formation in hepatocytes through activation of Asm.
Figure 2: Cu2+-induced apoptosis of hepatocytes requires Asm.
Figure 3: Cu2+ induces ceramide formation in human erythrocytes.
Figure 4: Cu2+ triggers anemia via Asm.
Figure 5: Asm activity, ceramide and phosphatidylserine exposure in individuals with Wilson disease.
Figure 6: Inhibition of Asm delays Wilson disease in genetically prone rats.

Similar content being viewed by others

References

  1. Zhou, B. & Gitschier, J. hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc. Natl. Acad. Sci. USA 94, 7481–7486 (1997).

    Article  CAS  Google Scholar 

  2. Klomp, L.W. et al. Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J. Biol. Chem. 272, 9221–9226 (1997).

    Article  CAS  Google Scholar 

  3. Lin, S.J. & Culotta, V.C. The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. Proc. Natl. Acad. Sci. USA 92, 3784–3788 (1995).

    Article  CAS  Google Scholar 

  4. Bull, P.C., Thomas, G.R., Rommens, J.M., Forbes, J.R. & Cox, D.W. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat. Genet. 5, 327–337 (1993).

    Article  CAS  Google Scholar 

  5. Tanzi, R.E. et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat. Genet. 5, 344–350 (1993).

    Article  CAS  Google Scholar 

  6. Yamaguchi, Y., Heiny, M.E. & Gitlin, J.D. Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem. Biophys. Res. Commun. 197, 271–277 (1993).

    Article  CAS  Google Scholar 

  7. Gitschier, J., Moffat, B., Reilly, D., Wood, W.I. & Fairbrother, W.J. Solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase. Nat. Struct. Biol. 5, 47–54 (1998).

    Article  CAS  Google Scholar 

  8. Payne, A.S. & Gitlin, J.D. Functional expression of the menkes disease protein reveals common biochemical mechanisms among the copper-transporting P-type ATPases. J. Biol. Chem. 273, 3765–3770 (1998).

    Article  CAS  Google Scholar 

  9. Hung, I.H. et al. Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 272, 21461–21466 (1997).

    Article  CAS  Google Scholar 

  10. Roelofsen, H. et al. Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion. Gastroenterology 119, 782–793 (2000).

    Article  CAS  Google Scholar 

  11. Schaefer, M., Hopkins, R.G., Failla, M.L. & Gitlin, J.D. Hepatocyte-specific localization and copper-dependent trafficking of the Wilson's disease protein in the liver. Am. J. Physiol. 276, G639–G646 (1999).

    CAS  PubMed  Google Scholar 

  12. Wilson, S. Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver. Brain 34, 295–507 (1912).

    Article  Google Scholar 

  13. Cumings, J.N. Copper and iron content of brain and liver in normal and in hepatolenticular degeneration. Brain 71, 410–415 (1948).

    Article  CAS  Google Scholar 

  14. Gitlin, J.D. Wilson disease. Gastroenterology 125, 1868–1877 (2003).

    Article  Google Scholar 

  15. Seth, R. et al. In vitro assessment of copper-induced toxicity in the human hepatoma line, Hep G2. Toxicol. In Vitro 18, 501–509 (2004).

    Article  CAS  Google Scholar 

  16. Krumschnabel, G., Manzl, C., Berger, C. & Hofer, B. Oxidative stress, mitochondrial permeability transition, and cell death in Cu-exposed trout hepatocytes. Toxicol. Appl. Pharmacol. 209, 62–73 (2005).

    Article  CAS  Google Scholar 

  17. Pourahmad, J., Ross, S. & O'Brien, P.J. Lysosomal involvement in hepatocyte cytotoxicity induced by Cu(2+) but not Cd(2+). Free Radic. Biol. Med. 30, 89–97 (2001).

    Article  CAS  Google Scholar 

  18. Sokol, R.J. et al. Oxidant injury to hepatic mitochondria in patients with Wilson's disease and Bedlington terriers with copper toxicosis. Gastroenterology 107, 1788–1798 (1994).

    Article  CAS  Google Scholar 

  19. Goldman, M. & Ali, M. Wilson's disease presenting as Heinz-body hemolytic anemia. CMAJ 145, 971–972 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Deiss, A., Lee, G.R. & Cartwright, G.E. Hemolytic anemia in Wilson's disease. Ann. Intern. Med. 73, 413–418 (1970).

    Article  CAS  Google Scholar 

  21. Forman, S.J., Kumar, K.S., Redeker, A.G. & Hochstein, P. Hemolytic anemia in Wilson's disease: clinical findings and biochemical mechanisms. Am. J. Hematol. 9, 269–275 (1980).

    Article  CAS  Google Scholar 

  22. Grassme, H. et al. CD95 signaling via ceramide-rich membrane rafts. J. Biol. Chem. 276, 20589–20596 (2001).

    Article  CAS  Google Scholar 

  23. Cremesti, A. et al. Ceramide enables fas to cap and kill. J. Biol. Chem. 276, 23954–23961 (2001).

    Article  CAS  Google Scholar 

  24. Dumitru, C.A. & Gulbins, E. TRAIL/DR5-induced apoptosis by the acid sphingomyelinase, ceramide and ceramide-enriched membrane platforms. Oncogene 25, 5612–5625 (2006).

    Article  CAS  Google Scholar 

  25. Santana, P. et al. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86, 189–199 (1996).

    Article  CAS  Google Scholar 

  26. Rotolo, J.A. et al. Caspase-dependent and -independent activation of acid sphingomyelinase signaling. J. Biol. Chem. 280, 26425–26434 (2005).

    Article  CAS  Google Scholar 

  27. Kashkar, H., Wiegmann, K., Yazdanpanah, B., Haubert, D. & Kronke, M. Acid sphingomyelinase is indispensable for UV light-induced Bax conformational change at the mitochondrial membrane. J. Biol. Chem. 280, 20804–20813 (2005).

    Article  CAS  Google Scholar 

  28. Scheel-Toellner, D. et al. Reactive oxygen species limit neutrophil life span by activating death receptor signaling. Blood 104, 2557–2564 (2004).

    Article  CAS  Google Scholar 

  29. Reinehr, R. et al. Bile salt-induced apoptosis involves NADPH oxidase isoform activation and hepatocyte shrinkage. Gastroenterology 129, 2009–2031 (2005).

    Article  CAS  Google Scholar 

  30. Grassme, H. et al. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat. Med. 9, 322–330 (2003).

    Article  CAS  Google Scholar 

  31. Jan, J.T., Chatterjee, S. & Griffin, D.E. Sindbis virus entry into cells triggers apoptosis by activating sphingomyelinase, leading to the release of ceramide. J. Virol. 74, 6425–6432 (2000).

    Article  CAS  Google Scholar 

  32. Petrache, I. et al. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat. Med. 11, 491–498 (2005).

    Article  CAS  Google Scholar 

  33. Lang, K.S. et al. Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes. Cell Death Differ. 11, 231–243 (2004).

    Article  CAS  Google Scholar 

  34. Fadok, V.A. et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207–2216 (1992).

    CAS  Google Scholar 

  35. Qiu, H. et al. Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine. J. Biol. Chem. 278, 32744–32752 (2003).

    Article  CAS  Google Scholar 

  36. Hurwitz, R., Ferlinz, K. & Sandhoff, K. The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol. Chem. Hoppe eyler 375, 447–450 (1994).

    Article  CAS  Google Scholar 

  37. Wu, J., Forbes, J.R., Chen, H.S. & Cox, D.W. The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nat. Genet. 7, 541–545 (1994).

    Article  CAS  Google Scholar 

  38. Ren, Y. & Savill, J. Apoptosis: the importance of being eaten. Cell Death Differ. 5, 563–568 (1998).

    Article  CAS  Google Scholar 

  39. Fadok, V.A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000).

    Article  CAS  Google Scholar 

  40. Galle, P.R. et al. Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J. Exp. Med. 182, 1223–1230 (1995).

    Article  CAS  Google Scholar 

  41. Kerr, J.F. et al. The nature of piecemeal necrosis in chronic active hepatitis. Lancet 2, 827–828 (1979).

    Article  CAS  Google Scholar 

  42. Rouquet, N., Pages, J.C., Molina, T., Briand, P. & Joulin, V. ICE inhibitor YVAD-cmk is a potent therapeutic agent against in vivo liver apoptosis. Curr. Biol. 6, 1192–1195 (1996).

    Article  CAS  Google Scholar 

  43. Kirschnek, S. et al. CD95-mediated apoptosis in vivo involves acid sphingomyelinase. J. Biol. Chem. 275, 27316–27323 (2000).

    CAS  PubMed  Google Scholar 

  44. Paris, F. et al. Natural ceramide reverses Fas resistance of acid sphingomyelinase (−/−) hepatocytes. J. Biol. Chem. 276, 8297–8305 (2001).

    Article  CAS  Google Scholar 

  45. Lang, P.A. et al. PGE(2) in the regulation of programmed erythrocyte death. Cell Death Differ. 12, 415–428 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical assistance of B. Wilker, S. Keitsch, E. Faber and W. Gfrörer and preparation of the manuscript by T. Loch and S. Moyrer. Goat antibodies to Asm were provided by K. Sandhoff (University of Bonn). This study was supported by the Deutsche Forschungsgemeinschaft (DFG) grants La 315/4-3, La 315/6-1 (to F.L.) and La 315/13-1 (to F.L. and T.W.), the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (Center for Interdisciplinary Clinical Research) 01 KS 9602 and IZKF-Promotionskolleg “Molekulare Medizin # 1547” (to F.L., T.W., P.A.L. and D.S.K.), Wilhelm Sander-Stiftung (to T.W.), an Interne Forschungsförderung Essen grant (to M.S.) and DFG grant GU 335/10-3 (to E.G.).

Author information

Authors and Affiliations

Authors

Contributions

P.A.L., F.L. and E.G. initiated the studies. P.A.L. investigated the effects of copper on Annexin V binding to human erythrocytes and HepG2 cells. M.S. performed the rat experiments and analyzed the results. J.P.N. analyzed Annexin V binding to patient erythrocytes. J.U.B. and K.W.S. did the histology studies. D.S.K. performed ceramide measurents in HepG2 cells. A.L. performed Ca2+ measurements in HepG2 cells. S.K. and S.M.H. studied in vivo clearance of circulating erythrocytes in rats. K.E. and B.A.K. performed ceramide measurements in human erythrocytes. H.R. supervised rat experiments. K.M. measured bilirubin and amitriptyline in rat plasma. S.H. made the copper determinations. H.H., A.E. and D.H. provided blood and data from individuals with Wilson disease. T.W. supervised part of the laboratory work in Tübingen and performed statistical analysis. E.G. measured ASM activity and ceramide, did the mice experiments, analyzed the data and supervised the group in Essen. F.L. supervised the group in Tübingen. F.L. and E.G. designed the study and wrote the manuscript.

Corresponding authors

Correspondence to Erich Gulbins or Florian Lang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, P., Schenck, M., Nicolay, J. et al. Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med 13, 164–170 (2007). https://doi.org/10.1038/nm1539

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1539

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
Association 1
chat 1
INTERN 4
Note 1
twitter 1