Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonlinear analysis of macaque V1 color tuning reveals cardinal directions for cortical color processing

Abstract

Understanding color vision requires knowing how signals from the three classes of cone photoreceptor are combined in the cortex. We recorded from individual neurons in the primary visual cortex (V1) of awake monkeys while an automated, closed-loop system identified stimuli that differed in cone contrast but evoked the same response. We found that isoresponse surfaces for half the neurons were planar, which is consistent with linear processing. The remaining isoresponse surfaces were nonplanar. Some were cup-shaped, indicating sensitivity to only a narrow region of color space. Others were ellipsoidal, indicating sensitivity to all color directions. The major and minor axes of these nonplanar surfaces were often aligned to a set of three color directions that were previously identified in perceptual experiments. These results suggest that many V1 neurons combine cone signals nonlinearly and provide a new framework in which to decipher color processing in V1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Predicted color tuning under three models of cone signal combination.
Figure 2: Data from three example neurons (two projections for each).
Figure 3: Normalized cone weights derived from the orientations of planar fits to staircase terminations.
Figure 4: Isoresponse surface fits, grating responses and predictions of grating responses for the three example neurons.
Figure 5: Scatterplot of correlation coefficients between actual and predicted responses to colored gratings.
Figure 6: Distribution of principal axes of quadratic isoresponse surfaces.
Figure 7: F1/F0 modulation ratios separated by isoresponse surface shape.

Similar content being viewed by others

References

  1. Lee, B.B., Pokorny, J., Smith, V.C., Martin, P.R. & Valberg, A. Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. J. Opt. Soc. Am. A 7, 2223–2236 (1990).

    Article  CAS  Google Scholar 

  2. De Valois, R.L., Abramov, I. & Jacobs, G.H. Analysis of response patterns of LGN cells. J. Opt. Soc. Am. 56, 966–977 (1966).

    Article  CAS  Google Scholar 

  3. Derrington, A.M., Krauskopf, J. & Lennie, P. Chromatic mechanisms in lateral geniculate nucleus of macaque. J. Physiol. (Lond.) 357, 241–265 (1984).

    Article  CAS  Google Scholar 

  4. Dacey, D.M. Primate retina: cell types, circuits and color opponency. Prog. Retin. Eye Res. 18, 737–763 (1999).

    Article  CAS  Google Scholar 

  5. Lankheet, M.J., Lennie, P. & Krauskopf, J. Distinctive characteristics of subclasses of red-green P-cells in LGN of macaque. Vis. Neurosci. 15, 37–46 (1998).

    Article  CAS  Google Scholar 

  6. Sankeralli, M.J. & Mullen, K.T. Estimation of the L, M- and S-cone weights of the postreceptoral detection mechanisms. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 13, 906–915 (1996).

    Article  Google Scholar 

  7. Krauskopf, J., Williams, D.R. & Heeley, D.W. Cardinal directions of color space. Vision Res. 22, 1123–1131 (1982).

    Article  CAS  Google Scholar 

  8. Cole, G.R., Hine, T. & McIlhagga, W. Detection mechanisms in L-, M- and S-cone contrast space. J. Opt. Soc. Am. A 10, 38–51 (1993).

    Article  CAS  Google Scholar 

  9. Ingling, C.R. Jr. & Huong-Peng-Tsou, B. Orthogonal combination of the three visual channels. Vision Res. 17, 1075–1082 (1977).

    Article  Google Scholar 

  10. Lennie, P., Krauskopf, J. & Sclar, G. Chromatic mechanisms in striate cortex of macaque. J. Neurosci. 10, 649–669 (1990).

    Article  CAS  Google Scholar 

  11. Horwitz, G.D., Chichilnisky, E.J. & Albright, T.D. Cone inputs to simple and complex cells in V1 of awake macaque. J. Neurophysiol. 97, 3070–3081 (2007).

    Article  Google Scholar 

  12. De Valois, R.L., Cottaris, N.P., Elfar, S.D., Mahon, L.E. & Wilson, J.A. Some transformations of color information from lateral geniculate nucleus to striate cortex. Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000).

    Article  CAS  Google Scholar 

  13. Johnson, E.N., Hawken, M.J. & Shapley, R. Cone inputs in macaque primary visual cortex. J. Neurophysiol. 91, 2501–2514 (2004).

    Article  Google Scholar 

  14. Solomon, S.G. & Lennie, P. Chromatic gain controls in visual cortical neurons. J. Neurosci. 25, 4779–4792 (2005).

    Article  CAS  Google Scholar 

  15. Horwitz, G.D., Chichilnisky, E.J. & Albright, T.D. Blue-yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1. J. Neurophysiol. 93, 2263–2278 (2005).

    Article  Google Scholar 

  16. Hanazawa, A., Komatsu, H. & Murakami, I. Neural selectivity for hue and saturation of colour in the primary visual cortex of the monkey. Eur. J. Neurosci. 12, 1753–1763 (2000).

    Article  CAS  Google Scholar 

  17. Conway, B.R. & Livingstone, M.S. Spatial and temporal properties of cone signals in alert macaque primary visual cortex. J. Neurosci. 26, 10826–10846 (2006).

    Article  CAS  Google Scholar 

  18. Wiesel, T.N. & Hubel, D.H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29, 1115–1156 (1966).

    Article  CAS  Google Scholar 

  19. Hurvich, L.M. & Jameson, D. An opponent-process theory of color vision. Psychol. Rev. 64, 384–404 (1957).

    Article  Google Scholar 

  20. Nagy, A.L., Eskew, R.T. Jr. & Boynton, R.M. Analysis of color-matching ellipses in a cone-excitation space. J. Opt. Soc. Am. A 4, 756–768 (1987).

    Article  CAS  Google Scholar 

  21. Poirson, A.B. & Wandell, B.A. The ellipsoidal representation of spectral sensitivity. Vision Res. 30, 647–652 (1990).

    Article  CAS  Google Scholar 

  22. Olmsted, J.M.H. Solid Analytic Geometry. (D Appleto-Century Company, New York, 1947).

  23. Heeger, D.J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).

    Article  CAS  Google Scholar 

  24. Adelson, E.H. & Bergen, J.R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985).

    Article  CAS  Google Scholar 

  25. Emerson, R.C., Bergen, J.R. & Adelson, E.H. Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Res. 32, 203–218 (1992).

    Article  CAS  Google Scholar 

  26. Skottun, B.C. et al. Classifying simple and complex cells on the basis of response modulation. Vision Res. 31, 1079–1086 (1991).

    CAS  Google Scholar 

  27. Cottaris, N.P. & De Valois, R.L. Temporal dynamics of chromatic tuning in macaque primary visual cortex. Nature 395, 896–900 (1998).

    Article  CAS  Google Scholar 

  28. Johnson, E.N., Hawken, M.J. & Shapley, R. The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat. Neurosci. 4, 409–416 (2001).

    Article  CAS  Google Scholar 

  29. Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat′s visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  30. Torre, V. & Poggio, T. A synaptic mechanism possibly underlying directional selectivity to motion. Proc. R. Soc. Lond. 202, 409–416 (1978).

    Article  Google Scholar 

  31. Koch, C., Poggio, T. & Torre, V. Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc. Natl. Acad. Sci. USA 80, 2799–2802 (1983).

    Article  CAS  Google Scholar 

  32. Yoshioka, T., Dow, B.M. & Vautin, R.G. Neuronal mechanisms of color categorization in areas V1, V2 and V4 of macaque monkey visual cortex. Behav. Brain Res. 76, 51–70 (1996).

    Article  CAS  Google Scholar 

  33. Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. Receptive field organization of complex cells in the cat′s striate cortex. J. Physiol. (Lond.) 283, 79–99 (1978).

    Article  CAS  Google Scholar 

  34. Lee, B.B., Martin, P.R. & Valberg, A. Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque. J. Neurosci. 9, 1433–1442 (1989).

    Article  CAS  Google Scholar 

  35. Solomon, S.G., Tailby, C., Cheong, S.K. & Camp, A.J. Linear and nonlinear contributions to the visual sensitivity of neurons in primate lateral geniculate nucleus. J. Neurophysiol. 104, 1884–1898 (2010).

    Article  Google Scholar 

  36. Benardete, E.A. & Kaplan, E. The receptive field of the primate P retinal ganglion cell. II. Nonlinear dynamics. Vis. Neurosci. 14, 187–205 (1997).

    Article  CAS  Google Scholar 

  37. Benardete, E.A. & Kaplan, E. Dynamics of primate P retinal ganglion cells: responses to chromatic and achromatic stimuli. J. Physiol. (Lond.) 519, 775–790 (1999).

    Article  CAS  Google Scholar 

  38. Schiller, P.H. & Colby, C.L. The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast. Vision Res. 23, 1631–1641 (1983).

    Article  CAS  Google Scholar 

  39. Shapley, R. & Kaplan, E. Responses of magnocellular LGN neurons and M retinal ganglion cells to drifting heterochromatic gratings. Invest. Ophthalmol. Vis. Sci. 30 Suppl: 323 (1989).

    Google Scholar 

  40. Sharpee, T. & Bialek, W. Neural decision boundaries for maximal information transmission. PLoS ONE 2, e646 (2007).

    Article  Google Scholar 

  41. Stockman, A., MacLeod, D.I.A. & Johnson, N.E. Spectral sensitivities of the human cones. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 10, 2491–2521 (1993).

    Article  CAS  Google Scholar 

  42. Brainard, D.H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  Google Scholar 

  43. Liu, J. & Wandell, B.A. Specializations for chromatic and temporal signals in human visual cortex. J. Neurosci. 25, 3459–3468 (2005).

    Article  CAS  Google Scholar 

  44. Dow, B.M. & Gouras, P. Color and spatial specificity of single units in Rhesus monkey foveal striate cortex. J. Neurophysiol. 36, 79–100 (1973).

    Article  CAS  Google Scholar 

  45. Gouras, P. Opponent-colour cells in different layers of foveal striate cortex. J. Physiol. (Lond.) 238, 583–602 (1974).

    Article  CAS  Google Scholar 

  46. Zeki, S. The representation of colours in the cerebral cortex. Nature 284, 412–418 (1980).

    Article  CAS  Google Scholar 

  47. Vautin, R.G. & Dow, B.M. Color cell groups in foveal striate cortex of the behaving macaque. J. Neurophysiol. 54, 273–292 (1985).

    Article  CAS  Google Scholar 

  48. Duda, R.O., Hart, P.E. & Stork,, D.G. Pattern Classification. (John Wiley & Sons, New York, 2001).

Download references

Acknowledgements

The authors would like to thank A. Pasupathy, M. Shadlen, E.J. Chichilnisky, F. Rieke and G. Field for comments on the manuscript, J.P. Weller for modeling the adaptive sampling procedure, J. Gold for supplying UDP communication software, and E. Grover and L. Tait for technical assistance. This work was supported by a US National Institutes of Health (National Institute of General Medical Sciences) Training Grant (C.A.H.), the Achievement Rewards for College Scientists Foundation (C.A.H.), the McKnight Foundation (G.D.H.), and US National Institutes of Health grants RR000166 and EY018849 (G.D.H.).

Author information

Authors and Affiliations

Authors

Contributions

G.D.H. designed the experiments and analyzed the data. G.D.H. and C.A.H. conducted the experiments and wrote the manuscript.

Corresponding author

Correspondence to Gregory D Horwitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 2913 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horwitz, G., Hass, C. Nonlinear analysis of macaque V1 color tuning reveals cardinal directions for cortical color processing. Nat Neurosci 15, 913–919 (2012). https://doi.org/10.1038/nn.3105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
INTERN 1
Project 1
twitter 1