Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Similar network activity from disparate circuit parameters

This article has been updated

Abstract

It is often assumed that cellular and synaptic properties need to be regulated to specific values to allow a neuronal network to function properly. To determine how tightly neuronal properties and synaptic strengths need to be tuned to produce a given network output, we simulated more than 20 million versions of a three-cell model of the pyloric network of the crustacean stomatogastric ganglion using different combinations of synapse strengths and neuron properties. We found that virtually indistinguishable network activity can arise from widely disparate sets of underlying mechanisms, suggesting that there could be considerable animal-to-animal variability in many of the parameters that control network activity, and that many different combinations of synaptic strengths and intrinsic membrane properties can be consistent with appropriate network performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biological pyloric rhythm and pyloric circuit architecture.
Figure 2: Cellular and synaptic components of the model networks.
Figure 3: Examples of network outputs.
Figure 4: Criteria for pyloric rhythms.
Figure 5: Similar model-network activity from different network properties.
Figure 6: Cellular and synaptic properties of pyloric networks.

Similar content being viewed by others

Change history

  • 15 May 2006

    Replaced figure

Notes

  1. * NOTE: In the version of this article initially published online, the HTML version of the article did not pull up figure 5. This error has been corrected in the HTML version of the article.

References

  1. Foster, W.R., Ungar, L.H. & Schwaber, J.S. Significance of conductances in Hodgkin-Huxley models. J. Neurophysiol. 70, 2502–2518 (1993).

    Article  CAS  Google Scholar 

  2. Golowasch, J., Goldman, M.S., Abbott, L.F. & Marder, E. Failure of averaging in the construction of a conductance-based neuron model. J. Neurophysiol. 87, 1129–1131 (2002).

    Article  Google Scholar 

  3. Goldman, M.S., Golowasch, J., Marder, E. & Abbott, L.F. Global structure, robustness, and modulation of neuronal models. J. Neurosci. 21, 5229–5238 (2001).

    Article  CAS  Google Scholar 

  4. Prinz, A.A., Billimoria, C.P. & Marder, E. Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J. Neurophysiol. 90, 3998–4015 (2003).

    Article  Google Scholar 

  5. Golowasch, J., Abbott, L.F. & Marder, E. Activity-dependent regulation of potassium currents in an identified neuron of the stomatogastric ganglion of the crab Cancer borealis. J. Neurosci. 19, RC33 (1999).

    Article  CAS  Google Scholar 

  6. Turrigiano, G.G., LeMasson, G. & Marder, E. Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. J. Neurosci. 15, 3640–3652 (1995).

    Article  CAS  Google Scholar 

  7. Desai, N.S., Rutherford, L.C. & Turrigiano, G.G. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci. 2, 515–520 (1999).

    Article  CAS  Google Scholar 

  8. Stemmler, M. & Koch, C. How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate. Nat. Neurosci. 2, 521–527 (1999).

    Article  CAS  Google Scholar 

  9. Marder, E. & Prinz, A.A. Modeling stability in neuron and network function: the role of activity in homeostasis. Bioessays 24, 1145–1154 (2002).

    Article  CAS  Google Scholar 

  10. MacLean, J.N., Zhang, Y., Johnson, B.R. & Harris-Warrick, R.M. Activity-independent homeostasis in rhythmically active neurons. Neuron 37, 109–120 (2003).

    Article  CAS  Google Scholar 

  11. Harris-Warrick, R.M., Marder, E., Selverston, A.I. & Moulins, M. Dynamic Biological Networks. The Stomatogastric Nervous System (MIT Press, Cambridge, Massachusetts, USA, 1992).

    Google Scholar 

  12. Marder, E. & Thirumalai, V. Cellular, synaptic and network effects of neuromodulation. Neural Netw. 15, 479–493 (2002).

    Article  Google Scholar 

  13. Marder, E. & Bucher, D. Central pattern generators and the control of rhythmic movements. Curr. Biol. 11, R986–R996 (2001).

    Article  CAS  Google Scholar 

  14. Hartline, D.K. & Gassie, D.V., Jr. Pattern generation in the lobster (Panulirus) stomatogastric ganglion. I. Pyloric neuron kinetics and synaptic interactions. Biol. Cybern. 33, 209–222 (1979).

    Article  CAS  Google Scholar 

  15. Eisen, J.S. & Marder, E. Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. III. Synaptic connections of electrically coupled pyloric neurons. J. Neurophysiol. 48, 1392–1415 (1982).

    Article  CAS  Google Scholar 

  16. Marder, E. & Eisen, J.S. Transmitter identification of pyloric neurons: electrically coupled neurons use different neurotransmitters. J. Neurophysiol. 51, 1345–1361 (1984).

    Article  CAS  Google Scholar 

  17. Maynard, D.M. Simpler networks. Ann. NY Acad. Sci. 193, 59–72 (1972).

    Article  CAS  Google Scholar 

  18. Hartline, D.K., Gassie, D.V. & Sirchia, C.D. PY Cell Types in the Stomatogastric System of Panulirus. in The Crustacean Stomatogastric System (eds. Selverston, A.I. & Moulins, M.) 75–77 (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  19. Miller, J.P. & Selverston, A.I. Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system. J. Neurophysiol. 48, 1416–1432 (1982).

    Article  CAS  Google Scholar 

  20. Hong, S.J. & Lnenicka, G.A. Characterization of a P-type calcium current in a crayfish motoneuron and its selective modulation by impulse activity. J. Neurophysiol. 77, 76–85 (1997).

    Article  CAS  Google Scholar 

  21. Baines, R.A., Uhler, J.P., Thompson, A., Sweeney, S.T. & Bate, M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523–1531 (2001).

    Article  CAS  Google Scholar 

  22. Li, M., Jia, M., Fields, R.D. & Nelson, P.G. Modulation of calcium currents by electrical activity. J. Neurophysiol. 76, 2595–2607 (1996).

    Article  CAS  Google Scholar 

  23. Leslie, K.R., Nelson, S.B. & Turrigiano, G.G. Postsynaptic depolarization scales quantal amplitude in cortical pyramidal neurons. J. Neurosci. 21, RC170 (2001).

    Article  CAS  Google Scholar 

  24. Watt, A.J., van Rossum, M.C.W., MacLeod, K.M., Nelson, S.B. & Turrigiano, G.G. Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron 26, 659–670 (2000).

    Article  CAS  Google Scholar 

  25. Kilman, V., van Rossum, M.C.W. & Turrigiano, G.G. Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABAA receptors clustered at neocortical synapses. J. Neurosci. 22, 1328–1337 (2002).

    Article  CAS  Google Scholar 

  26. LeMasson, G., Marder, E. & Abbott, L.F. Activity-dependent regulation of conductances in model neurons. Science 259, 1915–1917 (1993).

    Article  CAS  Google Scholar 

  27. Liu, Z., Golowasch, J., Marder, E. & Abbott, L.F. A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J. Neurosci. 18, 2309–2320 (1998).

    Article  CAS  Google Scholar 

  28. Abbott, L.F. & LeMasson, G. Analysis of neuron models with dynamically regulated conductances. Neural Comput. 5, 823–842 (1993).

    Article  Google Scholar 

  29. Bell, A.J. Self-Organization in Real Neurons: Anti-Hebb in 'Channel Space'? in Advances in Neural Information Processing Systems (eds. Moody, J., Hanson, S. & Lippmann, R.) 59–66 (Morgan Kaufmann, San Mateo, 1992).

    Google Scholar 

  30. Siegel, M., Marder, E. & Abbott, L.F. Activity-dependent current distributions in model neurons. Proc. Natl Acad. Sci. USA 91, 11308–11312 (1994).

    Article  CAS  Google Scholar 

  31. Thoby-Brisson, M. & Simmers, J. Long-term neuromodulatory regulation of a motor pattern-generating network: maintenance of synaptic efficacy and oscillatory properties. J. Neurophysiol. 88, 2942–2953 (2002).

    Article  Google Scholar 

  32. Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C. & Nelson, S.B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  CAS  Google Scholar 

  33. Turrigiano, G.G. & Nelson, S.B. Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364 (2000).

    Article  CAS  Google Scholar 

  34. Turrigiano, G.G. & Nelson, S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107 (2004).

    Article  CAS  Google Scholar 

  35. Davis, G.W. & Bezprozvanny, I. Maintaining the stability of neural function: a homeostatic hypothesis. Annu. Rev. Physiol. 63, 847–869 (2001).

    Article  CAS  Google Scholar 

  36. Pulver, S.R., Bucher, D., Simon, D.J. & Marder, E. Constant amplitude of postsynaptic responses for single presynaptic action potentials but not bursting input during growth of an identified neuromuscular junction in the lobster, Homarus americanus. J. Neurobiol., published online 8 September 2004 (doi:10.1002/neu.20066).

  37. Huerta, R., Varona, P., Rabinovich, M.I. & Abarbanel, H.D.I. Topology selection by chaotic neurons of a pyloric central pattern generator. Biol. Cybern. 84, L1–L8 (2001).

    Article  CAS  Google Scholar 

  38. Weng, G., Bhalla, U.S. & Iyengar, R. Complexity in biological signaling systems. Science 284, 92–96 (1999).

    Article  CAS  Google Scholar 

  39. Bhalla, U.S. & Iyengar, R. Robustness of the bistable behavior of a biological signaling feedback loop. Chaos 11, 221–226 (2001).

    Article  CAS  Google Scholar 

  40. Brezina, V., Orekhova, I.V. & Weiss, K.R. Functional uncoupling of linked neurotransmitter effects by combinatorial convergence. Science 273, 806–810 (1996).

    Article  CAS  Google Scholar 

  41. Mutalik, V.K., Singh, A.P., Edwards, J.S. & Venkatesh, K.V. Robust global sensitivity in multiple enzyme cascade systems explains how the downstream cascade structure may remain unaffected by cross-talk. FEBS Lett. 558, 79–84 (2004).

    Article  CAS  Google Scholar 

  42. Blüthgen, N. & Herzel, H. How robust are switches in intracellular signaling cascades? J. Theor. Biol. 225, 293–300 (2003).

    Article  Google Scholar 

  43. Selverston, A.I. & Miller, J.P. Mechanisms underlying pattern generation in the lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. I. Pyloric neurons. J. Neurophysiol. 44, 1102–1121 (1980).

    Article  CAS  Google Scholar 

  44. Golowasch, J. & Marder, E. Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. J. Neurophysiol. 67, 318–331 (1992).

    Article  CAS  Google Scholar 

  45. Harris-Warrick, R.M., Coniglio, L.M., Barazangi, N., Guckenheimer, J. & Gueron, S. Dopamine modulation of transient potassium current evokes phase shifts in a central pattern generator network. J. Neurosci. 15, 342–358 (1995).

    Article  CAS  Google Scholar 

  46. Harris-Warrick, R.M., Coniglio, L.M., Levini, R.M., Gueron, S. & Guckenheimer, J. Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron. J. Neurophysiol. 74, 1404–1420 (1995).

    Article  CAS  Google Scholar 

  47. Abbott, L.F. & Marder, E. Modeling Small Networks. in Methods in Neuronal Modeling: From Ions to Networks (eds. Koch, C. & Segev, I.) 361–410 (MIT Press, Cambridge, 1998).

    Google Scholar 

  48. Marder, E. Cholinergic motor neurones in the stomatogastric system of the lobster. J. Physiol. (Lond.) 257, 63–86 (1976).

    Article  CAS  Google Scholar 

  49. Selverston, A.I., Russell, D.F., Miller, J.P. & King, D.G. The stomatogastric nervous system: structure and function of a small neural network. Prog. Neurobiol. 7, 215–290 (1976).

    Article  CAS  Google Scholar 

  50. Dayan, P. & Abbott, L.F. Theoretical Neuroscience (MIT Press, Cambridge, Massachusetts, USA, 2001).

    Google Scholar 

Download references

Acknowledgements

We thank L.F. Abbott for comments on an earlier version of this manuscript. This work was supported by a grant from the National Institute of Mental Health to E.M. (MH-46742), and by the Sloan-Swartz Center for Theoretical Neurobiology at Brandeis University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid A Prinz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prinz, A., Bucher, D. & Marder, E. Similar network activity from disparate circuit parameters. Nat Neurosci 7, 1345–1352 (2004). https://doi.org/10.1038/nn1352

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1352

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
INTERN 2
Note 2
twitter 1