Key Points
Therapeutic control of inflammation is essential for clinical management of a wide range of high prevalence human diseases including asthma, pulmonary fibrosis, rheumatoid arthritis, periodontitis, Crohn's disease, multiple sclerosis, and an expanding group of auto-inflammatory disorders.
_targeted anti-cytokine therapy is now well established in the management of rheumatoid arthritis and Crohn's disease. Interleukin-1 inhibition appears to be more effective in controlling the manifestations of several auto-inflammatory syndromes, and a number of strategies for interfering with Interleukin-1 signalling are in various stages of development.
However, since available agents have important shortcomings including cost and the lack of predictability in clinical response, both during initiation and maintenance, there is a clear need to develop alternative approaches for inhibiting tumour necrosis factor-α and interleukin-l in a more predictable and cost-effective manner.
The development of small molecules and peptides to _target the intracellular signalling pathways of these cytokines including novel anti-inflammatory drug _targets based on the clustering of Interleukin-1 receptors into large, multi-protein aggregates, is a promising avenue to pursue.
Interference with receptor aggregation and the functional relationships between receptors and the endoplasmic reticulum effectively abrogates interleukin-1 signalling. The interleukin-1 -generated signal relies on the clustering of receptors into cell adhesion complexes. The assembly of the adhesion complex and its functional connection to signal generation from the endoplasmic reticulum appears to be very dependent on protein tyrosine phosphatases, which are abundant in adhesion complexes, and mutation of which is associated with poorly controlled inflammatory disease.
We suggest that protein tyrosine phosphatases could provide a particularly rich array of _targets for the development of small molecular weight peptides for anti-inflammatory drug development.
Abstract
Therapeutically controlling inflammation is essential for the clinical management of many high-prevalence human diseases. Drugs that block the pro-inflammatory cytokines tumour-necrosis factor-α and interleukin-1 (IL-1) can improve outcomes for rheumatoid arthritis and other inflammatory diseases but many patients remain refractory to treatment. Here we explore the need for developing new types of anti-inflammatory drugs and the emergence of novel drug _targets based on the clustering of IL-1 receptors into multi-protein aggregates associated with cell adhesions. Interference with receptor aggregation into multi-protein complexes effectively abrogates IL-1 signalling. The exploration of the crucial molecules required for receptor clustering, and therefore signal transduction, offers new _targets and scope for anti-inflammatory drug development.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
We are sorry, but there is no personal subscription option available for your country.
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Gabay, C. & Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340, 448–454 (1999).
Singh, R. et al. The IL-1 receptor and Rho directly associate to drive cell activation in inflammation. J. Clin. Invest. 103, 1561–1570 (1999).
Lipsky, P. E. et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N. Engl. J. Med. 343, 1594–1602 (2000).
Genovese, M. C. et al. Etanercept versus methotrexate in patients with early rheumatoid arthritis: two-year radiographic and clinical outcomes. Arthritis Rheum. 46, 1443–1450 (2002).
Bathon, J. M. et al. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N. Engl. J. Med. 343, 1586–1593 (2000).
Breedveld, F. C. et al. The PREMIER study: A multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum. 54, 26–37 (2006).
Keystone, E. C. et al. Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo-controlled, 52-week trial. Arthritis Rheum. 50, 1400–1411 (2004).
Smolen, J. S. et al. Evidence of radiographic benefit of treatment with infliximab plus methotrexate in rheumatoid arthritis patients who had no clinical improvement: a detailed subanalysis of data from the anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study. Arthritis Rheum. 52, 1020–1030 (2005).
Deng, G. M., Zheng, L., Chan, F. K. & Lenardo, M. Amelioration of inflammatory arthritis by _targeting the pre-ligand assembly domain of tumor necrosis factor receptors. Nature Med. 11, 1066–1072 (2005).
Horai, R. et al. TNF-α is crucial for the development of autoimmune arthritis in IL-1 receptor antagonist-deficient mice. J. Clin. Invest. 114, 1603–1611 (2004).
Redlich, K. et al. Repair of local bone erosions and reversal of systemic bone loss upon therapy with anti-tumor necrosis factor in combination with osteoprotegerin or parathyroid hormone in tumor necrosis factor-mediated arthritis. Am. J. Pathol. 164, 543–555 (2004).
Zwerina, J. et al. Single and combined inhibition of tumor necrosis factor, interleukin-1, and RANKL pathways in tumor necrosis factor-induced arthritis: effects on synovial inflammation, bone erosion, and cartilage destruction. Arthritis Rheum. 50, 277–290 (2004).
Redlich, K. et al. Osteoclasts are essential for TNF-α-mediated joint destruction. J. Clin. Invest. 110, 1419–14127 (2002).
Shealy, D. J. et al. Anti-TNF-α antibody allows healing of joint damage in polyarthritic transgenic mice. Arthritis Res. 4, R7 (2002).
Keystone, E. C. & Kavanaugh, A. What to do with TNF failures. Expert Opin. Drug Saf. 4, 149–155 (2005).
Smith, D. E. et al. Four new members expand the interleukin-1 superfamily. J. Biol. Chem. 275, 1169–1175 (2000).
O'Neill, L. A. & Dinarello, C. A. The IL-1 receptor/toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol. Today 21, 206–209 (2000).
Goldring, S. R. Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatology (Oxford) 42 Suppl 2, ii11–116 (2003).
Dayer, J. M. & Bresnihan, B. _targeting interleukin-1 in the treatment of rheumatoid arthritis. Arthritis Rheum. 46, 574–578 (2002).
Jindal, S. K. & Agarwal, R. Autoimmunity and interstitial lung disease. Curr. Opin. Pulm. Med. 11, 438–446 (2005).
Loos, B. G., John, R. P. & Laine, M. L. Identification of genetic risk factors for periodontitis and possible mechanisms of action. J. Clin. Periodontol. 32 (Suppl. 6), 159–179 (2005).
Bresnihan, B. & Cunnane, G. Interleukin-1 receptor antagonist. Rheum. Dis. Clin. North Am. 24, 615–628 (1998).
Braddock, M. & Quinn, A. _targeting IL-1 in inflammatory disease: new opportunities for therapeutic intervention. Nature Rev. Drug Discov. 3, 330–339 (2004).
Christodoulou, C. & Choy, E. H. Joint inflammation and cytokine inhibition in rheumatoid arthritis. Clin. Exp. Med. 6, 13–19 (2006).
Janssens, S. & Beyaert, R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol. Cell 11, 293–302 (2003).
Auron, P. E. The interleukin 1 receptor: ligand interactions and signal transduction. Cytokine Growth Factor Rev. 9, 221–237 (1998).
Dower, S. K. et al. Detection and characterization of high affinity plasma membrane receptors for human interleukin 1. J. Exp. Med. 162, 501–515 (1985).
Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol. 2, 675–680 (2001).
Sims, J. E. et al. Interleukin 1 signaling occurs exclusively via the type I receptor. Proc. Natl Acad. Sci. USA 90, 6155–6159 (1993).
Wesche, H. et al. The interleukin-1 receptor accessory protein (IL-1RAcP) is essential for IL-1-induced activation of interleukin-1 receptor-associated kinase (IRAK) and stress-activated protein kinases (SAP kinases). J. Biol. Chem. 272, 7727–7731 (1997).
Burns, K. et al. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nature Cell Biol. 2, 346–351 (2000).
Burns, K. et al. MyD88, an adapter protein involved in interleukin-1 signaling. J. Biol. Chem. 273, 12203–12209 (1998).
Qwarnstrom, E. E., MacFarlane, S. A., Page, R. C. & Dower, S. K. Interleukin 1β induces rapid phosphorylation and redistribution of talin: a possible mechanism for modulation of fibroblast focal adhesion. Proc. Natl Acad. Sci. USA 88, 1232–1236 (1991).
Palsson, E. M., Popoff, M., Thelestam, M. & O'Neill, L. A. Divergent roles for Ras and Rap in the activation of p38 mitogen-activated protein kinase by interleukin-1. J. Biol. Chem. 275, 7818–7825 (2000).
Matthews, J. S. & O'Neill, L. A. Distinct roles for p42/p44 and p38 mitogen-activated protein kinases in the induction of IL-2 by IL-1. Cytokine 11, 643–655 (1999).
Luo, L., Cruz, T. & McCulloch, C. Interleukin 1-induced calcium signalling in chondrocytes requires focal adhesions. Biochem. J. 324, 653–658 (1997).
Zhu, P., Xiong, W., Rodgers, G. & Qwarnstrom, E. E. Regulation of interleukin 1 signalling through integrin binding and actin reorganization: disparate effects on NF-κB and stress kinase pathways. Biochem. J. 330, 975–981 (1998).
Maraldi, N. M., Marmiroli, S., Rizzoli, R., Mazzotti, G. & Manzoli, F. A. Phosphatidylinositol 3-kinase translocation to the nucleus is an early event in the interleukin-1 signalling mechanism in human osteosarcoma Saos-2 cells. Adv. Enzyme Regul. 39, 33–49 (1999).
Bergman, M. R. et al. A functional activating protein 1 (AP-1) site regulates matrix metalloproteinase 2 (MMP-2) transcription by cardiac cells through interactions with JunB-Fra1 and JunB-FosB heterodimers. Biochem. J. 369, 485–496 (2003).
Ferrari, D. et al. The P2X7 receptor: a key player in IL-1 processing and release. J. Immunol. 176, 3877–3883 (2006).
Laliberte, R. E. et al. Glutathione s-transferase omega 1–1 is a _target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1β posttranslational processing. J. Biol. Chem. 278, 16567–16578 (2003).
Smeets, R. L. et al. Soluble interleukin-1 receptor accessory protein ameliorates collagen-induced arthritis by a different mode of action from that of interleukin-1 receptor antagonist. Arthritis Rheum. 52, 2202–2211 (2005).
Fleischmann, R. M. et al. Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis: A large, international, multicenter, placebo-controlled trial. Arthritis Rheum. 48, 927–934 (2003).
Siegel, J. FDA briefing document on safety and efficacy update of approved TNF-blocking agents [online], (2003).
Zou, J. et al. Down-regulation of the nonspecific and antigen-specific T cell cytokine response in ankylosing spondylitis during treatment with infliximab. Arthritis Rheum. 48, 780–790 (2003).
Bresnihan, B., Newmark, R., Robbins, S. & Genant, H. K. Effects of anakinra monotherapy on joint damage in patients with rheumatoid arthritis. Extension of a 24-week randomized, placebo-controlled trial. J. Rheumatol. 31, 1103–1111 (2004).
Cohen, S. et al. Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46, 614–624 (2002).
Jiang, Y. et al. A multicenter, double-blind, dose-ranging, randomized, placebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: radiologic progression and correlation of Genant and Larsen scores. Arthritis Rheum. 43, 1001–1009 (2000).
Coxon, A. et al. Inhibition of interleukin-1 but not tumor necrosis factor suppresses neovascularization in rat models of corneal angiogenesis and adjuvant arthritis. Arthritis Rheum. 46, 2604–2612 (2002).
Bendele, A. et al. Efficacy of sustained blood levels of interleukin-1 receptor antagonist in animal models of arthritis: comparison of efficacy in animal models with human clinical data. Arthritis Rheum. 42, 498–506 (1999).
Boivin, B., Villeneuve, L. R., Farhat, N., Chevalier, D. & Allen, B. G. Sub-cellular distribution of endothelin signaling pathway components in ventricular myocytes and heart: lack of preformed caveolar signalosomes. J. Mol. Cell. Cardiol. 38, 665–676 (2005).
Pascual, V., Allantaz, F., Arce, E., Punaro, M. & Banchereau, J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J. Exp. Med. 201, 1479–1486 (2005).
Fitzgerald, A. A., Leclercq, S. A., Yan, A., Homik, J. E. & Dinarello, C. A. Rapid responses to anakinra in patients with refractory adult-onset Still's disease. Arthritis Rheum. 52, 1794–1803 (2005).
Stojanov, S. & Kastner, D. L. Familial autoinflammatory diseases: genetics, pathogenesis and treatment. Curr. Opin. Rheumatol. 17, 586–599 (2005).
Drenth, J. P. & van der Meer, J. W. The Inflammasome-- A Linebacker of Innate Defense. N. Engl. J. Med. 355, 730–732 (2006).
Srinivasula, S. M. et al. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J. Biol. Chem. 277, 21119–21122 (2002).
Lovell, D. J., Bowyer, S. L. & Solinger, A. M. Interleukin-1 blockade by anakinra improves clinical symptoms in patients with neonatal-onset multisystem inflammatory disease. Arthritis Rheum. 52, 1283–1286 (2005).
Boschan, C. et al. Neonatal-onset multisystem inflammatory disease (NOMID) due to a novel S331R mutation of the CIAS1 gene and response to interleukin-1 receptor antagonist treatment. Am. J. Med. Genet. A 140, 883–886 (2006).
Rudolphi, K., Gerwin, N., Verzijl, N., van der Kraan, P. & van den Berg, W. Pralnacasan, an inhibitor of interleukin-1β converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage 11, 738–746 (2003).
Loher, F. et al. The interleukin-1β-converting enzyme inhibitor pralnacasan reduces dextran sulfate sodium-induced murine colitis and T helper 1 T-cell activation. J. Pharmacol. Exp. Ther. 308, 583–590 (2004).
Pavelka, K. Clinical effects of pralnacasan (PRAL), an orally-active interleukin-1β converting enzyme (ICE) inhibitor in a 285-patient phase II trial in rheumatoid arthritis (RA). Arthritis Rheum. 46 (Suppl. 9), S281 (2002).
Economides, A. N. et al. Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nature Med. 9, 47–52 (2003).
Guler, H.-P., Caldwell, J., Littlejohn, Tl, McIlwain, H, Offenberg, H., Stahl, N. A phase I, single dose excalation study of IL-1 trap in patients with rheumatoid arthritis. Arthritis Rheum. 44, S370 (2001).
Breitling, R. & Hoeller, D. Current challenges in quantitative modeling of epidermal growth factor signaling. FEBS Lett. 579, 6289–6294 (2005).
Richardson, K. S. & Zundel, W. The emerging role of the COP9 signalosome in cancer. Mol. Cancer Res. 3, 645–653 (2005).
Noguchi, T. et al. Recruitment of tumor necrosis factor receptor-associated factor family proteins to apoptosis signal-regulating kinase 1 signalosome is essential for oxidative stress-induced cell death. J. Biol. Chem. 280, 37033–37040 (2005).
Kapoor, G. S., Zhan, Y., Johnson, G. R. & O'Rourke, D. M. Distinct domains in the SHP-2 phosphatase differentially regulate epidermal growth factor receptor/NF-κB activation through Gab1 in glioblastoma cells. Mol. Cell Biol. 24, 823–836 (2004).
Arora, P. D., Ma, J., Min, W., Cruz, T. & McCulloch, C. A. Interleukin-1-induced calcium flux in human fibroblasts is mediated through focal adhesions. J. Biol. Chem. 270, 6042–6049 (1995).
Qwarnstrom, E. E., Page, R. C., Gillis, S. & Dower, S. K. Binding, internalization, and intracellular localization of interleukin-1β in human diploid fibroblasts. J. Biol. Chem. 263, 8261–8269 (1988).
Critchley, D. R. Focal adhesions — the cytoskeletal connection. Curr. Opin. Cell Biol. 12, 133–139 (2000).
Burridge, K. & Chrzanowska-Wodnicka, M. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12, 463–518 (1996).
Wehrle-Haller, B. & Imhof, B. The inner lives of focal adhesions. Trends Cell Biol. 12, 382–389 (2002).
Carragher, N. O. & Frame, M. C. Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol. 14, 241–249 (2004).
Zamir, E. & Geiger, B. Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114, 3583–3590 (2001).
MacGillivray, M. K., Cruz, T. F. & McCulloch, C. A. The recruitment of the interleukin-1 (IL-1) receptor-associated kinase (IRAK) into focal adhesion complexes is required for IL-1β-induced ERK activation. J. Biol. Chem. 275, 23509–23515 (2000).
Murphy-Ullrich, J. E., Gurusiddappa, S., Frazier, W. A. & Hook, M. Heparin-binding peptides from thrombospondins 1 and 2 contain focal adhesion-labilizing activity. J. Biol. Chem. 268, 26784–26789 (1993).
Wang, Q., Downey, G. P., Choi, C., Kapus, A. & McCulloch, C. A. IL-1 induced release of Ca2+ from internal stores is dependent on cell-matrix interactions and regulates ERK activation. FASEB J. 17, 1898–1900 (2003).
Zaidel-Bar, R., Cohen, M., Addadi, L. & Geiger, B. Hierarchical assembly of cell-matrix adhesion complexes. Biochem. Soc. Trans. 32, 416–420 (2004).
Kirchner, J., Kam, Z., Tzur, G., Bershadsky, A. D. & Geiger, B. Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption. J. Cell Sci. 116, 975–986 (2003).
Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).
Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).
Klinghoffer, R. A., Sachsenmaier, C., Cooper, J. A. & Soriano, P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459–2471 (1999).
Miyamoto, S., Akiyama, S. K. & Yamada, K. M. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267, 883–835 (1995).
Katz, B. Z. et al. _targeting membrane-localized focal adhesion kinase to focal adhesions: roles of tyrosine phosphorylation and SRC family kinases. J. Biol. Chem. 278, 29115–29120 (2003).
Herrera Abreu, M. T. et al. Tyrosine phosphatase SHP-2 regulates IL-1 signaling in fibroblasts through focal adhesions. J. Cell Physiol. 207, 132–143 (2006).
Alonso, A. et al. Protein tyrosine phosphatases in the human genome. Cell 117, 699–711 (2004).
Ayalon, O. & Geiger, B. Cyclic changes in the organization of cell adhesions and the associated cytoskeleton, induced by stimulation of tyrosine phosphorylation in bovine aortic endothelial cells. J. Cell Sci. 110, 547–556 (1997).
Jones, M. L. & Poole, A. W. Protein tyrosine phosphatases. Methods Mol. Biol. 273, 169–78 (2004).
Tonks, N. K. Redox redux: revisiting PTPs and the control of cell signaling. Cell 121, 667–670 (2005).
Poole, A. W. & Jones, M. L. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell Signal 17, 1323–1332 (2005).
Chishti, A. H. et al. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem. Sci. 23, 281–282 (1998).
Fujioka, Y. et al. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol. Cell Biol. 16, 6887–6899 (1996).
Tsuda, M. et al. Integrin-mediated tyrosine phosphorylation of SHPS-1 and its association with SHP-2. Roles of Fak and Src family kinases. J. Biol. Chem. 273, 13223–13229 (1998).
Yu, D. H., Qu, C. K., Henegariu, O., Lu, X. & Feng, G. S. Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J. Biol. Chem. 273, 21125–21131 (1998).
Oh, E. S. et al. Regulation of early events in integrin signaling by protein tyrosine phosphatase SHP-2. Mol. Cell Biol. 19, 3205–3215 (1999).
Kodama, A. et al. Involvement of an SHP-2-Rho small G protein pathway in hepatocyte growth factor/scatter factor-induced cell scattering. Mol. Biol. Cell 11, 2565–2575 (2000).
Schoenwaelder, S. M. et al. The protein tyrosine phosphatase Shp-2 regulates RhoA activity. Curr. Biol. 10, 1523–1526 (2000).
Kodama, A. et al. Regulation of Ras and Rho small G proteins by SHP-2. Genes Cells 6, 869–876 (2001).
MacGillivray, M. et al. The protein tyrosine phosphatase SHP-2 regulates interleukin-1-induced ERK activation in fibroblasts. J. Biol. Chem. 278, 27190–27198 (2003).
Wang, Q., Downey, G. P., Herrera-Abreu, M. T., Kapus, A. & McCulloch, C. A. SHP-2 modulates interleukin-1-induced Ca2+ flux and ERK activation via phosphorylation of phospholipase Cγ1. J. Biol. Chem. 280, 8397–8406 (2005).
Lo, Y. Y., Luo, L., McCulloch, C. A. & Cruz, T. F. Requirements of focal adhesions and calcium fluxes for interleukin-1-induced ERK kinase activation and c-fos expression in fibroblasts. J. Biol. Chem. 273, 7059–7065 (1998).
Lammers, R., Lerch, M. M. & Ullrich, A. The carboxyl-terminal tyrosine residue of protein-tyrosine phosphatase α mediates association with focal adhesion plaques. J. Biol. Chem. 275, 3391–3396 (2000).
von Wichert, G. et al. RPTP-α acts as a transducer of mechanical force on αv/β3-integrin-cytoskeleton linkages. J. Cell Biol. 161, 143–153 (2003).
Su, J., Muranjan, M. & Sap, J. Receptor protein tyrosine phosphatase α activates Src-family kinases and controls integrin-mediated responses in fibroblasts. Curr. Biol. 9, 505–511 (1999).
Hardingham, G. E., Cruzalegui, F. H., Chawla, S. & Bading, H. Mechanisms controlling gene expression by nuclear calcium signals. Cell Calcium 23, 131–134 (1998).
Ma, H. T. et al. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287, 1647–1651 (2000).
Patterson, R. L., Boehning, D. & Snyder, S. H. Inositol 1, 4, 5-trisphosphate receptors as signal integrators. Annu. Rev. Biochem. 73, 437–465 (2004).
Kruger, J. et al. Deficiency of Src homology 2-containing phosphatase 1 results in abnormalities in murine neutrophil function: studies in motheaten mice. J. Immunol. 165, 5847–5859 (2000).
Marcucci, G., Perrotti, D. & Caligiuri, M. A. Understanding the molecular basis of imatinib mesylate therapy in chronic myelogenous leukemia and the related mechanisms of resistance. Clin. Cancer Res. 9, 1333–1337 (2003).
Ross, D. M. & Hughes, T. P. Cancer treatment with kinase inhibitors: what have we learnt from imatinib? Br. J. Cancer 90, 12–19 (2004).
West, H. L. et al. Gefitinib therapy in advanced bronchioloalveolar carcinoma: Southwest Oncology Group Study S0126. J. Clin. Oncol. 24, 1807–1813 (2006).
Erlichman, C. et al. Phase I study of EKB-569, an irreversible inhibitor of the epidermal growth factor receptor, in patients with advanced solid tumors. J. Clin. Oncol. 24, 2252–2260 (2006).
Graeven, U. et al. Phase I study of the humanised anti-EGFR monoclonal antibody matuzumab (EMD 72000) combined with gemcitabine in advanced pancreatic cancer. Br. J. Cancer 94, 1293–1299 (2006).
Jennens, R. R., Rosenthal, M. A., Lindeman, G. J. & Michael, M. Complete radiological and metabolic response of metastatic renal cell carcinoma to SU5416 (semaxanib) in a patient with probable von Hippel-Lindau syndrome. Urol. Oncol. 22, 193–196 (2004).
Yoshinari, N. et al. Effects of scaling and root planing on the amounts of interleukin-1 and interleukin-1 receptor antagonist and the mRNA expression of interleukin-1β in gingival crevicular fluid and gingival tissues. J. Periodontal Res. 39, 158–167 (2004).
Papageorgiou, A. C. & Wikman, L. E. Is JAK3 a new drug _target for immunomodulation-based therapies? Trends Pharmacol. Sci. 25, 558–562 (2004).
Johnson, T. O., Ermolieff, J. & Jirousek, M. R. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nature Rev. Drug Discov. 1, 696–709 (2002).
Alonso, A. et al. Protein tyrosine phosphatases in the human genome. Cell 117, 699–711 (2004).
Mustelin, T., Vang, T. & Bottini, N. Protein tyrosine phosphatases and the immune response. Nature Rev. Immunol. 5, 43–57 (2005).
Tautz, L., Pellecchia, M. & Mustelin, T. _targeting the PTPome in human disease. Expert Opin Ther _targets 10, 157–177 (2006).
Pederson, R. A., Ramanadham, S., Buchan, A. M. & McNeill, J. H. Long-term effects of vanadyl treatment on streptozocin-induced diabetes in rats. Diabetes 38, 1390–1395 (1989).
Meyerovitch, J., Rothenberg, P., Shechter, Y., Bonner-Weir, S. & Kahn, C. R. Vanadate normalizes hyperglycemia in two mouse models of non-insulin-dependent diabetes mellitus. J. Clin. Invest. 87, 1286–1294 (1991).
Robertson, R. P. & Klein, D. J. Treatment of diabetes mellitus. Diabetologia 35 (Suppl. 2), S8–S17 (1992).
Goldfine, A. B., Simonson, D. C., Folli, F., Patti, M. E. & Kahn, C. R. Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J. Clin. Endocrinol. Metab. 80, 3311–3320 (1995).
Sakurai, H. A new concept: the use of vanadium complexes in the treatment of diabetes mellitus. Chem. Rec. 2, 237–248 (2002).
Winter, C. L. et al. A nonspecific phosphotyrosine phosphatase inhibitor, bis(maltolato)oxovanadium(IV), improves glucose tolerance and prevents diabetes in Zucker diabetic fatty rats. Exp. Biol. Med. (Maywood) 230, 207–216 (2005).
Poucheret, P., Verma, S., Grynpas, M. D. & McNeill, J. H. Vanadium and diabetes. Mol. Cell. Biochem. 188, 73–80 (1998).
Sekar, N., Li, J. & Shechter, Y. Vanadium salts as insulin substitutes: mechanisms of action, a scientific and therapeutic tool in diabetes mellitus research. Crit. Rev. Biochem. Mol. Biol. 31, 339–359 (1996).
Willsky, G. R. et al. Effect of vanadium(IV) compounds in the treatment of diabetes: in vivo and in vitro studies with vanadyl sulfate and bis(maltolato)oxovandium(IV). J. Inorg. Biochem. 85, 33–42 (2001).
Rao, G. S., Ramachandran, M. V. & Bajaj, J. S. In silico structure-based design of a potent and selective small peptide inhibitor of protein tyrosine phosphatase 1B, a novel therapeutic _target for obesity and type 2 diabetes mellitus: a computer modeling approach. J. Biomol. Struct. Dyn 23, 377–384 (2006).
Mizuno, K., Katagiri, T., Hasegawa, K., Ogimoto, M. & Yakura, H. Hematopoietic cell phosphatase, SHP-1, is constitutively associated with the SH2 domain-containing leukocyte protein, SLP-76, in B cells. J. Exp. Med. 184, 457–463 (1996).
Jiao, H. et al. Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol. Cell Biol. 16, 6985–6992 (1996).
Barford, D. & Neel, B. G. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure 6, 249–254 (1998).
Huyer, G. & Ramachandran, C. The specificity of the N-terminal SH2 domain of SHP-2 is modified by a single point mutation. Biochemistry 37, 2741–2747 (1998).
Kruger, J. M. et al. Protein-tyrosine phosphatase MEG2 is expressed by human neutrophils. Localization to the phagosome and activation by polyphosphoinositides. J. Biol. Chem. 277, 2620–2628 (2002).
Zhang, Z. Y. & Lee, S. Y. PTP1B inhibitors as potential therapeutics in the treatment of type 2 diabetes and obesity. Expert Opin. Investig. Drugs 12, 223–233 (2003).
Chen, L. et al. Discovery of a novel shp2 protein tyrosine phosphatase inhibitor. Mol. Pharmacol. 70, 562–570 (2006).
Zhang, S. Q., Kovalenko, A., Cantarella, G. & Wallach, D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKγ) upon receptor stimulation. Immunity 12, 301–311 (2000).
Acknowledgements
C.A.M., G.P.D and H.E.G. are supported by operating grants from the Canadian Institutes of Health Research.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
DATABASES
OMIM
FURTHER INFORMATION
Glossary
- Innate and acquired immunity
-
Innate immune responses are activated by pathogens through ligation of Toll-like receptors expressed on the surface of epithelial cells, neutrophils, macrophages, natural killer cells and dendritic cells. Acquired immune responses are highly specific and develop as a result of antigen processing by antigen-presenting cells with subsequent presentation to T cells.
- Synovium
-
The thin layer of connective tissue that forms the inner lining of the joint cavity, which primarily serves to maintain the health of the cartilage.
- Acute-phase response
-
A stereotyped syndrome characterized by the presence of constitutional symptoms such as fatigue and weight loss, elevation in acute-phase proteins such as C-reactive protein and a host of haematological and endocrine changes.
- Erosive articular damage
-
The development of defects in the cartilage and bone adjacent to the joint cavity caused by chronic inflammation of the synovium lining the joint.
- Osteoclastogenesis
-
The process of generating bone-resorbing multinucleated cells from blood-forming precursor cells that is mediated by the sequential action of specific cytokines and growth factors.
- Periarticular bone
-
Bone that is subjacent to the cartilage-covered, load-bearing surfaces of joints.
- Inflammasome
-
A cytosolic complex of proteins that activates caspase 1 to process pro-inflammatory cytokines such as IL-1β and IL-18.
- Mesenchymal
-
The part of the embryonic mesoderm from which connective tissue, bone, cartilage, and the circulatory and lymphatic systems develop.
- Protein tyrosine phosphatase
-
A group of enzymes that remove phosphates from tyrosine residues by hydrolysis.
- Focal adhesions
-
Actin-enriched anchorage sites of adherent cells where there is close apposition of the plasma membrane to the substratum. Focal adhesions are enriched in actin-binding proteins and molecules associated with signalling processes.
- Fibroblast
-
Ubiquitous cells of connective tissue that synthesize and remodel collagen and other extracellular matrix proteins.
- Synoviocyte
-
Cells of soft connective tissues that line the joints and which upon activation can contribute to the degradation of joint tissues.
- Chondrocyte
-
A connective tissue cell that resides in a lacuna within the cartilage matrix.
- SH2 (Src homology 2) domain
-
A conserved sequence of amino acids originally identified in the tyrosine kinase Src that mediates binding to tyrosine residues in _target proteins.
- Signalosomes
-
Multimeric protein complexes comprising various signalling molecules that by virtue of their spatial clustering enhance signal transduction138.
Rights and permissions
About this article
Cite this article
McCulloch, C., Downey, G. & El-Gabalawy, H. Signalling platforms that modulate the inflammatory response: new _targets for drug development. Nat Rev Drug Discov 5, 864–876 (2006). https://doi.org/10.1038/nrd2109
Issue Date:
DOI: https://doi.org/10.1038/nrd2109
This article is cited by
-
Resistance to Src inhibition alters the BRAF-mutant tumor secretome to promote an invasive phenotype and therapeutic escape through a FAK>p130Cas>c-Jun signaling axis
Oncogene (2019)
-
Quantitative analysis of focal adhesion dynamics using photonic resonator outcoupler microscopy (PROM)
Light: Science & Applications (2018)
-
Contribution of collagen adhesion receptors to tissue fibrosis
Cell and Tissue Research (2016)
-
Protein painting reveals solvent-excluded drug _targets hidden within native protein–protein interfaces
Nature Communications (2014)
-
A20: from ubiquitin editing to tumour suppression
Nature Reviews Cancer (2010)