Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens

Key Points

  • Adoptive infusions of short-term IL-2-activated NK cells have so far provided the best direct evidence for the potential of using NK cells to induce tumour regression in patients with cancer.

  • The cytokine IL-2 has been used as single-agent therapy in multiple clinical settings in an attempt to augment the antitumour reactivity of the immune system, including NK cells, with limited clinical benefits so far. IL-15 is another common γ-chain cytokine that has an immune cell stimulation profile that is distinct compared with IL-2. The antitumour potential of IL-15 is now being studied in the clinic.

  • Monoclonal antibodies are potent agents that can redirect and trigger NK cell tumour killing. Further clinical studies are needed to fully determine the degree to which NK cells contribute to tumour regression following monoclonal antibody therapy. Bispecific or trispecific killer engagers (BiKEs or TriKEs) are engineered antibody-like molecules that have shown great promise in preclinical studies, warranting an investigation of their efficacy in the clinical setting.

  • Preclinical studies indicate that immune-modulatory antibodies, such as programmed cell death protein 1 (PD1)-specific antibodies, have the potential to prompt NK cell-mediated tumour rejection in vivo.

  • Several recently developed strategies to sensitize tumour cells to NK cell killing have shown efficacy in vitro and in preclinical animal models, and are currently being evaluated in the clinical setting.

  • A variety of new methods to expand large numbers of NK cells ex vivo using good manufacturing practice-compliant conditions have recently been established, with several studies now evaluating the antitumour potential of these adoptively infused NK cells in the clinic. The advantage of ex vivo expanded NK cells compared to the infusion of non-expanded cells is that a large number of highly activated NK cells can be infused at one or multiple time points.

  • Advances in techniques to genetically manipulate NK cells provide new means to engineer NK cells to improve their tumour _targeting capacity in vivo. Infusion of genetically manipulated NK cells has just reached clinical evaluation and will soon shed light on the potential of this strategy.

  • So far, most studies have focused on methods to improve tumour killing at the NK cell–tumour interface, neglecting the importance of establishing methods to improve NK cell persistence and expansion in vivo as well as methods to promote NK cell migration to the tumour environment.

Abstract

Scientific insights into the human immune system have recently led to unprecedented breakthroughs in immunotherapy. In the twenty-first century, drugs and cell-based therapies developed to bolster humoral and T cell immunity represent an established and growing component of cancer therapeutics. Although natural killer (NK) cells have long been known to have advantages over T cells in terms of their capacity to induce antigen-independent host immune responses against malignancies, their therapeutic potential in the clinic has been largely unexplored. A growing number of scientific discoveries into pathways that both activate and suppress NK cell function, as well as methods to sensitize tumours to NK cell cytotoxicity, have led to the development of numerous pharmacological and genetic methods to enhance NK cell antitumour immunity. These findings, as well as advances in our ability to expand NK cells ex vivo and manipulate their capacity to home to the tumour, have now provided investigators with a variety of new methods and strategies to harness the full potential of NK cell-based cancer immunotherapy in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of drugs that bolster NK cell antitumour immunity and their interaction points.
Figure 2: Development status of drugs designed to augment NK cell antitumour immunity.

Similar content being viewed by others

References

  1. Moretta, L., Ciccone, E., Mingari, M. C., Biassoni, R. & Moretta, A. Human natural killer cells: origin, clonality, specificity, and receptors. Adv. Immunol. 55, 341–380 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Gregoire, C. et al. The trafficking of natural killer cells. Immunol. Rev. 220, 169–182 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Herberman, R. B., Nunn, M. E., Holden, H. T. & Lavrin, D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int. J. Cancer 16, 230–239 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. Herberman, R. B., Nunn, M. E. & Lavrin, D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int. J. Cancer 16, 216–229 (1975).

    Article  CAS  PubMed  Google Scholar 

  5. Kiessling, R., Klein, E., Pross, H. & Wigzell, H. “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur. J. Immunol. 5, 117–121 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Kiessling, R., Klein, E. & Wigzell, H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 5, 112–117 (1975).

    Article  CAS  PubMed  Google Scholar 

  7. Foley, B. et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood 119, 2665–2674 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Foley, B. et al. Human cytomegalovirus (CMV)-induced memory-like NKG2C+ NK cells are transplantable and expand in vivo in response to recipient CMV antigen. J. Immunol. 189, 5082–5088 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Bryceson, Y. T. & Long, E. O. Line of attack: NK cell specificity and integration of signals. Curr. Opin. Immunol. 20, 344–352 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kärre, K. in Mechanisms of Cytotoxicity by NK Cells (eds Callewaert, D. & Herberman, R. B.) 81–91 (Academis Press., 1985).

    Book  Google Scholar 

  11. Ljunggren, H. G. & Karre, K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Anfossi, N. et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 25, 331–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Miller, J. S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057 (2005). This is the first study to show that infusion of short-term IL-2-activated allogeneic haploidentical NK cells to patients with refractory leukaemia can induce remission.

    Article  CAS  PubMed  Google Scholar 

  15. Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002). This seminal paper describes the role for NK cells in preventing leukaemia relapse following haploidentical haematopoietic stem cell transplantation in patients with AML and patients with acute lymphoblastic leukaemia.

    Article  CAS  PubMed  Google Scholar 

  16. Rosenberg, S. A. et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 313, 1485–1492 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. West, W. H. et al. Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N. Engl. J. Med. 316, 898–905 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Curti, A. et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 118, 3273–3279 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Geller, M. A. et al. A Phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy 13, 98–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Ito, S. et al. Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol. Ther. 22, 1388–1395 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Levin, A. M. et al. Exploiting a natural conformational switch to engineer an interleukin-2 'superkine'. Nature 484, 529–533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leclercq, G., Debacker, V., de Smedt, M. & Plum, J. Differential effects of interleukin-15 and interleukin-2 on differentiation of bipotential T/natural killer progenitor cells. J. Exp. Med. 184, 325–336 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Pillet, A. H., Bugault, F., Theze, J., Chakrabarti, L. A. & Rose, T. A programmed switch from IL-15- to IL-2-dependent activation in human NK cells. J. Immunol. 182, 6267–6277 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Pillet, A. H., Theze, J. & Rose, T. Interleukin (IL)-2 and IL-15 have different effects on human natural killer lymphocytes. Hum. Immunol. 72, 1013–1017 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Carson, W. E. et al. A potential role for interleukin-15 in the regulation of human natural killer cell survival. J. Clin. Invest. 99, 937–943 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berger, C. et al. Safety and immunologic effects of IL-15 administration in nonhuman primates. Blood 114, 2417–2426 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Conlon, K. C. et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J. Clin. Oncol. 33, 74–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Cooley, S. et al. Recombinant human IL-15 promotes in vivo expansion of adoptively transferred NK cells in a first-in-human Phase I dose escalation study in patients with AML. Blood 615, 894 (2012).

    Article  Google Scholar 

  29. Miller, J. S. Therapeutic applications: natural killer cells in the clinic. Hematol. Am. Soc. Hematol. Educ. Program 2013, 247–253 (2013).

    Article  Google Scholar 

  30. Dubois, S., Patel, H. J., Zhang, M., Waldmann, T. A. & Muller, J. R. Preassociation of IL-15 with IL-15R α-IgG1-Fc enhances its activity on proliferation of NK and CD8+/CD44high T cells and its antitumor action. J. Immunol. 180, 2099–2106 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Han, K. P. et al. IL-15:IL-15 receptor α superagonist complex: high-level co-expression in recombinant mammalian cells, purification and characterization. Cytokine 56, 804–810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu, Z. & Xu, Y. IL-15R α-IgG1-Fc enhances IL-2 and IL-15 anti-tumor action through NK and CD8+ T cells proliferation and activation. J. Mol. Cell. Biol. 2, 217–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Steel, J. C., Waldmann, T. A. & Morris, J. C. Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol. Sci. 33, 35–41 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Pistoia, V., Cocco, C. & Airoldi, I. Interleukin-12 receptor β2: from cytokine receptor to gatekeeper gene in human B-cell malignancies. J. Clin. Oncol. 27, 4809–4816 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Kobayashi, M. et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med. 170, 827–845 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Lehmann, D. et al. IL-12 directs further maturation of ex vivo differentiated NK cells with improved therapeutic potential. PLoS ONE 9, e87131 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Allavena, P. et al. Interleukin-12 is chemotactic for natural killer cells and stimulates their interaction with vascular endothelium. Blood 84, 2261–2268 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Gollob, J. A. et al. Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-γ induction is associated with clinical response. Clin. Cancer Res. 6, 1678–1692 (2000).

    CAS  PubMed  Google Scholar 

  39. Gollob, J. A. et al. Phase I trial of concurrent twice-weekly recombinant human interleukin-12 plus low-dose IL-2 in patients with melanoma or renal cell carcinoma. J. Clin. Oncol. 21, 2564–2573 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. Trudeau, C. et al. A single administration of recombinant human interleukin-12 is associated with increased expression levels of interferon-γ and signal transducer and activator of transcription in healthy subjects. J. Clin. Pharmacol. 45, 649–658 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Robertson, M. J. et al. Interleukin 12 immunotherapy after autologous stem cell transplantation for hematological malignancies. Clin. Cancer Res. 8, 3383–3393 (2002).

    CAS  PubMed  Google Scholar 

  42. Basile, L. A., Gallaher, T. K., Shibata, D., Miller, J. D. & Douer, D. Multilineage hematopoietic recovery with concomitant antitumor effects using low dose Interleukin-12 in myelosuppressed tumor-bearing mice. J. Transl. Med. 6, 26 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gokhale, M. S. et al. Single low-dose rHuIL-12 safely triggers multilineage hematopoietic and immune-mediated effects. Exp. Hematol. Oncol. 3, 11 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhu, D., Corral, L. G., Fleming, Y. W. & Stein, B. Immunomodulatory drugs Revlimid (lenalidomide) and CC-4047 induce apoptosis of both hematological and solid tumor cells through NK cell activation. Cancer Immunol. Immunother. 57, 1849–1859 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Gorgun, G. et al. Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood 116, 3227–3237 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Davies, F. E. et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98, 210–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Reddy, N. et al. Immunomodulatory drugs stimulate natural killer-cell function, alter cytokine production by dendritic cells, and inhibit angiogenesis enhancing the anti-tumour activity of rituximab in vivo. Br. J. Haematol. 140, 36–45 (2008).

    CAS  PubMed  Google Scholar 

  48. Hayashi, T. et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br. J. Haematol. 128, 192–203 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Lagrue, K., Chopra, R. & Davis, D. M. The immunomodulatory drug Lenalidomide alters the threshold for NK cell activation and augments NK cell effector functions. Immunology 140 (Suppl. 1), 71 (2013).

    Google Scholar 

  50. Berg, S. L. et al. Safety, pharmacokinetics, and immunomodulatory effects of lenalidomide in children and adolescents with relapsed/refractory solid tumors or myelodysplastic syndrome: a Children's Oncology Group Phase I Consortium report. J. Clin. Oncol. 29, 316–323 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Chanan-Khan, A. A. et al. Biological effects and clinical significance of lenalidomide-induced tumour flare reaction in patients with chronic lymphocytic leukaemia: in vivo evidence of immune activation and antitumour response. Br. J. Haematol. 155, 457–467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eve, H. E. et al. Single-agent lenalidomide in relapsed/refractory mantle cell lymphoma: results from a UK phase II study suggest activity and possible gender differences. Br. J. Haematol. 159, 154–163 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Wolschke, C. et al. Postallograft lenalidomide induces strong NK cell-mediated antimyeloma activity and risk for T cell-mediated GvHD: results from a Phase I/II dose-finding study. Exp. Hematol. 41, 134–142.e3 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. MacFarlane, A. W. 4th et al. PD-1 expression on peripheral blood cells increases with stage in renal cell carcinoma patients and is rapidly reduced after surgical tumor resection. Cancer Immunol. Res. 2, 320–331 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Wiesmayr, S. et al. Decreased NKp46 and NKG2D and elevated PD-1 are associated with altered NK-cell function in pediatric transplant patients with PTLD. Eur. J. Immunol. 42, 541–550 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Benson, D. M. Jr et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic _target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 116, 2286–2294 (2010). This study demonstrates that antibody blockade of the PD1–PDL1 signalling axis can significantly bolster NK cell tumour reactivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Robert, C. et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a Phase 1 trial. Lancet 384, 1109–1117 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Weber, J. S. et al. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J. Clin. Oncol. 31, 4311–4318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Benson, D. M. Jr et al. IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect. Blood 118, 6387–6391 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Romagne, F. et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 114, 2667–2677 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sola, C. et al. Genetic and antibody-mediated reprogramming of natural killer cell missing-self recognition in vivo. Proc. Natl Acad. Sci. USA 106, 12879–12884 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vahlne, G. et al. In vivo tumor cell rejection induced by NK cell inhibitory receptor blockade: maintained tolerance to normal cells even in the presence of IL-2. Eur. J. Immunol. 40, 813–823 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Korde, N. et al. A phase II trial of pan-KIR2D blockade with IPH2101 in smoldering multiple myeloma. Haematologica 99, e81–e83 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maloney, D. G. Anti-CD20 antibody therapy for B-cell lymphomas. N. Engl. J. Med. 366, 2008–2016 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Wu, J. et al. A novel polymorphism of FcγRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J. Clin. Invest. 100, 1059–1070 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cartron, G. et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 99, 754–758 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Weng, W. K. & Levy, R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol. 21, 3940–3947 (2003). References 69 and 70 provide the first data on the importance of NK cells in mediating tumour regression following mAb therapy, showing a survival advantage and improved response rates among rituximab-treated CD16-158V homozygous follicular lymphoma patients compared to non-CD16-158V homozygous patients.

    Article  CAS  PubMed  Google Scholar 

  71. Pander, J. et al. Correlation of FCGR3A and EGFR germline polymorphisms with the efficacy of cetuximab in KRAS wild-type metastatic colorectal cancer. Eur. J. Cancer 46, 1829–1834 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Tarek, N. et al. Unlicensed NK cells _target neuroblastoma following anti-GD2 antibody treatment. J. Clin. Invest. 122, 3260–3270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim, D. H. et al. FCGR3A gene polymorphisms may correlate with response to frontline R-CHOP therapy for diffuse large B-cell lymphoma. Blood 108, 2720–2725 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Gleason, M. K. et al. Bispecific and trispecific killer cell engagers directly activate human NK cells through CD16 signaling and induce cytotoxicity and cytokine production. Mol. Cancer Ther. 11, 2674–2684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wiernik, A. et al. _targeting natural killer cells to acute myeloid leukemia in vitro with a CD16 × 33 bispecific killer cell engager and ADAM17 inhibition. Clin. Cancer Res. 19, 3844–3855 (2013). This study shows that the use of CD16–CD 33 BiKEs can overcome self-inhibitory signals and effectively elicit NK cell-mediated killing of CD33+ AML cells, with this effect being boosted by preventing CD16 shedding via inhibition of ADAM17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Thorburn, A. Death receptor-induced cell killing. Cell. Signal. 16, 139–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Lundqvist, A., Yokoyama, H., Smith, A., Berg, M. & Childs, R. Bortezomib treatment and regulatory T-cell depletion enhance the antitumor effects of adoptively infused NK cells. Blood 113, 6120–6127 (2009). This study shows that the proteasome inhibitor bortezomib can be used to sensitize tumour cells in vivo to NK cell killing via the TRAIL–DR5 death receptor pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Merino, D. et al. Differential inhibition of TRAIL-mediated DR5–DISC formation by decoy receptors 1 and 2. Mol. Cell. Biol. 26, 7046–7055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vales-Gomez, M., Chisholm, S. E., Cassady-Cain, R. L., Roda-Navarro, P. & Reyburn, H. T. Selective induction of expression of a ligand for the NKG2D receptor by proteasome inhibitors. Cancer Res. 68, 1546–1554 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Wennerberg, E. et al. Doxorubicin sensitizes human tumor cells to NK cell- and T-cell-mediated killing by augmented TRAIL receptor signaling. Int. J. Cancer 133, 1643–1652 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Diermayr, S. et al. NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood 111, 1428–1436 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Armeanu, S. et al. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res. 65, 6321–6329 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Skov, S. et al. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res. 65, 11136–11145 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Lundqvist, A. et al. Bortezomib and depsipeptide sensitize tumors to tumor necrosis factor-related apoptosis-inducing ligand: a novel method to potentiate natural killer cell tumor cytotoxicity. Cancer Res. 66, 7317–7325 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Bandura, L., Drukala, J., Wolnicka-Glubisz, A., Bjornstedt, M. & Korohoda, W. Differential effects of selenite and selenate on human melanocytes, keratinocytes, and melanoma cells. Biochem. Cell Biol. 83, 196–211 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Husbeck, B., Nonn, L., Peehl, D. M. & Knox, S. J. Tumor-selective killing by selenite in patient-matched pairs of normal and malignant prostate cells. Prostate 66, 218–225 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Kandas, N. O., Randolph, C. & Bosland, M. C. Differential effects of selenium on benign and malignant prostate epithelial cells: stimulation of LNCaP cell growth by noncytotoxic, low selenite concentrations. Nutr. Cancer 61, 251–264 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Enqvist, M. et al. Selenite induces posttranscriptional blockade of HLA-E expression and sensitizes tumor cells to CD94/NKG2A-positive NK cells. J. Immunol. 187, 3546–3554 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Shi, J. et al. Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br. J. Haematol. 143, 641–653 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Childs, R. W. & Berg, M. Bringing natural killer cells to the clinic: ex vivo manipulation. Hematol. Am. Soc. Hematol. Educ. Program 2013, 234–246 (2013).

    Article  Google Scholar 

  91. Fujisaki, H., Kakuda, H., Imai, C., Mullighan, C. G. & Campana, D. Replicative potential of human natural killer cells. Br. J. Haematol. 145, 606–613 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Garg, T. K. et al. Highly activated and expanded natural killer cells for multiple myeloma immunotherapy. Haematologica 97, 1348–1356 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Imai, C., Iwamoto, S. & Campana, D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106, 376–383 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lapteva, N. et al. Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications. Cytotherapy 14, 1131–1143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, Y. et al. Growth and activation of natural killer cells ex vivo from children with neuroblastoma for adoptive cell therapy. Clin. Cancer Res. 19, 2132–2143 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, H. et al. Activating signals dominate inhibitory signals in CD137L/IL-15 activated natural killer cells. J. Immunother. 34, 187–195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Denman, C. J. et al. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS ONE 7, e30264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Berg, M. et al. Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy 11, 341–355 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Miller, J. S. et al. Expansion and homing of adoptively transferred human natural killer cells in immunodeficient mice varies with product preparation and in vivo cytokine administration: implications for clinical therapy. Biol. Blood Marrow Transplant 20, 1252–1257 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Frei, G. et al. Nicotinamide, a form of vitamin B3, promotes expansion of natural killer cells that display increased in vivo survival and cytotoxic activity. Blood 703, 4035 (2011).

    Article  Google Scholar 

  101. Frei, G. et al. Improved homing to bone marrow, spleen and lung of adoptively infused NK cells expanded ex vivo with the small molecule nicotinamide using feeder-free conditions. Blood 122, 897 (2013).

    Article  Google Scholar 

  102. Li, L. et al. Expression of chimeric antigen receptors in natural killer cells with a regulatory-compliant non-viral method. Cancer Gene Ther. 17, 147–154 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Shimasaki, N. et al. A clinically adaptable method to enhance the cytotoxicity of natural killer cells against B-cell malignancies. Cytotherapy 14, 830–840 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Carlsten, M. et al. Clinical-grade mRNA electroporation of NK cells: a novel and highly efficient method to genetically reprogram human NK cells for cancer immunotherapy. Blood 801, 2153 (2014).

    Article  Google Scholar 

  105. Chu, J. et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia 28, 917–927 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Xia, L., McDaniel, J. M., Yago, T., Doeden, A. & McEver, R. P. Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood 104, 3091–3096 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Onishi, T. et al. Forced fucosylation with ASC-101 enhances the binding of ex vivo expanded human NK cells to E-selectin: a novel method to improve the homing of adoptively transferred NK cells to the bone marrow in patients with hematological malignancies. Blood 122, 4499 (2013).

    Article  Google Scholar 

  108. Somanchi, S. S., Somanchi, A., Cooper, L. J. & Lee, D. A. Engineering lymph node homing of ex vivo-expanded human natural killer cells via trogocytosis of the chemokine receptor CCR7. Blood 119, 5164–5172 (2012). This is one of the first studies to describe how phenotypic modification of NK cells can be used to redirect their homing to _target tissues in vivo following adoptive infusion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Loza, M. J. & Perussia, B. The IL-12 signature: NK cell terminal CD56+high stage and effector functions. J. Immunol. 172, 88–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Romee, R. et al. NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood 121, 3599–3608 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Boutet, P. et al. Cutting edge: the metalloproteinase ADAM17/TNF-α-converting enzyme regulates proteolytic shedding of the MHC class I-related chain B protein. J. Immunol. 182, 49–53 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Bachanova, V. et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood 123, 3855–3863 (2014). This study provides evidence that the depletion of T Reg cells can be used to improve NK cell in vivo expansion and is associated with higher frequencies of complete remission in patients with AML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lopez-Verges, S. et al. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc. Natl Acad. Sci. USA 108, 14725–14732 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Elmaagacli, A. H. et al. Early human cytomegalovirus replication after transplantation is associated with a decreased relapse risk: evidence for a putative virus-versus-leukemia effect in acute myeloid leukemia patients. Blood 118, 1402–1412 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Green, M. L. et al. CMV reactivation after allogeneic HCT and relapse risk: evidence for early protection in acute myeloid leukemia. Blood 122, 1316–1324 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all the members of the US National Heart, Lung and Blood Institute's Laboratory of Transplantation Immunotherapy and the Dean R. O'Neill Memorial Fellowship for their many contributions and support for the original research described in this Review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Childs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

ClinicalTrials.gov

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Childs, R., Carlsten, M. Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens. Nat Rev Drug Discov 14, 487–498 (2015). https://doi.org/10.1038/nrd4506

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4506

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer
  NODES
admin 4
Association 1
INTERN 2
twitter 1