Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

WNT and β-catenin signalling: diseases and therapies

Key Points

  • WNTs are secreted ligands that activate at least two signalling pathways in vertebrates.

  • Altered function or levels of components of the WNT/β-catenin pathway are associated with proliferative diseases including cancer, as well as Alzheimer disease, osteoarthritis, tooth development, and diseases of the bone, eye and heart.

  • Altered function of the WNT/calcium pathway is implicated as a tumour-suppressor pathway, and as a regulator of cancer metastasis.

  • Both activators and inhibitors of WNT pathways are being developed as candidate therapeutic agents.

  • Manipulation of WNT signalling might be important in the development of therapies that are based on human stem cells.

Abstract

WNT signalling has been studied primarily in developing embryos, in which cells respond to WNTs in a context-dependent manner through changes in survival and proliferation, cell fate and movement. But WNTs also have important functions in adults, and aberrant signalling by WNT pathways is linked to a range of diseases, most notably cancer. What is the full range of diseases that involve WNT pathways? Can inhibition of WNT signalling form the basis of an effective therapy for some cancers? Could activation of WNT signalling provide new therapies for other clinical conditions? Finally, on the basis of recent experiments, might WNTs normally participate in self-renewal, proliferation or differentiation of stem cells? If so, altering WNT signalling might be beneficial to the use of stem cells for therapeutic means.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: WNT/β-catenin signalling.
Figure 2: WNT/calcium signalling.
Figure 3: Therapeutic _targets in WNT/β-catenin signalling.

Similar content being viewed by others

References

  1. Wodarz, A. & Nusse, R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. 14, 59–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Huelsken, J. & Birchmeier, W. New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev. 11, 547–553 (2001).

    CAS  PubMed  Google Scholar 

  3. Veeman, M. T., Axelrod, J. D. & Moon, R. T. A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev. Cell 5, 367–377 (2003).

    CAS  PubMed  Google Scholar 

  4. Tolwinski, N. S. & Wieschaus, E. Rethinking WNT signaling. Trends Genet. 20, 177–181 (2004).

    CAS  PubMed  Google Scholar 

  5. Nelson, W. J. & Nusse, R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. He, X., Semenov, M., Tamai, K. & Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 131, 1663–1677 (2004).

    CAS  PubMed  Google Scholar 

  7. Tan, C. et al. Inhibition of integrin linked kinase (ILK) suppresses β-catenin-Lef/Tcf-dependent transcription and expression of the E-cadherin repressor, snail, in APC−/− human colon carcinoma cells. Oncogene 20, 133–140 (2001).

    CAS  PubMed  Google Scholar 

  8. Levina, E., Oren, M. & Ben-Ze'ev, A. Downregulation of β-catenin by p53 involves changes in the rate of β-catenin phosphorylation and Axin dynamics. Oncogene 23, 4444–4453 (2004).

    CAS  PubMed  Google Scholar 

  9. Doble, B. W. & Woodgett, J. R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175–1186 (2003).

    CAS  PubMed  Google Scholar 

  10. Moon, R. T., Bowerman, B., Boutros, M. & Perrimon, N. The promise and perils of Wnt signaling through β-catenin. Science 296, 1644–1646 (2002).

    CAS  PubMed  Google Scholar 

  11. Westfall, T. A. et al. Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/β-catenin activity. J. Cell Biol. 162, 889–898 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Topol, L. et al. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent β-catenin degradation. J. Cell Biol. 162, 899–908 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Niemann, S. et al. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am. J. Hum. Genet. 74, 558–563 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jordan, B. K., Shen, J. H., Olaso, R., Ingraham, H. A. & Vilain, E. Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/β-catenin synergy. Proc. Natl Acad. Sci. USA 100, 10866–10871 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Perantoni, A. O. Renal development: perspectives on a Wnt-dependent process. Semin. Cell Dev. Biol. 14, 201–208 (2003).

    CAS  PubMed  Google Scholar 

  16. Terada, Y. et al. Expression and function of the developmental gene Wnt-4 during experimental acute renal failure in rats. J. Am. Soc. Nephrol. 14, 1223–1233 (2003).

    CAS  PubMed  Google Scholar 

  17. Surendran, K. & Simon, T. C. CNP gene expression is activated by Wnt signaling and correlates with Wnt4 expression during renal injury. Am. J. Physiol. Renal Physiol. 284, F653–F562 (2003).

    CAS  PubMed  Google Scholar 

  18. Rodova, M., Islam, M. R., Maser, R. L. & Calvet, J. P. The polycystic kidney disease-1 promoter is a _target of the β-catenin/T-cell factor pathway. J. Biol. Chem. 277, 29577–29583 (2002).

    CAS  PubMed  Google Scholar 

  19. Olson, D. J. & Gibo, D. M. Antisense wnt-5a mimics wnt-1-mediated C57MG mammary epithelial cell transformation. Exp. Cell Res. 241, 134–141 (1998).

    CAS  PubMed  Google Scholar 

  20. Olson, D. J., Gibo, D. M., Saggers, G., Debinski, W. & Kumar, R. Reversion of uroepithelial cell tumorigenesis by the ectopic expression of human wnt-5a. Cell Growth Differ. 8, 417–423 (1997).

    CAS  PubMed  Google Scholar 

  21. Liang, H. et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell 4, 349–360 (2003). Strong evidence that WNT/calcium signalling is a tumour-suppressor pathway.

    CAS  PubMed  Google Scholar 

  22. Weeraratna, A. T. et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1, 279–288 (2002). Solid evidence that WNT/calcium signalling is involved in metastasis.

    CAS  PubMed  Google Scholar 

  23. Ouko, L., Ziegler, T. R., Gu, L. H., Eisenberg, L. M. & Yang, V. W. Wnt11 signaling promotes proliferation, transformation and migration of IEC6 intestinal epithelial cells. J. Biol. Chem. 279, 26707–26715 (2004).

    CAS  PubMed  Google Scholar 

  24. Miyaoka, T., Seno, H. & Ishino, H. Increased expression of Wnt-1 in schizophrenic brains. Schizophr. Res. 38, 1–6 (1999).

    CAS  PubMed  Google Scholar 

  25. Katsu, T. et al. The human frizzled-3 (FZD3) gene on chromosome 8p21, a receptor gene for Wnt ligands, is associated with the susceptibility to schizophrenia. Neurosci. Lett. 353, 53–56 (2003).

    CAS  PubMed  Google Scholar 

  26. Kozlovsky, N., Belmaker, R. H. & Agam, G. GSK-3 and the neurodevelopmental hypothesis of schizophrenia. Eur. Neuropsychopharmacol. 12, 13–25 (2002).

    CAS  PubMed  Google Scholar 

  27. Lijam, N. et al. Social interaction and sensorimotor gating abnormalities in mice lacking Dvl1. Cell 90, 895–905 (1997).

    CAS  PubMed  Google Scholar 

  28. Loughlin, J. et al. Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc. Natl Acad. Sci. USA 101, 9757–9762 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Easwaran, V. et al. β-catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Res. 63, 3145–3153 (2003).

    CAS  PubMed  Google Scholar 

  30. Robitaille, J. et al. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nature Genet. 32, 326–330 (2002).

    CAS  PubMed  Google Scholar 

  31. Toomes, C. et al. Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Am. J. Hum. Genet. 74, 721–730 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kondo, H., Hayashi, H., Oshima, K., Tahira, T. & Hayashi, K. Frizzled 4 gene (FZD4) mutations in patients with familial exudative vitreoretinopathy with variable expressivity. Br. J. Ophthalmol. 87, 1291–1295 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu, Q. et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116, 883–895 (2004).

    CAS  PubMed  Google Scholar 

  34. Kaykas, A. et al. Mutant Frizzled 4 associated with vitreoretinopathy traps wild-type Frizzled in the endoplasmic reticulum by oligomerization. Nature Cell Biol. 6, 52–58 (2004).

    CAS  PubMed  Google Scholar 

  35. Harada, S. & Rodan, G. A. Control of osteoblast function and regulation of bone mass. Nature 423, 349–355 (2003).

    CAS  PubMed  Google Scholar 

  36. Johnson, M. L. et al. Linkage of a gene causing high bone mass to human chromosome 11 (11q12-13). Am. J. Hum. Genet. 60, 1326–1332 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Little, R. D. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet. 70, 11–19 (2002).

    CAS  PubMed  Google Scholar 

  38. Boyden, L. M. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med. 346, 1513–1521 (2002).

    CAS  PubMed  Google Scholar 

  39. Zhang, Y. et al. The LRP5 high-bone-mass G171V mutation disrupts LRP5 interaction with Mesd. Mol. Cell Biol. 24, 4677–4684 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001). Evidence of LRP5 involvement in bone and eye formation.

    CAS  PubMed  Google Scholar 

  41. Bodine, P. V. et al. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol. Endocrinol. 18, 1222–1237 (2004).

    CAS  PubMed  Google Scholar 

  42. Kahler, R. A. & Westendorf, J. J. Lymphoid enhancer factor-1 and β-catenin inhibit Runx2-dependent transcriptional activation of the osteocalcin promoter. J. Biol. Chem. 278, 11937–11944 (2003).

    CAS  PubMed  Google Scholar 

  43. Morin, P. J. & Weeraratna, A. T. Wnt signaling in human cancer. Cancer Treat. Res. 115, 169–187 (2003).

    CAS  PubMed  Google Scholar 

  44. Taketo, M. M. Shutting down Wnt signal-activated cancer. Nature Genet. 36, 320–322 (2004).

    CAS  PubMed  Google Scholar 

  45. Giles, R. H., van Es, J. H. & Clevers, H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta 1653, 1–24 (2003).

    CAS  PubMed  Google Scholar 

  46. van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    CAS  PubMed  Google Scholar 

  47. Uematsu, K. et al. Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene 22, 7218–7221 (2003).

    CAS  PubMed  Google Scholar 

  48. Kim, J. S., Crooks, H., Foxworth, A. & Waldman, T. Proof-of-principle: oncogenic β-catenin is a valid molecular _target for the development of pharmacological inhibitors. Mol. Cancer Ther. 1, 1355–1359 (2002).

    CAS  PubMed  Google Scholar 

  49. Gunther, E. J. et al. Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev. 17, 488–501 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Derksen, P. W. et al. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc. Natl Acad. Sci. USA 101, 6122–6127 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Suzuki, H. et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nature Genet. 36, 417–422 (2004).

    CAS  PubMed  Google Scholar 

  52. Kratochwil, K., Galceran, J., Tontsch, S., Roth, W. & Grosschedl, R. FGF4, a direct _target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1−/− mice. Genes Dev. 16, 3173–3185 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lammi, L. et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am. J. Hum. Genet. 74, 1043–1050 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mak, B. C., Takemaru, K., Kenerson, H. L., Moon, R. T. & Yeung, R. S. The tuberin-hamartin complex negatively regulates β-catenin signaling activity. J. Biol. Chem. 278, 5947–5951 (2003).

    CAS  PubMed  Google Scholar 

  55. Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778 (2004).

    CAS  PubMed  Google Scholar 

  56. Chang, C. H. et al. Distinct Wnt members regulate the hierarchical morphogenesis of skin regions (spinal tract) and individual feathers. Mech. Dev. 121, 157–171 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu, A. J. & Watt, F. M. β-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development 126, 2285–2298 (1999).

    CAS  PubMed  Google Scholar 

  58. Chan, E. F., Gat, U., McNiff, J. M. & Fuchs, E. A common human skin tumour is caused by activating mutations in β-catenin. Nature Genet. 21, 410–413 (1999).

    CAS  PubMed  Google Scholar 

  59. Guo, N., Hawkins, C. & Nathans, J. From the cover: Frizzled6 controls hair patterning in mice. Proc. Natl Acad. Sci. USA 101, 9277–9281 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheon, S. S. et al. β-catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc. Natl Acad. Sci. USA 99, 6973–6978 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cheon, S. S., Nadesan, P., Poon, R. & Alman, B. A. Growth factors regulate β-catenin-mediated TCF-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Exp. Cell Res. 293, 267–274 (2004).

    CAS  PubMed  Google Scholar 

  62. Varallo, V. M. et al. β-catenin expression in Dupuytren's disease: potential role for cell-matrix interactions in modulating β-catenin levels in vivo and in vitro. Oncogene 22, 3680–3684 (2003).

    CAS  PubMed  Google Scholar 

  63. Morrisey, E. E. Wnt signaling and pulmonary fibrosis. Am. J. Pathol. 162, 1393–1397 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mucenski, M. L. et al. β-catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J. Biol. Chem. 278, 40231–40238 (2003).

    CAS  PubMed  Google Scholar 

  65. Chilosi, M. et al. Aberrant Wnt/β-catenin pathway activation in idiopathic pulmonary fibrosis. Am. J. Pathol. 162, 1495–1502 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Okubo, T. & Hogan, B. L. Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm. J. Biol. 3, 11 (2004).

    PubMed  PubMed Central  Google Scholar 

  67. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    CAS  PubMed  Google Scholar 

  68. Terry, A. V. & Buccafusco, J. J. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther. 306, 821–827 (2003).

    CAS  PubMed  Google Scholar 

  69. Zhang, Z. et al. Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395, 698–702 (1998).

    CAS  PubMed  Google Scholar 

  70. Nishimura, M. et al. Presenilin mutations associated with Alzheimer disease cause defective intracellular trafficking of β-catenin, a component of the presenilin protein complex. Nature Med. 5, 164–169 (1999).

    CAS  PubMed  Google Scholar 

  71. Takashima, A. et al. Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau. Proc. Natl Acad. Sci. USA 95, 9637–9641 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. De Ferrari, G. V. & Inestrosa, N. C. Wnt signaling function in Alzheimer's disease. Brain Res. Brain Res. Rev. 33, 1–12 (2000).

    CAS  PubMed  Google Scholar 

  73. Kang, D. E. et al. Presenilin couples the paired phosphorylation of β-catenin independent of axin: implications for β-catenin activation in tumorigenesis. Cell 110, 751–762 (2002).

    CAS  PubMed  Google Scholar 

  74. Mudher, A. & Lovestone, S. Alzheimer's disease — do tauists and baptists finally shake hands? Trends Neurosci. 25, 22–26 (2002).

    CAS  PubMed  Google Scholar 

  75. Caricasole, A. et al. The Wnt pathway, cell-cycle activation and β-amyloid: novel therapeutic strategies in Alzheimer's disease? Trends Pharmacol. Sci. 24, 233–238 (2003).

    CAS  PubMed  Google Scholar 

  76. Mudher, A. et al. Dishevelled regulates the metabolism of amyloid precursor protein via protein kinase C/mitogen-activated protein kinase and c-Jun terminal kinase. J. Neurosci. 21, 4987–4995 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Alvarez, G. et al. Lithium protects cultured neurons against β-amyloid-induced neurodegeneration. FEBS Lett. 453, 260–264 (1999).

    CAS  PubMed  Google Scholar 

  78. De Ferrari, G. V. et al. Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by β-amyloid fibrils. Mol. Psychiatry 8, 195–208 (2003). Evidence that activating WNT/β-catenin signalling is neuroprotective in vitro and in vivo.

    CAS  PubMed  Google Scholar 

  79. Phiel, C. J., Wilson, C. A., Lee, V. M. & Klein, P. S. GSK-3α regulates production of Alzheimer's disease amyloid-β peptides. Nature 423, 435–439 (2003).

    CAS  PubMed  Google Scholar 

  80. Sun, X. et al. Lithium inhibits amyloid secretion in COS7 cells transfected with amyloid precursor protein C100. Neurosci. Lett. 321, 61–64 (2002).

    CAS  PubMed  Google Scholar 

  81. Olson, E. N. & Schneider, M. D. Sizing up the heart: development redux in disease. Genes Dev. 17, 1937–1956 (2003).

    CAS  PubMed  Google Scholar 

  82. Nakamura, T., Sano, M., Songyang, Z. & Schneider, M. D. A Wnt- and β-catenin-dependent pathway for mammalian cardiac myogenesis. Proc. Natl Acad. Sci. USA 100, 5834–5839 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Pandur, P., Lasche, M., Eisenberg, L. M. & Kuhl, M. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418, 636–641 (2002).

    CAS  PubMed  Google Scholar 

  84. van Gijn, M. E., Daemen, M. J., Smits, J. F. & Blankesteijn, W. M. The wnt-frizzled cascade in cardiovascular disease. Cardiovasc. Res. 55, 16–24 (2002).

    CAS  PubMed  Google Scholar 

  85. Barandon, L. et al. Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA. Circulation 108, 2282–2289 (2003).

    CAS  PubMed  Google Scholar 

  86. Lepourcelet, M. et al. Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex. Cancer Cell 5, 91–102 (2004).

    CAS  PubMed  Google Scholar 

  87. Emami, K. H. et al. A small molecule inhibitor of β-catenin/CBP transcription. Proc. Natl Acad. Sci. USA (in the press). New lead anti-cancer compound that blocks the WNT/β-catenin pathway.

  88. He, B. et al. A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia 6, 7–14 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. You, L. et al. Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene 21 June 2004 [epub ahead of print].

  90. Chakrabarty, S., Radjendirane, V., Appelman, H. & Varani, J. Extracellular calcium and calcium sensing receptor function in human colon carcinomas: promotion of E-cadherin expression and suppression of β-catenin/TCF activation. Cancer Res. 63, 67–71 (2003).

    CAS  PubMed  Google Scholar 

  91. Boon, E. M. et al. Sulindac _targets nuclear β-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines. Br. J. Cancer 90, 224–229 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Dihlmann, S., Klein, S. & Doeberitz, M. K. Reduction of β-catenin/T-cell transcription factor signaling by aspirin and indomethacin is caused by an increased stabilization of phosphorylated β-catenin. Mol. Cancer Ther. 2, 509–516 (2003).

    CAS  PubMed  Google Scholar 

  93. Nath, N., Kashfi, K., Chen, J. & Rigas, B. Nitric oxide-donating aspirin inhibits β-catenin/T cell factor (TCF) signaling in SW480 colon cancer cells by disrupting the nuclear β-catenin-TCF association. Proc. Natl Acad. Sci. USA 100, 12584–12589 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lu, D. et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 101, 3118–3123 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Thompson, W. J. et al. Exisulind induction of apoptosis involves guanosine 3′,5′-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated β-catenin. Cancer Res. 60, 3338–3342 (2000).

    CAS  PubMed  Google Scholar 

  96. Zhou, L. et al. Tyrosine kinase inhibitor STI-571/Gleevec downregulates the β-catenin signaling activity. Cancer Lett. 193, 161–170 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Suksaweang, S. et al. Morphogenesis of chicken liver: identification of localized growth zones and the role of β-catenin/Wnt in size regulation. Dev. Biol. 266, 109–122 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    CAS  PubMed  Google Scholar 

  99. Ross, S. E. et al. Inhibition of adipogenesis by Wnt signaling. Science 289, 950–953 (2000).

    CAS  PubMed  Google Scholar 

  100. Kielman, M. F. et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of β-catenin signaling. Nature Genet. 32, 594–605 (2002).

    CAS  PubMed  Google Scholar 

  101. Kubo, F., Takeichi, M. & Nakagawa, S. Wnt2b controls retinal cell differentiation at the ciliary marginal zone. Development 130, 587–598 (2003).

    CAS  PubMed  Google Scholar 

  102. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A. H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Med. 10, 55–63 (2004).

    CAS  PubMed  Google Scholar 

  103. Eaves, C. J. Manipulating hematopoietic stem cell amplification with Wnt. Nature Immunol. 4, 511–512 (2003).

    CAS  Google Scholar 

  104. Lee, H. Y. et al. Instructive role of Wnt/β-catenin in sensory fate specification in neural crest stem cells. Science 303, 1020–1023 (2004).

    CAS  PubMed  Google Scholar 

  105. Liu, B. Y., McDermott, S. P., Khwaja, S. S. & Alexander, C. M. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl Acad. Sci. USA 101, 4158–4163 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Polesskaya, A., Seale, P. & Rudnicki, M. A. Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113, 841–852 (2003).

    CAS  PubMed  Google Scholar 

  107. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    CAS  PubMed  Google Scholar 

  108. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003). Purification of WNTs and demonstration of their potential effects on stem cells.

    CAS  PubMed  Google Scholar 

  109. Murdoch, B. et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc. Natl Acad. Sci. USA 100, 3422–3427 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Castelo-Branco, G. et al. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc. Natl Acad. Sci. USA 100, 12747–12752 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet. 19, 379–383 (1998).

    CAS  PubMed  Google Scholar 

  112. Kuhnert, F. et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc. Natl Acad. Sci. USA 101, 266–271 (2004).

    CAS  PubMed  Google Scholar 

  113. Kim, J. H. et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418, 50–56 (2002).

    CAS  PubMed  Google Scholar 

  114. Hori, Y. et al. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc. Natl Acad. Sci. USA 99, 16105–16110 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.T.M. is supported as an investigator and A.K. as an associate of the Howard Hughes Medical Institute, to which we are indebted for support. We thank M. Kahn and P. Yaworsky for reviewing a draft of this manuscript. We acknowledge funding by the Alzheimer's Association and by the National Institutes of Health. G.V.D. is funded by the Pew Latin American Fellows Program in the Biomedical Sciences, and A.D.K. is funded by the National Institutes of Health. As with any review, this one is a snapshot that is blurred by the fast pace of advancement in the field. We therefore apologize for any omissions or oversights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall T. Moon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

APC

ILK

Lef1

LRP5

LRP6

p53

PKD1

Tcf4

Tsc1

Tsc2

VEGF

WNT1

WNT3

WNT4

wnt5

Wnt7b

Wnt11

OMIM

AD

FEVR

OPPG

osteoarthritis

Parkinson disease

PKD

schizophrenia

tetra-amelia

tuberous sclerosis

FURTHER INFORMATION

Signal Transduction Knowledge Environment

Wnt Gene Homepage

Wnt/β-catenin Pathway Connections Map

Glossary

PLANAR CELL POLARITY

Overt pattern in the plane of the tissue, such as the orientation of hairs or bristles, caused by the subcellular asymmetry in proteins.

RENAL TUBULES

The kidney contains many units known as nephrons, which contain (renal) tubules that are involved in filtering the blood.

ISCHAEMIA

Reduced flow of oxygenated blood to organs in response to blockage in an artery.

URETER

A tube leading from the kidney to the bladder.

FIBROSIS

Formation of fibrous tissue during a repair process.

siRNA

Small interfering RNAs, which _target (in a sequence-specific manner) endogenous RNAs for degradation, thereby reducing the function of a gene.

HAIR MATRIX CELL

A cell type at the base of the hair follicle that gives rise to the hair shaft.

MYOCARDIAL INFARCTION

Commonly known as a heart attack, in which there is reduced blood flow to the heart, leading to reduced oxygen supply.

INTESTINAL CRYPT

An involution in the intestine in which stem cells give rise to differentiated cells.

INTRAPERITONEAL

Administered or withdrawn from within the abdominal cavity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, R., Kohn, A., Ferrari, G. et al. WNT and β-catenin signalling: diseases and therapies. Nat Rev Genet 5, 691–701 (2004). https://doi.org/10.1038/nrg1427

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
admin 1
Association 2
INTERN 1
twitter 1