Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nucleosome destabilization in the epigenetic regulation of gene expression

Key Points

  • Chromatin has been implicated in the epigenetic inheritance of gene activity; however, the mechanism whereby an active or silent state of a gene is inherited is poorly understood.

  • The stability of nucleosomes is affected by the action of ATP-dependent nucleosome remodellers that can move nucleosomes from energetically favourable positions to inherently less stable positions, and by the action of the Asf1 histone escort and disassembly protein.

  • Bulk chromatin that is deposited during replication can be dynamically replaced during the remainder of the cell cycle by a replication-independent nucleosome-assembly pathway that deposits the H3.3 histone variant, which is enriched for 'active' post-translational modifications.

  • Promoters and regulatory elements that have been implicated in epigenetic inheritance are sites of enhanced histone turnover, which maintains the accessibility of DNA for binding by sequence-specific DNA-binding proteins.

  • The modification of histone tails and the binding of chromatin-associated proteins can modulate the accessibility of regulatory DNA by altering nucleosome stability.

  • The variant composition of a nucleosome can affect its inherent stability, potentially making it more easily evicted at sites of gene regulatory processes.

  • It is proposed that active chromatin propagates itself by the continual action of protein complexes that evict nucleosomes, allowing transient access of DNA-binding proteins to their binding sites.

Abstract

Assembly, mobilization and disassembly of nucleosomes can influence the regulation of gene expression and other processes that act on eukaryotic DNA. Distinct nucleosome-assembly pathways deposit dimeric subunits behind the replication fork or at sites of active processes that mobilize pre-existing nucleosomes. Replication-coupled nucleosome assembly appears to be the default process that maintains silent chromatin, counteracted by active processes that destabilize nucleosomes. Nucleosome stability is regulated by the combined effects of nucleosome-positioning sequences, histone chaperones, ATP-dependent nucleosome remodellers, post-translational modifications and histone variants. Recent studies suggest that histone turnover helps to maintain continuous access to sequence-specific DNA-binding proteins that regulate epigenetic inheritance, providing a dynamic alternative to histone-marking models for the propagation of active chromatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Asf1 is involved in both nucleosome assembly and disassembly.
Figure 2: Histone H3.3 marks active chromatin.
Figure 3: Histone replacement at regulatory elements.
Figure 4: Model for constitutive accessibility at a cis-regulatory site mediated by histone turnover.
Figure 5: Modulation of nucleosome stability.

Similar content being viewed by others

References

  1. Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, Z., Shibahara, K. I. & Stillman, B. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408, 221–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Hennig, L., Bouveret, R. & Gruissem, W. MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol. 15, 295–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Ringrose, L. & Paro, R. Polycomb/trithorax response elements and epigenetic memory of cell identity. Development 134, 223–232 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Turner, B. M. Cellular memory and the histone code. Cell 111, 285–291 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006). Many yeast promoter sequences have evolved to be unfavourable for wrapping nucleosomes, which would facilitate eviction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cosgrove, M. S., Boeke, J. D. & Wolberger, C. Regulated nucleosome mobility and the histone code. Nature Struct. Mol. Biol. 11, 1037–1043 (2004).

    Article  CAS  Google Scholar 

  9. Henikoff, S. & Ahmad, K. Assembly of variant histones into chromatin. Ann. Rev. Cell Dev. Biol. 21, 133–153 (2005).

    Article  CAS  Google Scholar 

  10. Kingston, R. E. & Tamkun, J. in Epigenetics (eds Allis, C. D., Jenuwein, T., Reinberg, D. & Caparros, M.-L.) 231–248 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2006).

    Google Scholar 

  11. Spofford, J. B. in Genetics and Biology of Drosophila Vol. 1c (eds Ashburner, M. & Novitski, E.) 955–1019 (Academic, London, 1976).

    Google Scholar 

  12. Cheutin, T. et al. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299, 721–725 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Festenstein, R. et al. Modulation of heterochromatin protein 1 dynamics in primary mammalian cells. Science 299, 719–721 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Ahmad, K. & Henikoff, S. Modulation of a transcription factor counteracts heterochromatic gene silencing in Drosophila. Cell 104, 839–847 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Schwartz, Y. B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nature Rev. Genet. 8, 9–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Klymenko, T. & Muller, J. The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins. EMBO Rep. 5, 373–377 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brock, H. W. & Fisher, C. L. Maintenance of gene expression patterns. Dev. Dyn. 232, 633–655 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Secombe, J., Li, L., Carlos, L. & Eisenman, R. N. The trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev. 21, 537–551 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Secombe, J. & Eisenman, R. N. The function and regulation of the JARID1 family of histone H3 lysine 4 demethylases: the MYC connection. Cell Cycle 6, 1324–1328 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nature Rev. Cancer 6, 846–856 (2006).

    Article  CAS  Google Scholar 

  21. Moshkin, Y. M. et al. Histone chaperone Asf1 cooperates with the Brahma chromatin-remodelling machinery. Genes Dev. 16, 2621–2626 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Swaminathan, J., Baxter, E. M. & Corces, V. G. The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin. Genes Dev. 19, 65–76 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reinke, H. & Horz, W. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol. Cell 1, 1599–1607 (2003). The authors use chromatin immunoprecipitation to show that nucleosomes are evicted at the PHO5 promoter.

    Article  Google Scholar 

  24. Boeger, H., Griesenbeck, J., Strattan, J. S. & Kornberg, R. D. Nucleosomes unfold completely at a transcriptionally active promoter. Mol. Cell 11, 1587–1598 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Mito, Y., Henikoff, J. & Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nature Genet. 37, 1090–1097 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Yuan, G. C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Weintraub, H. & Groudine, M. Chromosomal subunits in active genes have an altered conformation. Science 193, 848–856 (1976).

    Article  CAS  PubMed  Google Scholar 

  29. Sabo, P. J. et al. Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nature Methods 3, 511–518 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Dion, M., Kaplan, T., Friedman, N. & Rando, O. J. Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405–1408 (2007). Direct measurements of histone turnover rates reveal that promoters and boundaries are hot, which implies that measurements of histone modifications at regulatory sites miss intermediates.

    Article  CAS  PubMed  Google Scholar 

  31. Jamai, A., Imoberdorf, R. M. & Strubin, M. Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol. Cell 25, 345–355 (2007). The authors show that most newly synthesized yeast H3 turns over at promoters over the course of the cell cycle, whereas H2B turnover in genic and intergenic regions appears to be too rapid to allow differences to be measured.

    Article  CAS  PubMed  Google Scholar 

  32. Rufiange, A., Jacques, P. E., Bhat, W., Robert, F. & Nourani, A. Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol. Cell 27, 393–405 (2007). Measurements of histone turnover reveal that replication-independent replacement correlates closely with Asf1-dependent H3K56 acetylation genome-wide in yeast, suggesting that nucleosomes are destabilized by a key H3 core modification.

    Article  CAS  PubMed  Google Scholar 

  33. Stockdale, C., Flaus, A., Ferreira, H. & Owen-Hughes, T. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J. Biol. Chem. 281, 16279–16288 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Drew, H. R. & Travers, A. A. DNA bending and its relation to nucleosome positioning. J. Mol. Biol. 186, 773–790 (1985). Rules for nucleosome positioning based on AT–GC composition are deduced 20 years before they are confirmed in genome-wide studies.

    Article  CAS  PubMed  Google Scholar 

  35. Lowary, P. T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Doshi, P., Kaushal, S., Benyajati, C. & Wu, C. I. Molecular analysis of the responder satellite DNA in Drosophila melanogaster: DNA bending, nucleosome structure, and Rsp-binding proteins. Mol. Biol. Evol. 8, 721–741 (1991).

    CAS  PubMed  Google Scholar 

  38. Rando, O. J. & Ahmad, K. Rules and regulation in the primary structure of chromatin. Curr. Opin. Cell Biol. 19, 250–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Loyola, A. & Almouzni, G. Histone chaperones, a supporting role in the limelight. Biochim. Biophys. Acta 1677, 3–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Whitehouse, I. & Tsukiyama, T. Antagonistic forces that position nucleosomes in vivo. Nature Struct. Mol. Biol. 13, 633–640 (2006). The ISW2 nucleosome-remodelling complex can slide nucleosomes from their default positions to energetically unfavourable positions in vivo.

    Article  CAS  Google Scholar 

  41. Zofall, M., Persinger, J., Kassabov, S. R. & Bartholomew, B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nature Struct. Mol. Biol. 13, 339–346 (2006).

    Article  CAS  Google Scholar 

  42. Woodcock, C. L., Skoultchi, A. I. & Fan, Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res. 14, 17–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Ragab, A. & Travers, A. HMG-D and histone H1 alter the local accessibility of nucleosomal DNA. Nucleic Acids Res. 31, 7083–7089 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim, M. Y., Mauro, S., Gevry, N., Lis, J. T. & Kraus, W. L. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 119, 803–814 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Natsume, R. et al. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446, 338–341 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. English, C. M., Adkins, M. W., Carson, J. J., Churchill, M. E. & Tyler, J. K. Structural basis for the histone chaperone activity of Asf1. Cell 127, 495–508 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Antczak, A. J., Tsubota, T., Kaufman, P. D. & Berger, J. M. Structure of the yeast histone H3–ASF1 interaction: implications for chaperone mechanism, species-specific interactions, and epigenetics. BMC Struct. Biol. 6, 26 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Adkins, M. W., Howar, S. R. & Tyler, J. K. Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol. Cell 14, 657–666 (2004). In vivo evidence that the H3–H4 assembly protein, Asf1, mediates nucleosome disassembly.

    Article  CAS  PubMed  Google Scholar 

  49. Boeger, H., Griesenbeck, J., Strattan, J. S. & Kornberg, R. D. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol. Cell 14, 667–673 (2004). The authors use chromatin circles to show that nucleosomes are evicted from the yeast PHO5 promoter.

    Article  CAS  PubMed  Google Scholar 

  50. Recht, J. et al. Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proc. Natl Acad. Sci. USA 103, 6988–6993 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Han, J. et al. Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315, 653–655 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Schneider, J., Bajwa, P., Johnson, F. C., Bhaumik, S. R. & Shilatifard, A. Rtt109 is required for proper H3K56 acetylation: a chromatin mark associated with the elongating RNA polymerase II. J. Biol. Chem. 281, 37270–37274 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Xu, F., Zhang, K. & Grunstein, M. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121, 375–385 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Smith, C. L. & Peterson, C. L. ATP-dependent chromatin remodeling. Curr. Top. Dev. Biol. 65, 115–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Lorch, Y., Maier-Davis, B. & Kornberg, R. D. Chromatin remodeling by nucleosome disassembly in vitro. Proc. Natl Acad. Sci. USA 103, 3090–3093 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Armstrong, J. A. et al. The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J. 21, 5245–5254 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nagaich, A. K., Walker, D. A., Wolford, R. & Hager, G. L. Rapid periodic binding and displacement of the glucocorticoid receptor during chromatin remodeling. Mol. Cell 14, 163–174 (2004). Interplay between a transcription factor and an ATP-dependent nucleosome remodeller in vitro leads to a dynamic model to account for the instability of DNA-binding proteins in vivo.

    Article  CAS  PubMed  Google Scholar 

  58. Mito, Y., Henikoff, J. & Henikoff, S. Histone replacement marks the boundaries of cis-regulatory domains. Science 315, 1408–1411 (2007). PREs are both enriched in H3.3 and depleted of nucleosomes relative to surrounding regions regardless of the on–off state of the gene, indicating that histone turnover is a constitutive feature of sites that propagate cellular memory.

    Article  CAS  PubMed  Google Scholar 

  59. Ahmad, K. & Henikoff, S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9, 1191–1200 (2002). Replication-independent assembly of H3.3 is shown to be a distinct pathway from replication-coupled assembly of H3, and its deposition marks active chromatin.

    Article  CAS  PubMed  Google Scholar 

  60. Jin, C. & Felsenfeld, G. Distribution of histone H3.3 in hematopoietic cell lineages. Proc. Natl Acad. Sci. USA 103, 574–579 (2006). The authors show that H3.3 is enriched at a vertebrate promoter whether or not it is active, and that expression is increased by high levels of H3.3 and decreased by high levels of H3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, R., Chen, W. & Adams, P. D. Molecular dissection of formation of senescence-associated heterochromatin foci. Mol. Cell. Biol. 27, 2343–2358 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chow, C. M. et al. Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division. EMBO Rep. 6, 354–360 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakayama, T., Nishioka, K., Dong, Y. X., Shimojima, T. & Hirose, S. Drosophila GAGA factor directs histone H3.3 replacement that prevents the heterochromatin spreading. Genes Dev. 21, 552–561 (2007). Histone replacement at regulatory sites, including the Fab-7 PRE, depends on GAF, a DNA-binding protein in the trithorax group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McKittrick, E., Gafken, P. R., Ahmad, K. & Henikoff, S. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc. Natl Acad. Sci. USA 101, 1525–1530 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hake, S. B. et al. Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J. Biol. Chem. 281, 559–568 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Johnson, L. et al. Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications. Nucleic Acids Res. 32, 6511–6518 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Waterborg, J. H. Sequence analysis of acetylation and methylation in two histone H3 variants of alfalfa. J. Biol. Chem. 265, 17157–17161 (1990). The enrichment of active lysine modifications on the replication-independent histone 3 variant and of silent modifications on its replication-coupled counterpart is demonstrated years before it was generally recognized that these methylated and acetylated lysines have roles in epigenetic regulation.

    CAS  PubMed  Google Scholar 

  68. Schwartz, B. E. & Ahmad, K. Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev. 19, 804–814 (2005). Induction of transcription leads to rapid loss of histone H3 and replacement with H3.3, which turns over during transcriptional elongation, and becomes stable when transcription shuts down.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wirbelauer, C., Bell, O. & Schubeler, D. Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias. Genes Dev. 19, 1761–1766 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ooi, S., Priess, J. & Henikoff, S. Histone H3.3 variant dynamics in the germline of Caenorhabditis elegans. PLoS Genet. 2, e97 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schermer, U. J., Korber, P. & Horz, W. Histones are incorporated in trans during reassembly of the yeast PHO5 promoter. Mol. Cell 19, 279–285 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Weintraub, H., Worcel, A. & Alberts, B. A model for chromatin based upon two symmetrically paired half-nucleosomes. Cell 9, 409–417 (1976).

    Article  CAS  PubMed  Google Scholar 

  73. Annunziato, A. T. Split decision: what happens to nucleosomes during DNA replication? J. Biol. Chem. 280, 12065–12068 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Henikoff, S., Furuyama, T. & Ahmad, A. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet. 20, 320–326 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Ptashne, M. On the use of the word 'epigenetic'. Curr. Biol. 17, R233–R236 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 (2004). Distinct histone chaperone complexes are responsible for replication-coupled and replication-independent assembly of histone H3 variants.

    Article  CAS  PubMed  Google Scholar 

  77. McNally, J. G., Muller, W. G., Walker, D., Wolford, R. & Hager, G. L. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287, 1262–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Bosisio, D. et al. A hyper-dynamic equilibrium between promoter-bound and nucleoplasmic dimers controls NF-κB-dependent gene activity. Embo J. 25, 798–810 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schwartz, Y. B. et al. Genome-wide analysis of Polycomb _targets in Drosophila melanogaster. Nature Genet. 38, 700–705 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Papp, B. & Muller, J. Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev. 20, 2041–2054 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kassis, J. A. Pairing-sensitive silencing, Polycomb group response elements, and transposon homing in Drosophila. Adv. Genet. 46, 421–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Maeda, R. K. & Karch, F. The ABC of the BX-C: the bithorax complex explained. Development 133, 1413–1422 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Holohan, E. E. et al. CTCF genomic binding sites in Drosophila and the organisation of the bithorax complex. PLoS Genet. 3, e112 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Moorman, C. et al. Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 103, 12027–12032 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Waterborg, J. H. Dynamics of histone acetylation in vivo. A function for acetylation turnover? Biochem. Cell Biol. 80, 363–378 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Ruthenburg, A. J., Allis, C. D. & Wysocka, J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Rando, O. J. Global patterns of histone modifications. Curr. Opin. Genet. Dev. 17, 94–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Krogan, N. J. et al. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol. Cell 11, 721–729 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hamiche, A., Kang, J. G., Dennis, C., Xiao, H. & Wu, C. Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF. Proc. Natl Acad. Sci. USA 98, 14316–14321 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ferreira, H., Somers, J., Webster, R., Flaus, A. & Owen-Hughes, T. Histone tails and the H3 αN helix regulate nucleosome mobility and stability. Mol. Cell. Biol. 27, 4037–4048 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Formosa, T. et al. Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure. Genetics 162, 1557–1571 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090–1093 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Thiriet, C. & Hayes, J. J. Replication-independent core histone dynamics at transcriptionally active loci in vivo. Genes Dev. 19, 677–682 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kimura, H. & Cook, P. R. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol. 153, 1341–1353 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kulaeva, O. I., Gaykalova, D. A. & Studitsky, V. M. Transcription through chromatin by RNA polymerase II: histone displacement and exchange. Mutat. Res. 618, 116–129 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Raisner, R. M. & Madhani, H. D. Patterning chromatin: form and function for H2A.Z variant nucleosomes. Curr. Opin. Genet. Dev. 16, 119–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Meneghini, M. D., Wu, M. & Madhani, H. D. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent chromatin. Cell 112, 725–736 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Zhang, H., Roberts, D. N. & Cairns, B. R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123, 219–231 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brickner, D. G. et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 5, e81 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Farris, S. D. et al. Transcription-induced chromatin remodeling at the c-myc gene involves the local exchange of histone H2A.Z. J. Biol. Chem. 280, 25298–25303 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Park, Y. J., Dyer, P. N., Tremethick, D. J. & Luger, K. A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J. Biol. Chem. 279, 24274–24282 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Fan, J. Y., Rangasamy, D., Luger, K. & Tremethick, D. J. H2A.Z alters the nucleosome surface to promote hp1α-mediated chromatin fiber folding. Mol. Cell 16, 655–661 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Jin, C. & Felsenfeld, G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev. 21, 1519–1529 (2007). Nucleosome stability differs depending on the variant, with H3.3 nucleosome core particles becoming unstable under ionic conditions in which H3 nucleosomes are stable, becoming especially unstable when H2A.Z is also present.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Okuwaki, M., Kato, K., Shimahara, H., Tate, S. & Nagata, K. Assembly and disassembly of nucleosome core particles containing histone variants by human nucleosome assembly protein I. Mol. Cell. Biol. 25, 10639–10651 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Casadesus, J. & Low, D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830–856 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ficz, G., Heintzmann, R. & Arndt-Jovin, D. J. Polycomb group protein complexes exchange rapidly in living Drosophila. Development 132, 3963–3976 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Pien, S. & Grossniklaus, U. Polycomb group and trithorax group proteins in Arabidopsis. Biochim. Biophys. Acta 1769, 375–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Karachentsev, D., Sarma, K., Reinberg, D. & Steward, R. PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev. 19, 431–435 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Richards, E. J. & Elgin, S. C. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108, 489–500 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Cleard, F., Moshkin, Y., Karch, F. & Maeda, R. K. Probing long-distance regulatory interactions in the Drosophila melanogaster bithorax complex using Dam identification. Nature Genet. 38, 931–935 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Smith, S. & Stillman, B. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58, 15–25 (1989).

    Article  CAS  PubMed  Google Scholar 

  116. Furuyama, T., Dalal, Y. & Henikoff, S. Chaperone-mediated assembly of centromeric chromatin in vitro. Proc. Natl Acad. Sci. USA 103, 6172–6177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. van Attikum, H., Fritsch, O., Hohn, B. & Gasser, S. M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119, 777–788 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Morrison, A. J. et al. INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119, 767–775 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004). The SWR1 complex replaces H2A with the H2A.Z variant, demonstrating a direct connection between a histone variant and an ATP-dependent nucleosome remodeller.

    Article  CAS  PubMed  Google Scholar 

  120. Kusch, T. et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306, 2084–2087 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Suto, R. K., Clarkson, M. J., Tremethick, D. J. & Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A. Z. Nature Struct. Biol. 7, 1121–1124 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Talbert, P. B. & Henikoff, S. Spreading of silent chromatin: inaction at a distance. Nature Rev. Genet. 7, 793–803 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank K. Ahmad, Y. Mito, T. Furuyama and other past and present members of my laboratory for the many stimulating discussions and ideas that have contributed to this synthesis.

Author information

Authors and Affiliations

Authors

Glossary

Position-effect variegation

The variable, heritable silencing of genes by their juxtaposition to heterochromatin, or by movement of a gene into a different nuclear domain or chromosomal context.

Satellite DNA

Various classes of highly repetitive DNA that are tandemly repeated and are most often associated with centromeric or pericentromeric regions of the genome; -satellite DNA is the primate centromere-specific satellite in which the monomeric unit is 171 bp.

Boundary element

A genetic element that separates independent cis-acting regulatory domains, or separates active from silent chromatin, preventing them from 'spreading' into one another.

Insulator

A segment of DNA that prevents silencing of a reporter gene by adjacent heterochromatin. Some insulators have been demonstrated to be boundary elements in their native context.

CTCF

A highly conserved DNA-binding protein with 11 zinc fingers that binds to insulators and boundaries in mammalian genomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henikoff, S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 9, 15–26 (2008). https://doi.org/10.1038/nrg2206

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
Idea 1
idea 1
INTERN 1
twitter 1