Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TH17 cells in tumour immunity and immunotherapy

A Corrigendum to this article was published on 25 July 2011

This article has been updated

Key Points

  • T helper 17 (TH17) cells are found in human and mouse tumours. However, the numbers of TH17 cells are limited and are lower than that of other T cell subsets, such as regulatory T (TReg) cells, in the same tumour microenvironment.

  • TH17 cells exhibit polyfunctional features and express several effector cytokines, including interleukin-2 (IL-2), IL-17, granulocyte–macrophage colony-stimulating factor (GM-CSF), interferon-γ (IFNγ) and tumour necrosis factor (TNF) in the human tumour microenvironment.

  • TH17 cells and IL-17-producing CD8+ T cells induce potent tumour eradication in mice.

  • Tumour-infiltrating TReg cells suppress TH17 cell expansion in tumours, partly through the adenosinergic pathway.

  • The antitumour activity of TH17 cells may be due to their ability to recruit effector T cells, natural killer cells and dendritic cells into the tumour environment and to tumour-draining lymph nodes.

  • The mechanistic and functional relationship between TH17 cells, TH17 cell-associated cytokines (IL-17 and IL-23) and tumour immunopathology is likely to be highly context dependent.

Abstract

T helper 17 (TH17) cells have well-described roles in autoimmune disease. Recent evidence suggests that this effector T cell subset is also involved in tumour immunology and may be a _target for cancer therapy. In this Review, we summarize recent findings regarding the nature and relevance of TH17 cells in mouse models of cancer and human disease. We describe the interplay between TH17 cells and other immune cells in the tumour microenvironment, and we assess both the potential antitumorigenic and pro-tumorigenic activities of TH17 cells and their associated cytokines. Understanding the nature of TH17 cell responses in the tumour microenvironment will be important for the design of more efficacious cancer immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differentiation of helper T cell subsets.
Figure 2: TH17 cells and antitumour immunity.

Similar content being viewed by others

Change history

  • 25 July 2011

    In the original version of this article, in the section under the subheading “IL-17 and TH17 cells” on page 252, the sentence that began “Furthermore, although IL-17 deficiency leads to increased numbers of IFNγ-producing NK cells in the tumour-draining lymph nodes” was incorrect. This sentence should instead begin “Furthermore, although IL-17 deficiency leads to decreased numbers of IFNγ-producing NK cells in the tumour-draining lymph nodes”. The authors apologize for this error.

References

  1. Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M. & Murphy, K. M. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24, 677–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Dong, C. Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nature Rev. Immunol. 6, 329–333 (2006).

    CAS  Google Scholar 

  3. Wynn, T. A. TH-17: a giant step from TH1 and TH2. Nature Immunol. 6, 1069–1070 (2005).

    CAS  Google Scholar 

  4. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol. 6, 1123–1132 (2005).

    CAS  Google Scholar 

  5. Sutton, C., Brereton, C., Keogh, B., Mills, K. H. & Lavelle, E. C. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Komiyama, Y. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177, 566–573 (2006).

    CAS  PubMed  Google Scholar 

  7. Tato, C. M. & O'Shea, J. J. Immunology: what does it mean to be just 17? Nature 441, 166–168 (2006).

    CAS  PubMed  Google Scholar 

  8. Ouyang, W., Kolls, J. K. & Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28, 454–467 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kolls, J. K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    CAS  PubMed  Google Scholar 

  10. Weaver, C. T. & Hatton, R. D. Interplay between the TH17 and TReg cell lineages: a (co-)evolutionary perspective. Nature Rev. Immunol. 9, 883–889 (2009).

    CAS  Google Scholar 

  11. Dubin, P. J. & Kolls, J. K. Th17 cytokines and mucosal immunity. Immunol. Rev. 226, 160–171 (2008).

    CAS  PubMed  Google Scholar 

  12. O'Quinn, D. B., Palmer, M. T., Lee, Y. K. & Weaver, C. T. Emergence of the Th17 pathway and its role in host defense. Adv. Immunol. 99, 115–163 (2008).

    CAS  PubMed  Google Scholar 

  13. Kryczek, I. et al. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumour microenvironment. J. Immunol. 178, 6730–6733 (2007). This is the first study showing that T H 17 cells are found in both mouse and human tumours and that IL-2 can oppositely regulate T H 17 and T Reg cells in the tumour microenvironment.

    CAS  PubMed  Google Scholar 

  14. Kryczek, I. et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumour environments. Blood 114, 1141–1149 (2009). This study systemically and mechanistically investigates the phenotype, distribution, generation, and functional and clinical relevance of T H 17 cells in the human tumour microenvironment.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Muranski, P. et al. Tumour-specific Th17-polarized cells eradicate large established melanoma. Blood 112, 362–373 (2008). This is the first functional study showing that T H 17-polarized CD4+ T cells induce potent tumour eradication in mice, and it provides support for a clinical trial involving the adoptive transfer of T H 17-polarized, tumour-specific CD4+ T cells to patients with cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kryczek, I. et al. Induction of IL-17+ T cell trafficking and development by IFN-γ: mechanism and pathological relevance in psoriasis. J. Immunol. 181, 4733–4741 (2008).

    CAS  PubMed  Google Scholar 

  17. Martin-Orozco, N. et al. T helper 17 cells promote cytotoxic T cell activation in tumour immunity. Immunity 31, 787–798 (2009). This study provides direct mechanistic and functional evidence that T H 17 cells mediate antitumour immunity by promoting dendritic cell trafficking to tumour-draining lymph nodes and to the tumour itself.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zou, W. et al. Stromal-derived factor-1 in human tumours recruits and alters the function of plasmacytoid precursor dendritic cells. Nature Med. 7, 1339–1346 (2001).

    CAS  PubMed  Google Scholar 

  19. Kryczek, I. et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res. 65, 465–472 (2005).

    CAS  PubMed  Google Scholar 

  20. Bell, D. et al. In breast carcinoma tissue, immature dendritic cells reside within the tumour, whereas mature dendritic cells are located in peritumoral areas. J. Exp. Med. 190, 1417–1426 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nature Immunol. 8, 639–646 (2007).

    CAS  Google Scholar 

  22. Annunziato, F. et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204, 1849–1861 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hinrichs, C. S. et al. Type 17 CD8+ T cells display enhanced anti-tumour immunity. Blood 114, 596–599 (2009). This is the first functional study to show that T H 17-polarized CD8+ T cells induce potent tumour eradication in mice, and it provides support for a clinical trial involving the adoptive transfer of T H 17-polarized, tumour-specific CD8+ T cells to patients with cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Precopio, M. L. et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8+T cell responses. J. Exp. Med. 204, 1405–1416 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Almeida, J. R. et al. Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. J. Exp. Med. 204, 2473–2485 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kryczek, I. et al. Cutting edge: IFN-γ enables APC to promote memory Th17 and abate Th1 cell development. J. Immunol. 181, 5842–5846 (2008).

    CAS  PubMed  Google Scholar 

  27. Kryczek, I. et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 203, 871–881 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Miyahara, Y. et al. Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc. Natl Acad. Sci. USA 105, 15505–15510 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang, L. et al. IL-21 and TGF-β are required for differentiation of human TH17 cells. Nature 454, 350–352 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Manel, N., Unutmaz, D. & Littman, D. R. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nature Immunol. 9, 641–649 (2008).

    CAS  Google Scholar 

  31. Volpe, E. et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nature Immunol. 9, 650–657 (2008).

    CAS  Google Scholar 

  32. Wilson, N. J. et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nature Immunol. 8, 950–957 (2007).

    CAS  Google Scholar 

  33. Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. & Sallusto, F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nature Immunol. 8, 639–646 (2007).

    CAS  Google Scholar 

  34. Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Rev. Cancer 5, 263–274 (2005).

    CAS  Google Scholar 

  35. Kryczek, I. et al. Cutting edge: opposite effects of IL-1 and IL-2 on the regulation of IL-17+ T cell pool IL-1 subverts IL-2-mediated suppression. J. Immunol. 179, 1423–1426 (2007).

    CAS  PubMed  Google Scholar 

  36. Chung, Y. et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signalling. Immunity 30, 576–587 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gulen, M. F. et al. The receptor SIGIRR suppresses Th17 cell proliferation via inhibition of the interleukin-1 receptor pathway and mTOR kinase activation. Immunity 32, 54–66 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004).

    CAS  PubMed  Google Scholar 

  39. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    CAS  PubMed  Google Scholar 

  40. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  PubMed  Google Scholar 

  41. Beriou, G. et al. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113, 4240–4249 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Voo, K. S. et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc. Natl Acad. Sci. USA 106, 4793–4798 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kryczek, I., Grybos, M., Karabon, L., Klimczak, A. & Lange, A. IL-6 production in ovarian carcinoma is associated with histiotype and biological characteristics of the tumour and influences local immunity. Br. J. Cancer 82, 621–628 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Deaglio, S. et al. Adenosine generation catalysed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Borsellino, G. et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110, 1225–1232 (2007).

    CAS  PubMed  Google Scholar 

  46. Kao, J. Y. et al. Helicobacter pylori immune escape is mediated by dendritic cell-induced TReg skewing and Th17 suppression in mice. Gastroenterology 138, 1046–1054 (2010).

    CAS  PubMed  Google Scholar 

  47. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Muranski, P. & Restifo, N. P. Adoptive immunotherapy of cancer using CD4+ T cells. Curr. Opin. Immunol. 21, 200–208 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, Y. K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yen, H. R. et al. Tc17 CD8 T cells: functional plasticity and subset diversity. J. Immunol. 183, 7161–7168 (2009).

    CAS  PubMed  Google Scholar 

  51. Bending, D. et al. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J. Clin. Invest. 119, 565–572 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Martin-Orozco, N., Chung, Y., Chang, S. H., Wang, Y. H. & Dong, C. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur. J. Immunol. 39, 216–224 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nurieva, R., Yang, X. O., Chung, Y. & Dong, C. Cutting edge: in vitro generated Th17 cells maintain their cytokine expression program in normal but not lymphopenic hosts. J. Immunol. 182, 2565–2568 (2009).

    CAS  PubMed  Google Scholar 

  54. Luger, D. et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J. Exp. Med. 205, 799–810 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. O'Connor, W. Jr et al. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nature Immunol. 10, 603–609 (2009).

    CAS  Google Scholar 

  56. Muranski, P. & Restifo, N. P. Does IL-17 promote tumour growth? Blood 114, 231–232 (2009).

    CAS  PubMed  Google Scholar 

  57. Munn, D. H. Th17 cells in ovarian cancer. Blood 114, 1134–1135 (2009).

    CAS  PubMed  Google Scholar 

  58. Bronte, V. Th17 and cancer: friends or foes? Blood 112, 214 (2008).

    CAS  PubMed  Google Scholar 

  59. Kryczek, I., Wei, S., Szeliga, W., Vatan, L. & Zou, W. Endogenous IL-17 contributes to reduced tumour growth and metastasis. Blood 114, 357–359 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hirahara, N. et al. Inoculation of human interleukin-17 gene-transfected Meth-A fibrosarcoma cells induces T cell-dependent tumour-specific immunity in mice. Oncology 61, 79–89 (2001).

    CAS  PubMed  Google Scholar 

  61. Benchetrit, F. et al. Interleukin-17 inhibits tumour cell growth by means of a T-cell-dependent mechanism. Blood 99, 2114–2121 (2002).

    CAS  PubMed  Google Scholar 

  62. Wei, S., Kryczek, I., Namm, J., Szeliga, W., Vatan, L., Chang, A. E. & Zou, W. Endogenous IL-17, tumour growth and metastasis. Blood (in the press). This study, along with references 17 and 59, reports increased tumour growth and metastasis in IL-17-deficient mice.

  63. Sharma, M. D. et al. Indoleamine 2, 3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumour-draining lymph nodes. Blood 113, 6102–6111 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pellegrini, M. et al. Adjuvant IL-7 antagonizes multiple cellular and molecular inhibitory networks to enhance immunotherapies. Nature Med. 15, 528–536 (2009).

    CAS  PubMed  Google Scholar 

  65. Kottke, T. et al. Induction of hsp70-mediated Th17 autoimmunity can be exploited as immunotherapy for metastatic prostate cancer. Cancer Res. 67, 11970–11979 (2007).

    CAS  PubMed  Google Scholar 

  66. Sfanos, K. S. et al. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin. Cancer Res. 14, 3254–3261 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. von Euw, E. et al. CTLA4 blockade increases Th17 cells in patients with metastatic melanoma. J. Transl. Med. 7, 35 (2009).

    PubMed  PubMed Central  Google Scholar 

  68. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumours predict clinical outcome. Science 313, 1960–1964 (2006).

    CAS  PubMed  Google Scholar 

  69. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).

    CAS  PubMed  Google Scholar 

  70. Sato, E. et al. Intraepithelial CD8+ tumour-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favourable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA 102, 18538–18543 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tartour, E. et al. Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumours in nude mice. Cancer Res. 59, 3698–3704 (1999).

    CAS  PubMed  Google Scholar 

  72. Numasaki, M. et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J. Immunol. 175, 6177–6189 (2005).

    CAS  PubMed  Google Scholar 

  73. Numasaki, M. et al. Interleukin-17 promotes angiogenesis and tumour growth. Blood 101, 2620–2627 (2003).

    CAS  PubMed  Google Scholar 

  74. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Med. 15, 1016–1022 (2009).

    CAS  PubMed  Google Scholar 

  75. Wang, L. et al. IL-17 can promote tumour growth through an IL-6–Stat3 signalling pathway. J. Exp. Med. 206, 1457–1464 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kawakami, Y. et al. Inhibition of NK cell activity by IL-17 allows vaccinia virus to induce severe skin lesions in a mouse model of eczema vaccinatum. J. Exp. Med. 206, 1219–1225 (2009).

    PubMed  PubMed Central  Google Scholar 

  77. Langowski, J. L. et al. IL-23 promotes tumour incidence and growth. Nature 442, 461–465 (2006).

    CAS  PubMed  Google Scholar 

  78. Hu, J. et al. Induction of potent antitumour immunity by intratumoral injection of interleukin 23-transduced dendritic cells. Cancer Res. 66, 8887–8896 (2006).

    CAS  PubMed  Google Scholar 

  79. Yuan, X., Hu, J., Belladonna, M. L., Black, K. L. & Yu, J. S. Interleukin-23-expressing bone marrow-derived neural stem-like cells exhibit antitumour activity against intracranial glioma. Cancer Res. 66, 2630–2638 (2006).

    CAS  PubMed  Google Scholar 

  80. Overwijk, W. W. et al. Immunological and antitumour effects of IL-23 as a cancer vaccine adjuvant. J. Immunol. 176, 5213–5222 (2006).

    CAS  PubMed  Google Scholar 

  81. Oniki, S. et al. Interleukin-23 and interleukin-27 exert quite different antitumour and vaccine effects on poorly immunogenic melanoma. Cancer Res. 66, 6395–6404 (2006).

    CAS  PubMed  Google Scholar 

  82. Kaiga, T. et al. Systemic administration of IL-23 induces potent antitumour immunity primarily mediated through Th1-type response in association with the endogenously expressed IL-12. J. Immunol. 178, 7571–7580 (2007).

    CAS  PubMed  Google Scholar 

  83. Gattinoni, L., Powell, D. J. Jr, Rosenberg, S. A. & Restifo, N. P. Adoptive immunotherapy for cancer: building on success. Nature Rev. Immunol. 6, 383–393 (2006).

    CAS  Google Scholar 

  84. Hinrichs, C. S., Gattinoni, L. & Restifo, N. P. Programming CD8+ T cells for effective immunotherapy. Curr. Opin. Immunol. 18, 363–370 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Antony, P. A. et al. CD8+ T cell immunity against a tumour/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J. Immunol. 174, 2591–2601 (2005).

    CAS  PubMed  Google Scholar 

  86. Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nature Rev. Immunol. 6, 295–307 (2006).

    CAS  Google Scholar 

  87. Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Rev. Immunol. 4, 762–774 (2004).

    CAS  Google Scholar 

  88. Gabrilovich, D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature Rev. Immunol. 4, 941–952 (2004).

    CAS  Google Scholar 

  89. Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nature Rev. Immunol. 5, 641–654 (2005).

    CAS  Google Scholar 

  90. Zitvogel, L., Tesniere, A. & Kroemer, G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nature Rev. Immunol. 6, 715–727 (2006).

    CAS  Google Scholar 

  91. Hunder, N. N. et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. 358, 2698–2703 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Miossec, P., Korn, T. & Kuchroo, V. K. Interleukin-17 and type 17 helper T cells. N. Engl. J. Med. 361, 888–898 (2009).

    CAS  PubMed  Google Scholar 

  93. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Rev. Cancer 8, 299–308 (2008).

    CAS  Google Scholar 

  94. Yang, Z. Z., Novak, A. J., Ziesmer, S. C., Witzig, T. E. & Ansell, S. M. Malignant B cells skew the balance of regulatory T cells and TH17 cells in B-cell non-Hodgkin's lymphoma. Cancer Res. 69, 5522–5530 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Horlock, C. et al. The effects of trastuzumab on the CD4+CD25+FoxP3+ and CD4+IL17A+ T-cell axis in patients with breast cancer. Br. J. Cancer 100, 1061–1067 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, B. et al. The prevalence of Th17 cells in patients with gastric cancer. Biochem. Biophys. Res. Commun. 374, 533–537 (2008).

    CAS  PubMed  Google Scholar 

  97. Zhang, J. P. et al. Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J. Hepatol 50, 980–989 (2009).

    CAS  PubMed  Google Scholar 

  98. Wang, W. et al. Effects of high-dose IFNα2b on regional lymph node metastases of human melanoma: modulation of STAT5, FOXP3, and IL-17. Clin. Cancer Res. 14, 8314–8320 (2008).

    CAS  PubMed  Google Scholar 

  99. Dhodapkar, K. M. et al. Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17-1 cells) enriched in the bone marrow of patients with myeloma. Blood 112, 2878–2885 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Charles, K. A. et al. The tumour-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J. Clin. Invest. 119, 3011–3023 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Derhovanessian, E. et al. Pretreatment frequency of circulating IL-17+CD4+ T-cells, but not Tregs, correlates with clinical response to whole-cell vaccination in prostate cancer patients. Int. J. Cancer 125, 1372–1379 (2009).

    CAS  PubMed  Google Scholar 

  102. Inozume, T., Hanada, K., Wang, Q. J. & Yang, J. C. IL-17 secreted by tumour reactive T cells induces IL-8 release by human renal cancer cells. J. Immunother. 32, 109–117 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Koyama, K. et al. Reciprocal CD4+ T-cell balance of effector CD62Llow CD4+ and CD62LhighCD25+ CD4+ regulatory T cells in small cell lung cancer reflects disease stage. Clin. Cancer Res. 14, 6770–6779 (2008).

    CAS  PubMed  Google Scholar 

  104. Coury, F. et al. Langerhans cell histiocytosis reveals a new IL-17A-dependent pathway of dendritic cell fusion. Nature Med. 14, 81–87 (2008).

    CAS  PubMed  Google Scholar 

  105. McGeachy, M. J. et al. TGF-β and IL-6 drive the production of Il-17 and IL-10 by T cells and restrain TH-17 cell mediated pathology. Nature Immunol. 8, 1390–1397 (2007).

    CAS  Google Scholar 

  106. Fitzgerald, D. C. et al. Suppression of autoimmune inflammation of central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nature Immunol. 8, 1372–1379 (2007).

    CAS  Google Scholar 

  107. Stumhofer, J. S. et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nature Immunol. 8, 1363–1371 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank our former and current trainees and collaborators for their intellectual input and hard work. The work described in this Review was supported by the extramural (W.Z.) and intramural (N.P.R.) funds from the United States National Cancer Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Weiping Zou's homepage

Nicholas P. Restifo's homepage

Glossary

Regulatory T (TReg) cells

A specialized subset of CD4+ T cells that can suppress inflammation and the responses of other T cells. These cells provide a crucial mechanism for the maintenance of peripheral self tolerance. A subset of these cells is characterized by expression of CD25 and the transcription factor FOXP3.

Granzyme B

A secreted serine protease that enters _target cells through perforin pores, it then cleaves and activates intracellular caspases, leading to _target-cell apoptosis.

Plasmacytoid dendritic cells

A subset of dendritic cells that is described as plasmacytoid because their microscopic appearance resembles plasmablasts. In humans, these cells can be derived from lineage-negative stem cells in peripheral blood and are the main producers of type I IFN in response to virus infections.

Indoleamine 2,3-dioxygenase

(IDO). An intracellular haeme-containing enzyme that catalyses the oxidative catabolism of tryptophan. Insufficient availability of tryptophan can lead to T cell apoptosis and anergy.

Cytotoxic T lymphocyte antigen 4

(CTLA4). A T cell surface protein that, following its ligation by CD80 or CD86 on antigen-presenting cells, delivers a negative signal to activated T cells. This induces cell cycle arrest and inhibits cytokine production. CTLA4 is constitutively expressed by, and functionally associated with, regulatory T cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, W., Restifo, N. TH17 cells in tumour immunity and immunotherapy. Nat Rev Immunol 10, 248–256 (2010). https://doi.org/10.1038/nri2742

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2742

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer
  NODES
admin 1
Association 1
INTERN 1
twitter 1