Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ubiquitylation at the crossroads of development and disease

Key Points

  • Ubiquitylation is a post-translational modification that enables mechanistically diverse, quantitative and reversible regulation. Through controlling the stability, interactions or activity of important cellular regulators, ubiquitylation is essential for metazoan development.

  • Aberrant ubiquitylation, most frequently caused by mutation or aberrant expression of genes that encode E3 ubiquitin ligases or deubiquitinases, results in a wide range of developmental diseases, cancer or neurodegeneration.

  • Ubiquitin-dependent protein degradation coordinates proliferation of stem cell populations with the initiation of differentiation and cell fate specification.

  • Ubiquitylation of histone proteins, transcription regulators or ribosome biogenesis factors controls gene expression and mRNA translation programmes that are essential for differentiation.

  • Ubiquitin-dependent regulation of membrane proteins is crucial for cellular communication and cell migration during development.

  • Small molecules that _target developmental ubiquitylation enzymes have emerged as a new approach to treating diseases, including cancer.

Abstract

Human development requires intricate cell specification and communication pathways that allow an embryo to generate and appropriately connect more than 200 different cell types. Key to the successful completion of this differentiation programme is the quantitative and reversible regulation of core signalling networks, and post-translational modification with ubiquitin provides embryos with an essential tool to accomplish this task. Instigated by E3 ligases and reversed by deubiquitylases, ubiquitylation controls many processes that are fundamental for development, such as cell division, fate specification and migration. As aberrant function or regulation of ubiquitylation enzymes is at the roots of developmental disorders, cancer, and neurodegeneration, modulating the activity of ubiquitylation enzymes is likely to provide strategies for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ubiquitylation machinery.
Figure 2: Coordination of cell proliferation and differentiation.
Figure 3: Ubiquitin-dependent control of gene expression.
Figure 4: Ubiquitin-dependent control of mRNA translation and cell signalling.
Figure 5: Small-molecule regulation of E3 ligases implicated in developmental processes.

Similar content being viewed by others

References

  1. Yau, R. & Rape, M. The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18, 579–586 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Finley, D., Ozkaynak, E. & Varshavsky, A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035–1046 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Wiborg, O. et al. The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J. 4, 755–759 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Finley, D., Bartel, B. & Varshavsky, A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338, 394–401 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Ryu, K. Y., Garza, J. C., Lu, X. Y., Barsh, G. S. & Kopito, R. R. Hypothalamic neurodegeneration and adult-onset obesity in mice lacking the Ubb polyubiquitin gene. Proc. Natl Acad. Sci. USA 105, 4016–4021 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Ryu, H. W., Park, C. W. & Ryu, K. Y. Disruption of polyubiquitin gene Ubb causes dysregulation of neural stem cell differentiation with premature gliogenesis. Sci. Rep. 4, 7026 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ryu, K. Y. et al. The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance. EMBO J. 26, 2693–2706 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ryu, K. Y., Park, H., Rossi, D. J., Weissman, I. L. & Kopito, R. R. Perturbation of the hematopoietic system during embryonic liver development due to disruption of polyubiquitin gene Ubc in mice. PLoS ONE 7, e32956 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, X. & Petranovic, D. Role of frameshift ubiquitin B protein in Alzheimer's disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 8, 300–313 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Lindsten, K. et al. Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. J. Cell Biol. 157, 417–427 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fischer, D. F. et al. Long-term proteasome dysfunction in the mouse brain by expression of aberrant ubiquitin. Neurobiol. Aging 30, 847–863 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Tank, E. M. & True, H. L. Disease-associated mutant ubiquitin causes proteasomal impairment and enhances the toxicity of protein aggregates. PLoS Genet. 5, e1000382 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Werner, A. et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature 525, 523–527 (2015). This paper demonstrates the control of neural crest specification by non-proteolytic monoubiquitylation of ribosome biogenesis factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jin, L. et al. Ubiquitin-dependent regulation of COPII coat size and function. Nature 482, 495–500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zou, W. et al. The E3 ubiquitin ligase Wwp2 regulates craniofacial development through mono-ubiquitylation of Goosecoid. Nat. Cell Biol. 13, 59–65 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a _targeted short-lived protein. Science 243, 1576–1583 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Jin, L., Williamson, A., Banerjee, S., Philipp, I. & Rape, M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653–665 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meyer, H. J. & Rape, M. Enhanced protein degradation by branched ubiquitin chains. Cell 157, 910–921 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Spence, J. et al. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell 102, 67–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat. Cell Biol. 11, 123–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Khaminets, A., Behl, C. & Dikic, I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26, 6–16 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Kane, L. A. et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143–153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kazlauskaite, A. et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460, 127–139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Ohtake, F. et al. Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Rep. 16, 192–201 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Cui, J. et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science 329, 1215–1218 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhogaraju, S. et al. Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell 167, 1636–1649.e13 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Schulman, B. A. & Harper, J. W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10, 319–331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McGrath, J. P., Jentsch, S. & Varshavsky, A. UBA 1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J. 10, 227–236 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kulkarni, M. & Smith, H. E. E1 ubiquitin-activating enzyme UBA-1 plays multiple roles throughout C. elegans development. PLoS Genet. 4, e1000131 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ramser, J. et al. Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am. J. Hum. Genet. 82, 188–193 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jin, J., Li, X., Gygi, S. P. & Harper, J. W. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447, 1135–1138 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Chiu, Y. H., Sun, Q. & Chen, Z. J. E1–L2 activates both ubiquitin and FAT10. Mol. Cell 27, 1014–1023 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Pelzer, C. et al. UBE1L2, a novel E1 enzyme specific for ubiquitin. J. Biol. Chem. 282, 23010–23014 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, P. C. et al. Altered social behavior and neuronal development in mice lacking the Uba6–Use1 ubiquitin transfer system. Mol. Cell 50, 172–184 (2013). This study shows how altered ubiquitin activation can affect neuronal development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ye, Y. & Rape, M. Building ubiquitin chains: E2 enzymes at work. Nat. Rev. Mol. Cell Biol. 10, 755–764 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abdul Rehman, S. A. et al. MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol. Cell 63, 146–155 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sahtoe, D. D. & Sixma, T. K. Layers of DUB regulation. Trends Biochem. Sci. 40, 456–467 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Komander, D., Clague, M. J. & Urbe, S. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550–563 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. King, R. W. et al. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81, 279–288 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Zou, H., McGarry, T. J., Bernal, T. & Kirschner, M. W. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285, 418–422 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Li, M., York, J. P. & Zhang, P. Loss of Cdc20 causes a securin-dependent metaphase arrest in two-cell mouse embryos. Mol. Cell. Biol. 27, 3481–3488 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Visintin, R., Prinz, S. & Amon, A. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278, 460–463 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Sivakumar, S. & Gorbsky, G. J. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat. Rev. Mol. Cell Biol. 16, 82–94 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Eguren, M. et al. The APC/C cofactor Cdh1 prevents replicative stress and p53-dependent cell death in neural progenitors. Nat. Commun. 4, 2880 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Delgado-Esteban, M., Garcia-Higuera, I., Maestre, C., Moreno, S. & Almeida, A. APC/C-Cdh1 coordinates neurogenesis and cortical size during development. Nat. Commun. 4, 2879 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Hames, R. S., Wattam, S. L., Yamano, H., Bacchieri, R. & Fry, A. M. APC/C-mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis and depends upon a cyclin A-type D-box. EMBO J. 20, 7117–7127 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martins, T., Meghini, F., Florio, F. & Kimata, Y. The APC/C coordinates retinal differentiation with G1 arrest through the Nek2-dependent modulation of Wingless signaling. Dev. Cell 40, 67–80 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weber, U. & Mlodzik, M. APC/CFzr/Cdh1-dependent regulation of planar cell polarity establishment via Nek2 kinase acting on Dishevelled. Dev. Cell 40, 53–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Lasorella, A. et al. Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. Nature 442, 471–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Stegmuller, J. et al. Cell-intrinsic regulation of axonal morphogenesis by the Cdh1–APC _target SnoN. Neuron 50, 389–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Yang, Y. et al. A Cdc20–APC ubiquitin signaling pathway regulates presynaptic differentiation. Science 326, 575–578 (2009). References 51–53 demonstrate a role of a cell cycle E3 ligase in differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang, J., Ikeuchi, Y., Malumbres, M. & Bonni, A. A. Cdh1-APC/FMRP ubiquitin signaling link drives mGluR-dependent synaptic plasticity in the mammalian brain. Neuron 86, 726–739 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kannan, M., Lee, S. J., Schwedhelm-Domeyer, N. & Stegmuller, J. The E3 ligase Cdh1-anaphase promoting complex operates upstream of the E3 ligase Smurf1 in the control of axon growth. Development 139, 3600–3612 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. van Roessel, P., Elliott, D. A., Robinson, I. M., Prokop, A. & Brand, A. H. Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell 119, 707–718 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Fu, A. K. et al. APC(Cdh1) mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity. Nat. Neurosci. 14, 181–189 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Konishi, Y., Stegmuller, J., Matsuda, T., Bonni, S. & Bonni, A. Cdh1–APC controls axonal growth and patterning in the mammalian brain. Science 303, 1026–1030 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Juo, P. & Kaplan, J. M. The anaphase-promoting complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of C. elegans. Curr. Biol. 14, 2057–2062 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Silies, M. & Klambt, C. APC/C(Fzr/Cdh1)-dependent regulation of cell adhesion controls glial migration in the Drosophila PNS. Nat. Neurosci. 13, 1357–1364 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Friez, M. J. et al. HUWE1 mutations in Juberg–Marsidi and Brooks syndromes: the results of an X-chromosome exome sequencing study. BMJ Open 6, e009537 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Urban, N. et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science 353, 292–295 (2016). This study shows the important role of the ubiquitin pathway in ensuring proper stem cell division.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. King, B. et al. The ubiquitin ligase Huwe1 regulates the maintenance and lymphoid commitment of hematopoietic stem cells. Nat. Immunol. 17, 1312–1321 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, L., Martinez, S. S., Hu, W., Liu, Z. & Tjian, R. A specific E3 ligase/deubiquitinase pair modulates TBP protein levels during muscle differentiation. Elife 4, e08536 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Forget, A. et al. Shh signaling protects Atoh1 from degradation mediated by the E3 ubiquitin ligase Huwe1 in neural precursors. Dev. Cell 29, 649–661 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Strohmaier, H. et al. Human F-box protein hCdc4 _targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413, 316–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Koepp, D. M. et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294, 173–177 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Welcker, M. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl Acad. Sci. USA 101, 9085–9090 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Tetzlaff, M. T. et al. Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc. Natl Acad. Sci. USA 101, 3338–3345 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Reavie, L. et al. Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase–substrate complex. Nat. Immunol. 11, 207–215 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sancho, R., Gruber, R., Gu, G. & Behrens, A. Loss of Fbw7 reprograms adult pancreatic ductal cells into alpha, delta, and beta cells. Cell Stem Cell 15, 139–153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cheng, Y. & Li, G. Role of the ubiquitin ligase Fbw7 in cancer progression. Cancer Metastasis Rev. 31, 75–87 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Goldknopf, I. L., French, M. F., Musso, R. & Busch, H. Presence of protein A24 in rat liver nucleosomes. Proc. Natl Acad. Sci. USA 74, 5492–5495 (1977).

    Article  CAS  PubMed  Google Scholar 

  74. Gao, Z. et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45, 344–356 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Levine, S. S. et al. The core of the Polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol. Cell. Biol. 22, 6070–6078 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cao, R., Tsukada, Y. & Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell 20, 845–854 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004). This study demonstrates the role of histone ubiquitylation in mediating effects of the Polycomb repressive complex.

    Article  CAS  PubMed  Google Scholar 

  78. Endoh, M. et al. Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet. 8, e1002774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Blackledge, N. P. et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and Polycomb domain formation. Cell 157, 1445–1459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kalb, R. et al. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat. Struct. Mol. Biol. 21, 569–571 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Scheuermann, J. C. et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465, 243–247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gu, Y. et al. The histone H2A deubiquitinase Usp16 regulates hematopoiesis and hematopoietic stem cell function. Proc. Natl Acad. Sci. USA 113, E51–E60 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Jin, J. et al. The deubiquitinase USP21 maintains the stemness of mouse embryonic stem cells via stabilization of Nanog. Nat. Commun. 7, 13594 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhu, P. et al. A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol. Cell 27, 609–621 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu, X., Johansen, J. V. & Helin, K. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell 49, 1134–1146 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Voncken, J. W. et al. Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc. Natl Acad. Sci. USA 100, 2468–2473 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. del Mar Lorente, M. et al. Loss- and gain-of-function mutations show a polycomb group function for Ring1A in mice. Development 127, 5093–5100 (2000).

    CAS  PubMed  Google Scholar 

  88. van der Lugt, N. M. et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a _targeted deletion of the bmi-1 proto-oncogene. Genes Dev. 8, 757–769 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Li, P. et al. Deubiquitinase MYSM1 is essential for normal bone formation and mesenchymal stem cell differentiation. Sci. Rep. 6, 22211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jiang, X. X. et al. Control of B cell development by the histone H2A deubiquitinase MYSM1. Immunity 35, 883–896 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dey, A. et al. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 337, 1541–1546 (2012). This is an important example showing how aberrant deubiquitylation can cause disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Srivastava, A. et al. De novo dominant ASXL3 mutations alter H2A deubiquitination and transcription in Bainbridge–Ropers syndrome. Hum. Mol. Genet. 25, 597–608 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Jin, J., Arias, E. E., Chen, J., Harper, J. W. & Walter, J. C. A family of diverse Cul4–Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol. Cell 23, 709–721 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Angers, S. et al. Molecular architecture and assembly of the DDB1–CUL4A ubiquitin ligase machinery. Nature 443, 590–593 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Higa, L. A. et al. CUL4–DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat. Cell Biol. 8, 1277–1283 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Groh, B. S. et al. The antiobesity factor WDTC1 suppresses adipogenesis via the CRL4WDTC1 E3 ligase. EMBO Rep. 17, 638–647 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li, G. et al. CRL4DCAF8 ubiquitin ligase _targets histone H3K79 and promotes H3K9 methylation in the liver. Cell Rep. 18, 1499–1511 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Brodersen, M. M. et al. CRL4(WDR23)-mediated SLBP ubiquitylation ensures histone supply during DNA replication. Mol. Cell 62, 627–635 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Han, J. et al. A Cul4 E3 ubiquitin ligase regulates histone hand-off during nucleosome assembly. Cell 155, 817–829 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cang, Y. et al. Deletion of DDB1 in mouse brain and lens leads to p53-dependent elimination of proliferating cells. Cell 127, 929–940 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Gao, J. et al. The CUL4–DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis. Elife 4, e07539 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Tarpey, P. S. et al. Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. Am. J. Hum. Genet. 80, 345–352 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Weintraub, H. et al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251, 761–766 (1991).

    Article  CAS  PubMed  Google Scholar 

  104. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Hart, M. et al. The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr. Biol. 9, 207–210 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Latres, E., Chiaur, D. S. & Pagano, M. The human F box protein β-Trcp associates with the Cul1/Skp1 complex and regulates the stability of β-catenin. Oncogene 18, 849–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Winston, J. T. et al. The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13, 270–283 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hernandez, A. R., Klein, A. M. & Kirschner, M. W. Kinetic responses of beta-catenin specify the sites of Wnt control. Science 338, 1337–1340 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Koo, B. K. et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488, 665–669 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Hao, H. X. et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485, 195–200 (2012). References 110 and 111 show the role of ubiquitylation in controlling membrane receptors during development.

    Article  CAS  PubMed  Google Scholar 

  112. Pant, V. & Lozano, G. Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev. 28, 1739–1751 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jaakkola, P. et al. _targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Pfirrmann, T. et al. Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development. Proc. Natl Acad. Sci. USA 113, 10103–10108 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Shimazu, J., Wei, J. & Karsenty, G. Smurf1 inhibits osteoblast differentiation, bone formation, and glucose homeostasis through serine 148. Cell Rep. 15, 27–35 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Duan, S. et al. FBXO11 _targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature 481, 90–93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Raducu, M. et al. SCF (Fbxl17) ubiquitylation of Sufu regulates Hedgehog signaling and medulloblastoma development. EMBO J. 35, 1400–1416 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Quaderi, N. A. et al. Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22. Nat. Genet. 17, 285–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Van Nostrand, J. L. et al. Inappropriate p53 activation during development induces features of CHARGE syndrome. Nature 514, 228–232 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kaelin, W. G. Von Hippel-Lindau disease. Annu. Rev. Pathol. 2, 145–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Jia, J. et al. Phosphorylation by double-time/CKIɛ and CKIα _targets cubitus interruptus for Slimb/β-TRCP-mediated proteolytic processing. Dev. Cell 9, 819–830 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Bhatia, N. et al. Gli2 is _targeted for ubiquitination and degradation by β-TrCP ubiquitin ligase. J. Biol. Chem. 281, 19320–19326 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Wang, B. & Li, Y. Evidence for the direct involvement of βTrCP in Gli3 protein processing. Proc. Natl Acad. Sci. USA 103, 33–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Briscoe, J. & Therond, P. P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14, 416–429 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin–proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78, 773–785 (1994).

    Article  CAS  PubMed  Google Scholar 

  127. Signer, R. A., Magee, J. A., Salic, A. & Morrison, S. J. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Blanco, S. et al. Stem cell function and stress response are controlled by protein synthesis. Nature 534, 335–340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. McCann, K. L. & Baserga, S. J. Genetics. Mysterious ribosomopathies. Science 341, 849–850 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sendoel, A. et al. Translation from unconventional 5′ start sites drives tumour initiation. Nature 541, 494–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lee, A. S., Kranzusch, P. J. & Cate, J. H. eIF3 _targets cell-proliferation messenger RNAs for translational activation or repression. Nature 522, 111–114 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Silva, G. M., Finley, D. & Vogel, C. K63 polyubiquitination is a new modulator of the oxidative stress response. Nat. Struct. Mol. Biol. 22, 116–123 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Higgins, R. et al. The unfolded protein response triggers site-specific regulatory ubiquitylation of 40S ribosomal proteins. Mol. Cell 59, 35–49 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Furukawa, M., He, Y. J., Borchers, C. & Xiong, Y. _targeting of protein ubiquitination by BTB–Cullin 3–Roc1 ubiquitin ligases. Nat. Cell Biol. 5, 1001–1007 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Geyer, R., Wee, S., Anderson, S., Yates, J. & Wolf, D. A. BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol. Cell 12, 783–790 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Xu, L. et al. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425, 316–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Dixon, J. et al. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc. Natl Acad. Sci. USA 103, 13403–13408 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Hayward, N. K. et al. Whole-genome landscapes of major melanoma subtypes. Nature 545, 175–180 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. McGourty, C. A. et al. Regulation of the CUL3 ubiquitin ligase by a calcium-dependent co-adaptor. Cell 167, 525–538.e14 (2016). This paper provides insight into signalling integration by E3 ligases during development.

    Article  CAS  PubMed  Google Scholar 

  140. Boyadjiev, S. A. et al. Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nat. Genet. 38, 1192–1197 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Singer, J. D., Gurian-West, M., Clurman, B. & Roberts, J. M. Cullin-3 _targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev. 13, 2375–2387 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lin, G. N. et al. Spatiotemporal 16p11.2 protein network implicates cortical late mid-fetal brain development and KCTD13–Cul3–RhoA pathway in psychiatric diseases. Neuron 85, 742–754 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. O'Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

  146. Boyden, L. M. et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482, 98–102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Vilchez, D. et al. Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489, 304–308 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Buckley, S. M. et al. Regulation of pluripotency and cellular reprogramming by the ubiquitin–proteasome system. Cell Stem Cell 11, 783–798 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Brandman, O. & Hegde, R. S. Ribosome-associated protein quality control. Nat. Struct. Mol. Biol. 23, 7–15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bengtson, M. H. & Joazeiro, C. A. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467, 470–473 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shao, S., Brown, A., Santhanam, B. & Hegde, R. S. Structure and assembly pathway of the ribosome quality control complex. Mol. Cell 57, 433–444 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Verma, R., Oania, R. S., Kolawa, N. J. & Deshaies, R. J. Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. eLife 2, e00308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Brandman, O. et al. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151, 1042–1054 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sundaramoorthy, E. et al. ZNF598 and RACK1 regulate mammalian ribosome-associated quality control function by mediating regulatory 40S ribosomal ubiquitylation. Mol. Cell 65, 751–760.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Juszkiewicz, S. & Hegde, R. S. Initiation of quality control during Poly(A) translation requires site-specific ribosome ubiquitination. Mol. Cell 65, 743–750.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang, F., Durfee, L. A. & Huibregtse, J. M. A cotranslational ubiquitination pathway for quality control of misfolded proteins. Mol. Cell 50, 368–378 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Chu, J. et al. A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration. Proc. Natl Acad. Sci. USA 106, 2097–2103 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Johnson, J. O. et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68, 857–864 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kury, S. et al. De novo disruption of the proteasome regulatory subunit PSMD12 causes a syndromic neurodevelopmental disorder. Am. J. Hum. Genet. 100, 352–363 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Clevers, H., Loh, K. M. & Nusse, R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346, 1248012 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Jiang, X., Charlat, O., Zamponi, R., Yang, Y. & Cong, F. Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol. Cell 58, 522–533 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476, 293–297 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Madan, B. et al. USP6 oncogene promotes Wnt signaling by deubiquitylating Frizzleds. Proc. Natl Acad. Sci. USA 113, E2945–E2954 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Wu, J. et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc. Natl Acad. Sci. USA 108, 21188–21193 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Planas-Paz, L. et al. The RSPO–LGR4/5–ZNRF3/RNF43 module controls liver zonation and size. Nat. Cell Biol. 18, 467–479 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Podos, S. D., Hanson, K. K., Wang, Y. C. & Ferguson, E. L. The DSmurf ubiquitin-protein ligase restricts BMP signaling spatially and temporally during Drosophila embryogenesis. Dev. Cell 1, 567–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Xia, L. et al. The Fused/Smurf complex controls the fate of Drosophila germline stem cells by generating a gradient BMP response. Cell 143, 978–990 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Persaud, A. et al. Nedd4-1 binds and ubiquitylates activated FGFR1 to control its endocytosis and function. EMBO J. 30, 3259–3273 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Persaud, A. et al. Tyrosine phosphorylation of NEDD4 activates its ubiquitin ligase activity. Sci. Signal. 7, ra95 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Sigismund, S. et al. Threshold-controlled ubiquitination of the EGFR directs receptor fate. EMBO J. 32, 2140–2157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Paolino, M. et al. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature 507, 508–512 (2014). This is an important study showing how ubiquitin-dependent endocytosis can limit signalling in development and disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yamashita, M. et al. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by _targeting MEKK2 for degradation. Cell 121, 101–113 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Blank, M. et al. A tumor suppressor function of Smurf2 associated with controlling chromatin landscape and genome stability through RNF20. Nat. Med. 18, 227–234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Broix, L. et al. Mutations in the HECT domain of NEDD4L lead to AKT–mTOR pathway deregulation and cause periventricular nodular heterotopia. Nat. Genet. 48, 1349–1358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sanada, M. et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 460, 904–908 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Yue, S. et al. Requirement of Smurf-mediated endocytosis of Patched1 in sonic hedgehog signal reception. Elife 3, e02555 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  178. Aster, J. C., Pear, W. S. & Blacklow, S. C. The varied roles of Notch in cancer. Annu. Rev. Pathol. 12, 245–275 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Pierfelice, T., Alberi, L. & Gaiano, N. Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69, 840–855 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Gordon, W. R. et al. Structural basis for autoinhibition of Notch. Nat. Struct. Mol. Biol. 14, 295–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Carrieri, F. A. & Dale, J. K. Turn it down a Notch. Front. Cell Dev. Biol. 4, 151 (2016).

    PubMed  Google Scholar 

  182. McMillan, B. J. et al. A tail of two sites: a bipartite mechanism for recognition of notch ligands by mind bomb E3 ligases. Mol. Cell 57, 912–924 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gordon, W. R. et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Dev. Cell 33, 729–736 (2015). References 182 and 183 provide interesting insight into the role of ubiquitin in cellular communication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Itoh, M. et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev. Cell 4, 67–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  185. Lai, E. C., Deblandre, G. A., Kintner, C. & Rubin, G. M. Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Dev. Cell 1, 783–794 (2001).

    Article  CAS  PubMed  Google Scholar 

  186. Koo, B. K. et al. Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development 132, 3459–3470 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Luxan, G. et al. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat. Med. 19, 193–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Betancur, P., Bronner-Fraser, M. & Sauka-Spengler, T. Assembling neural crest regulatory circuits into a gene regulatory network. Annu. Rev. Cell Dev. Biol. 26, 581–603 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kerosuo, L. & Bronner-Fraser, M. What is bad in cancer is good in the embryo: importance of EMT in neural crest development. Semin. Cell Dev. Biol. 23, 320–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Lander, R., Nordin, K. & LaBonne, C. The F-box protein Ppa is a common regulator of core EMT factors Twist, Snail, Slug, and Sip1. J. Cell Biol. 194, 17–25 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Campbell, D. S. & Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Deglincerti, A. et al. Coupled local translation and degradation regulate growth cone collapse. Nat. Commun. 6, 6888 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Menon, S. et al. The E3 ubiquitin ligase TRIM9 is a filopodia off switch required for netrin-dependent axon guidance. Dev. Cell 35, 698–712 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Winkle, C. C. et al. Trim9 deletion alters the morphogenesis of developing and adult-born hippocampal neurons and impairs spatial learning and memory. J. Neurosci. 36, 4940–4958 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Hall, J. M. et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250, 1684–1689 (1990).

    Article  CAS  PubMed  Google Scholar 

  196. Long, D. T., Joukov, V., Budzowska, M. & Walter, J. C. BRCA1 promotes unloading of the CMG helicase from a stalled DNA replication fork. Mol. Cell 56, 174–185 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Reid, L. J. et al. E3 ligase activity of BRCA1 is not essential for mammalian cell viability or homology-directed repair of double-strand DNA breaks. Proc. Natl Acad. Sci. USA 105, 20876–20881 (2008).

    Article  CAS  PubMed  Google Scholar 

  198. Buiting, K., Williams, C. & Horsthemke, B. Angelman syndrome — insights into a rare neurogenetic disorder. Nat. Rev. Neurol. 12, 584–593 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Yi, J. J. et al. An autism-linked mutation disables phosphorylation control of UBE3A. Cell 162, 795–807 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495–505 (1993).

    Article  CAS  PubMed  Google Scholar 

  201. Kim, H. C. & Huibregtse, J. M. Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell. Biol. 29, 3307–3318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Greer, P. L. et al. The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140, 704–716 (2010). This article provides insight into the role of UBE3A in neuronal function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Ito, T. et al. Identification of a primary _target of thalidomide teratogenicity. Science 327, 1345–1350 (2010). This is an important study identifying an E3 ligase as the cellular _target of the teratogenic small molecule thalidomide.

    Article  CAS  PubMed  Google Scholar 

  204. Fischer, E. S. et al. Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Nguyen, T. V. et al. Glutamine triggers acetylation-dependent degradation of glutamine synthetase via the thalidomide receptor cereblon. Mol. Cell 61, 809–820 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Matyskiela, M. E. et al. A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase. Nature 535, 252–257 (2016).

    Article  CAS  PubMed  Google Scholar 

  207. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014). This study shows how _targeting of neo-substrates by an E3 ligase can be exploited for therapeutic benefit.

    Article  CAS  PubMed  Google Scholar 

  208. Kronke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523, 183–188 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Han, T. et al. Anticancer sulfonamides _target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755 (2017).

    Article  CAS  PubMed  Google Scholar 

  210. Winter, G. E. et al. Drug development. Phthalimide conjugation as a strategy for in vivo _target protein degradation. Science 348, 1376–1381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author apologizes to all colleagues whose work could not be cited owing to space constraints. The author is grateful to J. Schaletzky and all members of his laboratory for continued discussions, fresh ideas, and comments on this manuscript. The author's work is funded by grants from the National Institute of General Medical Sciences. M.R. is an Investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rape.

Ethics declarations

Competing interests

M.R. is cofounder of and consultant to Nurix, a biotech company operating in the ubiquitin space.

PowerPoint slides

Glossary

Dendritic spines

Small protrusions from neuronal dendrites; each protrusion is typically connected to a single axon to receive signalling input.

WNT signals

The secreted glycoprotein WNT is often used as a signal to maintain pluripotency or regulate differentiation outcomes.

Planar cell polarity

Coordinated alignment of cell polarity across a tissue plane.

Haploinsufficiency

A condition when a protein product of both alleles is required for sustaining a normal phenotype.

RING

(Really interesting new gene). A signature domain of the largest class of E3 ligases.

Embryoid bodies

3D aggregates of pluripotent stem cells.

Opitz syndrome

A disease in which premature fusion of the metopic suture leads to a triangular shaped forehead.

CHARGE syndrome

A congenital disease that affects eye, nose and ear development.

Neural crest

A cell population that gives rise to melanocytes, cartilage, bone, smooth muscle, peripheral and enteric neurons, and glia.

Pseudouridylation

Isomerization of the uridine nucleoside in ribosomal RNA.

Small subunit (SSU) processome

A ribonucleoprotein complex involved in the processing, maturation and modification of the eukaryotic small ribosomal subunit.

Spemann organizer

A cell cluster in developing amphibian embryos that induces the formation of the central nervous system.

Paneth cells

Cell type in the stem cell niche of the small intestine.

Intestinal crypts

Region at the base of the intestinal epithelium that harbours the stem cells of this organ.

R-spondin proteins

Secreted WNT agonists.

Natural killer cells

Type of lymphocytes in the innate immune system.

Lateral inhibition

The ability of one cell to change the fate or inhibit differentiation of its neighbours.

Somitogenesis

Process of segment formation along the anterior–posterior axis of a developing embryo.

Epithelial–mesenchymal transition

Process by which epithelial cells lose their polarity and cell adhesion and gain migrational and mesenchymal properties.

Growth cones

Dynamic extensions at the tip of a growing axon.

Dentate gyrus

Part of the hippocampus that contributes to memory formation.

Homologous recombination

Genetic recombination between similar DNA molecules, often between sister chromatids during DNA damage repair.

DNA crosslink

A type of DNA damage, with nucleotides becoming covalently linked to each other.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rape, M. Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol 19, 59–70 (2018). https://doi.org/10.1038/nrm.2017.83

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.83

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
Idea 1
idea 1
INTERN 2
twitter 1