Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2

Abstract

The human breast cancer susceptibility gene BRCA2 is required for the regulation of RAD51-mediated homologous recombinational repair. BRCA2 interacts with RAD51 monomers, as well as nucleoprotein filaments, primarily though the conserved BRC motifs. The unrelated C-terminal region of BRCA2 also interacts with RAD51. Here we show that the BRCA2 C terminus interacts directly with RAD51 filaments, but not monomers, by binding an interface created by two adjacent RAD51 protomers. These interactions stabilize filaments so that they cannot be dissociated by association with BRC repeats. Interaction of the BRCA2 C terminus with the RAD51 filament causes a large movement of the flexible RAD51 N-terminal domain that is important in regulating filament dynamics. We suggest that interactions of the BRCA2 C-terminal region with RAD51 may facilitate efficient nucleation of RAD51 multimers on DNA and thereby stimulate recombination-mediated repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of BRC4 on RAD51-TR2 interactions.
Figure 2: Analysis of the interaction of the C-terminal region of BRCA2 with RAD51 mutants that do not self-associate.
Figure 3: Particle size analysis of RAD51 in the presence of BRCA2 peptides.
Figure 4: Visualization of RAD51–DNA nucleoprotein filaments formed in the presence of TR2.
Figure 5: TR2 binds nucleoprotein filaments made by the RAD5182–339 core.
Figure 6: BRC4 does not disrupt RAD51–DNA nucleoprotein filaments in the presence of TR2.

Similar content being viewed by others

References

  1. Lancaster, J.M. et al. BRCA2 mutations in primary breast and ovarian cancers. Nat. Genet. 13, 238–240 (1996).

    Article  CAS  Google Scholar 

  2. Connor, F. et al. Tumorigenesis and a DNA-repair defect in mice with a truncating BRCA2 mutation. Nat. Genet. 17, 423–430 (1997).

    Article  CAS  Google Scholar 

  3. West, S.C. Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell Biol. 4, 435–445 (2003).

    Article  CAS  Google Scholar 

  4. Sharan, S.K. et al. Embryonic lethality and radiation hypersensitivity mediated by RAD51 in mice lacking BRCA2. Nature 386, 804–810 (1997).

    Article  CAS  Google Scholar 

  5. Wong, A.K.C., Pero, R., Ormonde, P.A., Tavtigian, S.V. & Bartel, P.L. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene BRCA2. J. Biol. Chem. 272, 31941–31944 (1997).

    Article  CAS  Google Scholar 

  6. Yang, H. et al. BRCA2 function in DNA binding and recombination from a BRCA2–DSS1-ssDNA structure. Science 297, 1837–1848 (2002).

    Article  CAS  Google Scholar 

  7. Godthelp, B.C., Artwert, F., Joenje, H. & Zdzienicka, M.Z. Impaired DNA damage-induced nuclear RAD51 foci formation uniquely characterizes Fanconi anemia group D1. Oncogene 21, 5002–5005 (2002).

    Article  CAS  Google Scholar 

  8. Yuan, S.-S.F. et al. BRCA2 is required for ionizing radiation-induced assembly of RAD51 complex in vivo. Cancer Res. 59, 3547–3551 (1999).

    CAS  PubMed  Google Scholar 

  9. Tarsounas, M., Davies, D. & West, S.C. BRCA2-dependent and independent formation of RAD51 nuclear foci. Oncogene 22, 1115–1123 (2003).

    Article  CAS  Google Scholar 

  10. Pellegrini, L. et al. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420, 287–293 (2002).

    Article  CAS  Google Scholar 

  11. Galkin, V.E. et al. The RAD51/RadA N-terminal domain activates nucleoprotein filament ATPase activity. Structure 14, 983–992 (2006).

    Article  CAS  Google Scholar 

  12. Davies, A.A. et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol. Cell 7, 273–282 (2001).

    Article  CAS  Google Scholar 

  13. Chen, C.F., Chen, P.L., Zhong, Q., Sharp, Z.D. & Lee, W.H. Expression of BRC repeats in breast cancer cells disrupts the BRCA2–RAD51 complex and leads to radiation hypersensitivity and loss of G(2)/M checkpoint control. J. Biol. Chem. 274, 32931–32935 (1999).

    Article  CAS  Google Scholar 

  14. Galkin, V.E. et al. BRCA2 BRC motifs bind RAD51-DNA filaments. Proc. Natl. Acad. Sci. USA 102, 8537–8542 (2005).

    Article  CAS  Google Scholar 

  15. Shivji, M.K. et al. A region of human BRCA2 containing multiple BRC repeats promotes RAD51-mediated strand exchange. Nucleic Acids Res. 34, 4000–4011 (2006).

    Article  CAS  Google Scholar 

  16. Moynahan, M.E., Pierce, A.J. & Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell 7, 263–272 (2001).

    Article  CAS  Google Scholar 

  17. Tutt, A. et al. Mutation in BRCA2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. EMBO J. 20, 4704–4716 (2001).

    Article  CAS  Google Scholar 

  18. Howlett, N.G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606–609 (2002).

    Article  CAS  Google Scholar 

  19. Wang, X., Andreassen, P.R. & D'Andrea, A.D. Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol. Cell. Biol. 24, 5850–5862 (2004).

    Article  CAS  Google Scholar 

  20. Esashi, F. et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434, 598–604 (2005).

    Article  CAS  Google Scholar 

  21. Lo, T., Pellegrini, L., Venkitaraman, A.R. & Blundell, T.L. Sequence fingerprints in BRCA2 and RAD51: implications for DNA repair and cancer. DNA Repair (Amst.) 2, 1015–1028 (2003).

    Article  CAS  Google Scholar 

  22. Yu, D.S. et al. Dynamic control of RAD51 recombinase by self-association and interaction with BRCA2. Mol. Cell 12, 1029–1041 (2003).

    Article  CAS  Google Scholar 

  23. Shin, D.S. et al. Full-length archaeal RAD51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2. EMBO J. 22, 4566–4576 (2003).

    Article  CAS  Google Scholar 

  24. Conway, A.B. et al. Crystal structure of a RAD51 filament. Nat. Struct. Mol. Biol. 11, 791–796 (2004).

    Article  CAS  Google Scholar 

  25. Kinebuchi, T. et al. Structural basis for octameric ring formation and DNA interaction of the human homologous-pairing protein DMC1. Mol. Cell 14, 363–374 (2004).

    Article  CAS  Google Scholar 

  26. Hakansson, S. et al. Moderate frequency of BRCA1 and BRCA2 germ-line mutations in Scandinavian familial breast cancer. Am. J. Hum. Genet. 60, 1068–1078 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mazoyer, S. et al. A polymorphic stop codon in BRCA2. Nat. Genet. 14, 253–254 (1996).

    Article  CAS  Google Scholar 

  28. Baumann, P., Benson, F.E., Hajibagheri, N. & West, S.C. Purification of human RAD51 protein by selective spermidine precipitation. Mutat. Res. 384, 65–72 (1997).

    Article  CAS  Google Scholar 

  29. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  30. Egelman, E.H. A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85, 225–234 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Court and D. Wigley for help with the DLS analyses, and our lab members for their comments. This work was supported by Cancer Research UK, the Breast Cancer Campaign, the EU DNA Repair Consortium, the Jeantet Foundation (S.C.W.) and US National Institutes of Health grant GM035269 (E.H.E.). F.E. is a recipient of a postdoctoral fellowship from the Human Frontiers Science Program and the Japanese Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Contributions

F.E. designed and carried out the biochemical studies. V.E.G. and X.Y. carried out the EM studies. E.H.E. did the image reconstructions. F.E. and S.C.W. were responsible for manuscript preparation.

Corresponding author

Correspondence to Stephen C West.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esashi, F., Galkin, V., Yu, X. et al. Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2. Nat Struct Mol Biol 14, 468–474 (2007). https://doi.org/10.1038/nsmb1245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1245

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
Association 2
INTERN 1
twitter 1