Robotic reduction of long bones is associated with the need for considerable force and high precision. To balance the accuracy, payload, and workspace, we have designed a new six degrees-of-freedom three-legged wide-open robotic system for long-bone fracture reduction. Thanks to the low number of legs and their nonsymmetrical configuration, the mechanism enjoys a unique architecture with a frontally open half-plane. This facilitates positioning the leg inside the mechanism and provides a large workspace for surgical maneuvers, as shown and compared to the well-known Gough–Stewart platform. The experimental tests on a phantom reveal that the mechanism is well capable of applying the desired reduction steps against the large muscular payloads with high accuracy.

References

1.
Kaye
,
J.
, and
Jick
,
H.
,
2004
, “
Epidemiology of Lower Limb Fractures in General Practice in the United Kingdom
,”
Inj. Prev.
,
10
(
6
), pp.
368
374
.
2.
Hung
,
S.-S.
, and
Lee
,
M.-Y.
,
2010
, “
Functional Assessment of a Surgical Robot for Reduction of Lower Limb Fractures
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
6
(
4
), pp.
413
421
.
3.
Tang
,
P.
,
Hu
,
L.
,
Du
,
H.
,
Gong
,
M.
, and
Zhang
,
L.
,
2012
, “
Novel 3D Hexapod Computer-Assisted Orthopaedic Surgery System for Closed Diaphyseal Fracture Reduction
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
8
(
1
), pp.
17
24
.
4.
Wolinsky
,
P. R.
,
McCarty
,
E.
,
Shyr
,
Y.
, and
Johnson
,
K.
,
1999
, “
Reamed Intramedullary Nailing of the Femur: 551 Cases
,”
J. Trauma Acute Care Surg.
,
46
(
3
), pp.
392
399
.
5.
Gosling
,
T.
,
Westphal
,
R.
,
Hufner
,
T.
,
Faulstich
,
J.
,
Kfuri
,
M.
, Jr.
,
Wahl
,
F.
, and
Krettek
,
C.
,
2005
, “
Robot-Assisted Fracture Reduction: A Preliminary Study in the Femur Shaft
,”
Med. Biol. Eng. Comput.
,
43
(
1
), pp.
115
120
.
6.
Buschbaum
,
J.
,
Fremd
,
R.
,
Pohlemann
,
T.
, and
Kristen
,
A.
,
2015
, “
Computer-Assisted Fracture Reduction: A New Approach for Repositioning Femoral Fractures and Planning Reduction Paths
,”
Int. J. Comput. Assisted Radiol. Surg.
,
10
(
2
), pp.
149
159
.
7.
Füchtmeier
,
B.
,
Egersdoerfer
,
S.
,
Mai
,
R.
,
Hente
,
R.
,
Dragoi
,
D.
,
Monkman
,
G.
, and
Nerlich
,
M.
,
2004
, “
Reduction of Femoral Shaft Fractures in vitro by a New Developed Reduction Robot System ‘Reporobo’
,”
Injury
,
35
(
1
), pp.
113
119
.
8.
Oszwald
,
M.
,
Ruan
,
Z.
,
Westphal
,
R.
,
O'Loughlin
,
P. F.
,
Kendoff
,
D.
,
Hufner
,
T.
,
Wahl
,
F.
,
Krettek
,
C.
, and
Gosling
,
T.
,
2008
, “
A Rat Model for Evaluating Physiological Responses to Femoral Shaft Fracture Reduction Using a Surgical Robot
,”
J. Orthop. Res.
,
26
(
12
), pp.
1656
1659
.
9.
Hawi
,
N.
,
Haentjes
,
J.
,
Suero
,
E. M.
,
Liodakis
,
E.
,
Krettek
,
C.
,
Stübig
,
T.
,
Hüfner
,
T.
, and
Citak
,
M.
,
2011
, “
Navigated Femoral Shaft Fracture Treatment: Current Status
,”
Technol. Health Care
,
20
(
1
), pp.
65
71
.
10.
Westphal
,
R.
,
Winkelbach
,
S.
,
Gösling
,
T.
,
Hüfner
,
T.
,
Faulstich
,
J.
,
Martin
,
P.
,
Krettek
,
C.
, and
Wahl
,
F.
,
2006
, “
A Surgical Telemanipulator for Femur Shaft Fracture Reduction
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
2
(
3
), pp.
238
250
.
11.
Westphal
,
R.
,
Winkelbach
,
S.
,
Wahl
,
F.
,
Gösling
,
T.
,
Oszwald
,
M.
,
Hüfner
,
T.
, and
Krettek
,
C.
,
2009
, “
Robot-Assisted Long Bone Fracture Reduction
,”
Int. J. Rob. Res.
,
28
(
10
), pp.
1259
1278
.
12.
Oszwald
,
M.
,
Westphal
,
R.
,
Bredow
,
J.
,
Calafi
,
A.
,
Hufner
,
T.
,
Wahl
,
F.
,
Krettek
,
C.
, and
Gosling
,
T.
,
2010
, “
Robot-Assisted Fracture Reduction Using Three-Dimensional Intraoperative Fracture Visualization: An Experimental Study on Human Cadaver Femora
,”
J. Orthop. Res.
,
28
(
9
), pp.
1240
1244
.
13.
Li
,
C.
,
Wang
,
T.
,
Hu
,
L.
,
Zhang
,
L.
,
Du
,
H.
,
Wang
,
L.
,
Luan
,
S.
, and
Tang
,
P.
,
2014
, “
Accuracy Analysis of a Robot System for Closed Diaphyseal Fracture Reduction
,”
Int. J. Adv. Rob. Syst.
,
11
(10), p.
169
.
14.
Seide
,
K.
,
Faschingbauer
,
M.
,
Wenzl
,
M.
,
Weinrich
,
N.
, and
Juergens
,
C.
,
2004
, “
A Hexapod Robot External Fixator for Computer Assisted Fracture Reduction and Deformity Correction
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
1
(
1
), pp.
64
69
.
15.
Maeda
,
Y.
,
Sugano
,
N.
,
Saito
,
M.
,
Yonenobu
,
K.
,
Sakuma
,
I.
,
Nakajima
,
Y.
,
Warisawa
,
S.
, and
Mitsuishi
,
M.
,
2008
, “
Robot-Assisted Femoral Fracture Reduction: Preliminary Study in Patients and Healthy Volunteers
,”
Comput. Aided Surg.
,
13
(
3
), pp.
148
156
.
16.
Majidifakhr
,
K.
,
Kazemirad
,
S.
, and
Farahmand
,
F.
,
2009
, “
Robotic Assisted Reduction of Femoral Shaft Fractures Using Stewart Platform
,”
Stud. Health Technol. Inf.
,
142
, pp.
177
179
.
17.
Ye
,
R.
,
Chen
,
Y.
, and
Yau
,
W.
,
2012
, “
A Simple and Novel Hybrid Robotic System for Robot-Assisted Femur Fracture Reduction
,”
Adv. Rob.
,
26
(
1–2
), pp.
83
104
.
18.
Hu
,
L.
,
Zhang
,
J.
,
Li
,
C.
,
Wang
,
Y.
,
Yang
,
Y.
,
Tang
,
P.
,
Fang
,
L.
,
Zhang
,
L.
,
Du
,
H.
, and
Wang
,
L.
,
2013
, “
A Femur Fracture Reduction Method Based on Anatomy of the Contralateral Side
,”
Comput. Biol. Med.
,
43
(
7
), pp.
840
846
.
19.
Wang
,
J.
,
Han
,
W.
, and
Lin
,
H.
,
2013
, “
Femoral Fracture Reduction With a Parallel Manipulator Robot on a Traction Table
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
9
(
4
), pp.
464
471
.
20.
Wang
,
T.
,
Li
,
C.
,
Hu
,
L.
,
Tang
,
P.
,
Zhang
,
L.
,
Du
,
H.
,
Luan
,
S.
,
Wang
,
L.
,
Tan
,
Y.
, and
Peng
,
C.
,
2014
, “
A Removable Hybrid Robot System for Long Bone Fracture Reduction
,”
Biomed. Mater. Eng.
,
24
(
1
), pp.
501
509
.
21.
Du
,
H.
,
Hu
,
L.
,
Li
,
C.
,
Wang
,
T.
,
Zhao
,
L.
,
Li
,
Y.
,
Mao
,
Z.
,
Liu
,
D.
,
Zhang
,
L.
,
He
,
C.
,
Zhang
,
L.
,
Hou
,
H.
,
Zhang
,
L.
, and
Tang
,
P.
,
2015
, “
Advancing Computer-Assisted Orthopaedic Surgery Using a Hexapod Device for Closed Diaphyseal Fracture Reduction
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
11
(
3
), pp.
348
359
.
22.
Staubli, 2016, “Robotics, SCARA and 6 Axis Industrial Robots & Software Solutions,”
Staubli
, Pfaffikon, Switzerland.
23.
Gough
,
V. E.
, and
Whitehall
,
S. G.
,
1962
, “
Universal Tyre Test Machine
,” 9th International Technical Congress FISITA, pp. 117–137.
24.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
, Part A,
180
(
1965
), pp.
371
386
.
25.
St-Onge
,
B. M.
, and
Gosselin
,
C. M.
,
2000
, “
Singularity Analysis and Representation of the General Gough–Stewart Platform
,”
Int. J. Rob. Res.
,
19
(
3
), pp.
271
288
.
26.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T.
,
2000
, “
The Stewart Platform Manipulator: A Review
,”
Mech. Mach. Theory
,
35
(
1
), pp.
15
40
.
27.
Li
,
H.
,
Gosselin
,
C. M.
, and
Richard
,
M. J.
,
2007
, “
Determination of the Maximal Singularity-Free Zones in the Six-Dimensional Workspace of the General
,”
Mech. Mach. Theory
,
42
(
4
), pp.
497
511
.
28.
Jiang
,
Q.
, and
Gosselin
,
C. M.
,
2009
, “
Determination of the Maximal Singularity-Free Orientation Workspace for the Gough–Stewart Platform
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1281
1293
.
29.
Jiang
,
Q.
, and
Gosselin
,
C. M.
,
2009
, “
Maximal Singularity-Free Total Orientation Workspace of the Gough–Stewart Platform
,”
ASME J. Mech. Rob.
,
1
(
3
), p.
034501
.
30.
Jiang
,
Q.
, and
Gosselin
,
C. M.
,
2009
, “
Evaluation and Representation of the Theoretical Orientation Workspace of the Gough–Stewart Platform
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021004
.
31.
Inner
,
B.
, and
Kucuk
,
S.
,
2013
, “
A Novel Kinematic Design, Analysis and Simulation Tool for General Stewart Platforms
,”
Simulation
,
89
(
7
), pp.
876
897
.
32.
Liu
,
G.
,
Qu
,
Z.
,
Liu
,
X.
, and
Han
,
J.
,
2014
, “
Singularity Analysis and Detection of 6-UCU Parallel Manipulator
,”
Rob. Comput.-Integr. Manuf.
,
30
(
2
), pp.
172
179
.
33.
Karimi
,
A.
,
Masouleh
,
M. T.
, and
Cardou
,
P.
,
2014
, “
Singularity-Free Workspace Analysis of General 6-UPS Parallel Mechanisms Via Convex Optimization
,”
Mech. Mach. Theory
,
80
, pp.
17
34
.
34.
Zhou
,
W.
,
Chen
,
W.
,
Liu
,
H.
, and
Li
,
X.
,
2015
, “
A New Forward Kinematic Algorithm for a General Stewart Platform
,”
Mech. Mach. Theory
,
87
, pp.
177
190
.
35.
Abedinnasab
,
M. H.
,
Farahmand
,
F.
,
Tarvirdizadeh
,
B.
,
Zohoor
,
H.
, and
Gallardo-Alvarado
,
J.
,
2016
, “
Kinematic Effects of Number of Legs in 6-DOF UPS Parallel Mechanisms
,” Robotica (accepted).
36.
Abedinnasab
,
M. H.
,
Yoon
,
Y.-J.
, and
Zohoor
,
H.
,
2012
,
Exploiting Higher Kinematic Performance–Using a 4-Legged Redundant PM Rather Than Gough–Stewart Platforms
,
InTech
, Rijeka, Croatia.
37.
Abedinnasab
,
M. H.
, and
Vossoughi
,
G. R.
,
2009
, “
Analysis of a 6-DOF Redundantly Actuated 4-Legged Parallel Mechanism
,”
Nonlinear Dyn.
,
58
(
4
), pp.
611
622
.
38.
Aghababai
,
O.
,
2005
, “
Design, Kinematic and Dynamic Analysis and Optimization of a 6 DOF Redundantly Actuated Parallel Mechanism for Use in Haptic Systems
,” M.Sc. thesis, Sharif University of Technology, Tehran, Iran.
39.
Gao
,
X.-S.
,
Lei
,
D.
,
Liao
,
Q.
, and
Zhang
,
G.-F.
,
2005
, “
Generalized Stewart–Gough Platforms and Their Direct Kinematics
,”
IEEE Trans. Rob.
,
21
(
2
), pp.
141
151
.
40.
Faugère
,
J.-C.
, and
Lazard
,
D.
,
1995
, “
Combinatorial Classes of Parallel Manipulators
,”
Mech. Mach. Theory
,
30
(
6
), pp.
765
776
.
41.
Wampler
,
C. W.
,
1996
, “
Forward Displacement Analysis of General Six-in-Parallel SPS (Stewart) Platform Manipulators Using Soma Coordinates
,”
Mech. Mach. Theory
,
31
(
3
), pp.
331
337
.
42.
Gallardo-Alvarado
,
J.
,
2014
, “
A Simple Method to Solve the Forward Displacement Analysis of the General Six-Legged Parallel Manipulator
,”
Rob. Comput.-Integr. Manuf.
,
30
(
1
), pp.
55
61
.
43.
Zhao
,
Y.
,
Liu
,
J.
, and
Huang
,
Z.
,
2011
, “
A Force Analysis of a 3-RPS Parallel Mechanism by Using Screw Theory
,”
Robotica
,
29
(
07
), pp.
959
965
.
44.
Gallardo-Alvarado
,
J.
,
Orozco-Mendoza
,
H.
, and
Rico-Martínez
,
J. M.
,
2010
, “
A Novel Five-Degrees-of-Freedom Decoupled Robot
,”
Robotica
,
28
(
6
), pp.
909
917
.
45.
Gallardo-Alvarado
,
J.
,
Rico-Martínez
,
J. M.
, and
Alici
,
G.
,
2006
, “
Kinematics and Singularity Analyses of a 4-DOF Parallel Manipulator Using Screw Theory
,”
Mech. Mach. Theory
,
41
(
9
), pp.
1048
1061
.
46.
Tsai
,
L.-W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
, Hoboken, NJ.
47.
Tsai
,
L.-W.
,
1998
, “
The Jacobian Analysis of a Parallel Manipulator Using Reciprocal Screws
,”
Advances in Robot Kinematics: Analysis and Control
,
J.
Lenarcic
and
M. L.
Husty
, eds.,
Kluwer Academic
, Dordrecht, The Netherlands.
You do not currently have access to this content.