Background
Compared with healthy individuals, those with type 1 diabetes have an increased risk of circulatory disorders of the brain, such as stroke.1 In young individuals with type 1 diabetes, more than half of the cases of stroke are of microvascular etiology, whereas the corresponding number is below 15% in the general population.2 Furthermore, type 1 diabetes is thought to cause organ damage to the central nervous system in similarity with, and in association with, other diabetic organ damage.3
Disease of the microvasculature (arterioles, capillaries, and venules) in the central nervous system is termed cerebral small-vessel disease, with the two most common aetiologies being hypertensive vasculopathy and cerebral amyloid angiopathy. Since the vasculature is too microscopic to image in vivo per se, proxies for the disease are evaluated by MRI. Signs of cerebral small-vessel disease on MRI include lacunar infarcts, white matter hyperintensities, cerebral microbleeds (CMBs), and cortical superficial siderosis.4 5 In type 1 diabetes, only a few studies have assessed cerebral small-vessel disease more comprehensively, including the above-mentioned manifestations, with brain MRI.6–8 We have preciously studied these markers and showed that cerebral small-vessel disease, especially microbleeds, is more common in type 1 diabetes than in the general population.6
Whereas cerebral small-vessel disease in vivo can only be studied indirectly by MRI,4 the vasculature of the eye is easily visible and can be directly and non-invasively studied by retinal fundus photography.9 The retina has often been proposed to act as a window into the brain, reflecting the burden of small-vessel disease, with the hypothesis that disrupted cerebral small vasculature would be mirrored in the retina.10 11 Retinopathy is prevalent in diabetes, being the most frequent microvascular complication, with retinal changes developing in up to 90% of individuals with type 1 diabetes, and 40% of type 2 diabetes.12 13 In type 2 diabetes, individuals with diabetic retinopathy have a higher prevalence of small-vessel disease markers, white matter hyperintensities, and lacunar infarcts, than subjects without diabetic retinopathy. Furthermore, small-vessel disease severity increases with age and presence of diabetic retinopathy in these individuals.14 In the general population, abnormalities of the retinal vasculature have also been linked to cerebral small-vessel disease, especially white matter hyperintensities and lacunar stroke.10 15
In type 1 diabetes, both cerebral small-vessel disease and diabetic retinopathy are common findings already at a rather young age, in contrast to that observed in the general population or type 2 diabetes.6 14 Despite this, data on the relationship between cerebral small-vessel disease and diabetic retinopathy in type 1 diabetes are scarce, and studies show contradictory results.6 8 16 17 The association between cerebral small-vessel disease and retinopathy based on fundus images (in contrary to medical records or questionnaires) has been assessed in only one previous study, which found CMBs to be associated with proliferative diabetic retinopathy (PDR).8
Furthermore, there are no reports on the association between milder retinopathy than PDR and cerebral small-vessel disease in type 1 diabetes, and thus, it is yet unclear to what extent the overall severity of diabetic retinopathy is associated with microvascular abnormalities of the brain. Hence, we aimed to study the association between diabetic retinopathy assessed by the Early Treatment Diabetic Retinopathy Study (ETDRS) scale, and cerebral small-vessel disease in neurologically asymptomatic individuals with type 1 diabetes.