1932

Abstract

Two-component systems are a dominant form of bacterial signal transduction. The prototypical two-component system consists of a sensor that responds to a specific input(s) by modifying the output of a cognate regulator. Because the output of a two-component system is the amount of phosphorylated regulator, feedback mechanisms may alter the amount of regulator, and/or modify the ability of a sensor or other proteins to alter the phosphorylation state of the regulator. Two-component systems may display intrinsic feedback whereby the amount of phosphorylated regulator changes under constant inducing conditions and without the participation of additional proteins. Feedback control allows a two-component system to achieve particular steady-state levels, to reach a given steady state with distinct dynamics, to express coregulated genes in a given order, and to activate a regulator to different extents, depending on the signal acting on the sensor.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-102215-095331
2016-09-08
2025-01-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/70/1/annurev-micro-102215-095331.html?itemId=/content/journals/10.1146/annurev-micro-102215-095331&mimeType=html&fmt=ahah

Literature Cited

  1. Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D. 1.  2001. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J. 20:1681–91 [Google Scholar]
  2. Al-Bassam MM, Bibb MJ, Bush MJ, Chandra G, Buttner MJ. 2.  2014. Response regulator heterodimer formation controls a key stage in Streptomyces development. PLOS Genet. 10:e1004554 [Google Scholar]
  3. Alloing G, Martin B, Granadel C, Claverys JP. 3.  1998. Development of competence in Streptococcus pneumonaie: pheromone autoinduction and control of quorum sensing by the oligopeptide permease. Mol. Microbiol. 29:75–83 [Google Scholar]
  4. Arthur M, Depardieu F, Gerbaud G, Galimand M, Leclercq R, Courvalin P. 4.  1997. The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn1546 and related elements in the absence of induction. J. Bacteriol. 179:97–106 [Google Scholar]
  5. Balaban NQ. 5.  2011. Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr. Opin. Genet. Dev. 21:768–75 [Google Scholar]
  6. Bang IS, Audia JP, Park YK, Foster JW. 6.  2002. Autoinduction of the ompR response regulator by acid shock and control of the Salmonella enterica acid tolerance response. Mol. Microbiol. 44:1235–50 [Google Scholar]
  7. Barbieri CM, Stock AM. 7.  2008. Universally applicable methods for monitoring response regulator aspartate phosphorylation both in vitro and in vivo using Phos-tag-based reagents. Anal. Biochem. 376:73–82 [Google Scholar]
  8. Barbieri CM, Wu T, Stock AM. 8.  2013. Comprehensive analysis of OmpR phosphorylation, dimerization, and DNA binding supports a canonical model for activation. J. Mol. Biol. 425:1612–26 [Google Scholar]
  9. Batchelor E, Goulian M. 9.  2003. Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. PNAS 100:691–96 [Google Scholar]
  10. Beier D, Gross R. 10.  2008. The BvgS/BvgA phosphorelay system of pathogenic Bordetellae: structure, function and evolution. Adv. Exp. Med. Biol. 631:149–60 [Google Scholar]
  11. Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD. 11.  2009. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5:593–99 [Google Scholar]
  12. Bijlsma JJ, Groisman EA. 12.  2005. The PhoP/PhoQ system controls the intramacrophage type three secretion system of Salmonella enterica. Mol. Microbiol. 57:85–96 [Google Scholar]
  13. Biondi EG, Reisinger SJ, Skerker JM, Arif M, Perchuk BS. 13.  et al. 2006. Regulation of the bacterial cell cycle by an integrated genetic circuit. Nature 444:899–904 [Google Scholar]
  14. Botella E, Devine SK, Hubner S, Salzberg LI, Gale RT. 14.  et al. 2014. PhoR autokinase activity is controlled by an intermediate in wall teichoic acid metabolism that is sensed by the intracellular PAS domain during the PhoPR-mediated phosphate limitation response of Bacillus subtilis. Mol. Microbiol. 94:1242–59 [Google Scholar]
  15. Boudes M, Sanchez D, Graille M, van Tilbeurgh H, Durand D, Quevillon-Cheruel S. 15.  2014. Structural insights into the dimerization of the response regulator ComE from Streptococcus pneumoniae. Nucleic Acids Res. 42:5302–13 [Google Scholar]
  16. Buckstein MH, He J, Rubin H. 16.  2008. Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J. Bacteriol. 190:718–26 [Google Scholar]
  17. Buelow DR, Raivio TL. 17.  2010. Three (and more) component regulatory systems—auxiliary regulators of bacterial histidine kinases. Mol. Microbiol. 75:547–66 [Google Scholar]
  18. Cai S, Inouye M. 18.  2002. EnvZ-OmpR interactions and osmoregulation in Escherichia coli. J. Biol. Chem. 277:24155–61 [Google Scholar]
  19. Cameron AD, Dorman CJ. 19.  2012. A fundamental regulatory mechanism operating through OmpR and DNA topology controls expression of Salmonella pathogenicity islands SPI-1 and SPI-2. PLOS Genet. 8:e1002615 [Google Scholar]
  20. Chen HD, Groisman EA. 20.  2013. The biology of the PmrA/PmrB two-component system: the major regulator of lipopolysaccharide modifications. Annu. Rev. Microbiol. 67:83–112 [Google Scholar]
  21. Cromie MJ, Shi Y, Latifi T, Groisman EA. 21.  2006. An RNA sensor for intracellular Mg2+. Cell 125:71–84 [Google Scholar]
  22. DiGiuseppe PA, Silhavy TJ. 22.  2003. Signal detection and _target gene induction by the CpxRA two-component system. J. Bacteriol. 185:2432–40 [Google Scholar]
  23. Doolittle RF, Feng DF, Tsang S, Cho G, Little E. 23.  1996. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271:470–77 [Google Scholar]
  24. Dubrac S, Bisicchia P, Devine KM, Msadek T. 24.  2008. A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol. Microbiol. 70:1307–22 [Google Scholar]
  25. Feng X, Oropeza R, Kenney LJ. 25.  2003. Dual regulation by phospho-OmpR of ssrA/B gene expression in Salmonella pathogenicity island 2. Mol. Microbiol. 48:1131–43 [Google Scholar]
  26. Freeman ZN, Dorus S, Waterfield NR. 26.  2013. The KdpD/KdpE two-component system: integrating K+ homeostasis and virulence. PLOS Pathog 9:e1003201 [Google Scholar]
  27. Fritz G, Dintner S, Treichel NS, Radeck J, Gerland U. 27.  et al. 2015. A new way of sensing: need-based activation of antibiotic resistance by a flux-sensing mechanism. mBio 6:e00975 [Google Scholar]
  28. Fujita M, Gonzalez-Pastor JE, Losick R. 28.  2005. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J. Bacteriol. 187:1357–68 [Google Scholar]
  29. Gao R, Stock AM. 29.  2015. Temporal hierarchy of gene expression mediated by transcription factor binding affinity and activation dynamics. mBio 6:e00686–15 [Google Scholar]
  30. Gopel Y, Gorke B. 30.  2012. Rewiring two-component signal transduction with small RNAs. Curr. Opin. Microbiol. 15:132–39 [Google Scholar]
  31. Groisman EA. 31.  2001. The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 183:1835–42 [Google Scholar]
  32. Groisman EA, Hollands K, Kriner MA, Lee EJ, Park SY, Pontes MH. 32.  2013. Bacterial Mg2+ homeostasis, transport, and virulence. Annu. Rev. Genet. 47:625–46 [Google Scholar]
  33. Guan C-D, Wanner B, Inouye H. 33.  1983. Analysis of regulation of phoB using a phoB-cat fusion. J. Bacteriol 156:710–17 [Google Scholar]
  34. Guillier M, Gottesman S. 34.  2008. The 5′ end of two redundant sRNAs is involved in the regulation of multiple _targets, including their own regulator. Nucleic Acids Res 36:6781–94 [Google Scholar]
  35. Hengge R. 35.  2008. The two-component network and the general stress sigma factor RpoS (σS) in Escherichia coli. Adv. Exp. Med. Biol 631:40–53 [Google Scholar]
  36. Hoffer SM, Westerhoff HV, Hellingwerf KJ, Postma PW, Tommassen J. 36.  2001. Autoamplification of a two-component regulatory system results in “learning” behavior. J. Bacteriol. 183:4914–17 [Google Scholar]
  37. Hornschemeyer P, Liss V, Heermann R, Jung K, Hunke S. 37.  2016. Interaction analysis of a two-component system using nanodiscs. PLOS ONE 11:e0149187 [Google Scholar]
  38. Hsieh YJ, Wanner BL. 38.  2010. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 13:198–203 [Google Scholar]
  39. Hutchings MI, Hong HJ, Buttner MJ. 39.  2006. The vancomycin resistance VanRS two-component signal transduction system of Streptomyces coelicolor. Mol. Microbiol. 59:923–35 [Google Scholar]
  40. Ishii E, Eguchi Y, Utsumi R. 40.  2013. Mechanism of activation of PhoQ/PhoP two-component signal transduction by SafA, an auxiliary protein of PhoQ histidine kinase in Escherichia coli. Biosci. Biotechnol. Biochem. 77:814–19 [Google Scholar]
  41. Jeong DW, Cho H, Jones MB, Shatzkes K, Sun F. 41.  et al. 2012. The auxiliary protein complex SaePQ activates the phosphatase activity of sensor kinase SaeS in the SaeRS two-component system of Staphylococcus aureus. Mol. Microbiol. 86:331–48 [Google Scholar]
  42. Jordan S, Junker A, Helmann JD, Mascher T. 42.  2006. Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and _target genes of a conserved cell envelope stress-sensing two-component system. J. Bacteriol. 188:5153–66 [Google Scholar]
  43. Kato A, Chen HD, Latifi T, Groisman EA. 43.  2012. Reciprocal control between a bacterium's regulatory system and the modification status of its lipopolysaccharide. Mol. Cell 47:897–908 [Google Scholar]
  44. Kato A, Groisman EA. 44.  2004. Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes Dev 18:2302–13 [Google Scholar]
  45. Kato A, Groisman EA. 45.  2008. The PhoQ/PhoP regulatory network of Salmonella enterica. Adv. Exp. Med. Biol 631:7–21 [Google Scholar]
  46. Kato A, Latifi T, Groisman EA. 46.  2003. Closing the loop: The PmrA/PmrB two-component system negatively controls expression of its posttranscriptional activator PmrD. PNAS 100:4706–11 [Google Scholar]
  47. Kato A, Mitrophanov AY, Groisman EA. 47.  2007. A connector of two-component regulatory systems promotes signal amplification and persistence of expression. PNAS 104:12063–68 [Google Scholar]
  48. Kosono S, Tamura M, Suzuki S, Kawamura Y, Yoshida A. 48.  et al. 2015. Changes in the acetylome and succinylome of Bacillus subtilis in response to carbon source. PLOS ONE 10:e0131169 [Google Scholar]
  49. Kox LFF, Wosten MMSM, Groisman EA. 49.  2000. A small protein that mediates the activation of a two-component system by another two-component system. EMBO J 19:1861–72 [Google Scholar]
  50. Laub MT, Goulian M. 50.  2007. Specificity in two-component signal transduction pathways. Annu. Rev. Genet. 41:121–45 [Google Scholar]
  51. Lejona S, Castelli ME, Cabeza ML, Kenney LJ, Garcia Vescovi E, Soncini FC. 51.  2004. PhoP can activate its _target genes in a PhoQ-independent manner. J. Bacteriol. 186:2476–80 [Google Scholar]
  52. Lin YH, Gao R, Binns AN, Lynn DG. 52.  2008. Capturing the VirA/VirG TCS of Agrobacterium tumefaciens. Adv. Exp. Med. Biol 631:161–77 [Google Scholar]
  53. Lippa AM, Goulian M. 53.  2009. Feedback inhibition in the PhoQ/PhoP signaling system by a membrane peptide. PLOS Genet 5:e1000788 [Google Scholar]
  54. Macfarlane ELA, Kwasnicka A, Ochs MM, Hancock REW. 54.  1999. PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol. Microbiol. 34:305–16 [Google Scholar]
  55. Majdalani N, Gottesman S. 55.  2005. The Rcs phosphorelay: a complex signal transduction system. Annu. Rev. Microbiol. 59:379–405 [Google Scholar]
  56. Mandin P, Guillier M. 56.  2013. Expanding control in bacteria: interplay between small RNAs and transcriptional regulators to control gene expression. Curr. Opin. Microbiol. 16:125–32 [Google Scholar]
  57. Martin B, Granadel C, Campo N, Henard V, Prudhomme M, Claverys JP. 57.  2010. Expression and maintenance of ComD-ComE, the two-component signal-transduction system that controls competence of Streptococcus pneumoniae. Mol. Microbiol. 75:1513–28 [Google Scholar]
  58. Mascher T, Helmann JD, Unden G. 58.  2006. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol. Mol. Biol. Rev. 70:910–38 [Google Scholar]
  59. Mascher T, Margulis NG, Wang T, Ye RW, Helmann JD. 59.  2003. Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol. Microbiol. 50:1591–604 [Google Scholar]
  60. McCleary WR, Stock JB. 60.  1994. Acetyl phosphate and the activation of two-component response regulators. J. Biol. Chem. 269:31657–72 [Google Scholar]
  61. Mika F, Hengge R. 61.  2005. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of σS (RpoS) in E. coli. Genes Dev. 19:2770–81 [Google Scholar]
  62. Minagawa S, Ogasawara H, Kato A, Yamamoto K, Eguchi Y. 62.  et al. 2003. Identification and molecular characterization of the Mg2+ stimulon of Escherichia coli. J. Bacteriol. 185:3696–702 [Google Scholar]
  63. Mitrophanov AY, Groisman EA. 63.  2008. Positive feedback in cellular control systems. BioEssays 30:542–55 [Google Scholar]
  64. Mitrophanov AY, Hadley TJ, Groisman EA. 64.  2010. Positive autoregulation shapes response timing and intensity in two-component signal transduction systems. J. Mol. Biol. 401:671–80 [Google Scholar]
  65. Miyashiro T, Goulian M. 65.  2008. High stimulus unmasks positive feedback in an autoregulated bacterial signaling circuit. PNAS 105:17457–62 [Google Scholar]
  66. Nishino K, Hsu FF, Turk J, Cromie MJ, Wosten MM, Groisman EA. 66.  2006. Identification of the lipopolysaccharide modifications controlled by the Salmonella PmrA/PmrB system mediating resistance to Fe(III) and Al(III). Mol. Microbiol. 61:645–54 [Google Scholar]
  67. Norsworthy AN, Visick KL. 67.  2015. Signaling between two interacting sensor kinases promotes biofilms and colonization by a bacterial symbiont. Mol. Microbiol. 96:233–48 [Google Scholar]
  68. Ochman H, Wilson AC. 68.  1987. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J. Mol. Evol. 26:74–86 [Google Scholar]
  69. Pannen D, Fabisch M, Gausling L, Schnetz K. 69.  2016. Interaction of the RcsB response regulator with auxiliary transcription regulators in Escherichia coli. J. Biol. Chem. 291:2357–70 [Google Scholar]
  70. Park SY, Groisman EA. 70.  2014. Signal-specific temporal response by the Salmonella PhoP/PhoQ regulatory system. Mol. Microbiol. 91:135–44 [Google Scholar]
  71. Paul R, Jaeger T, Abel S, Wiederkehr I, Folcher M. 71.  et al. 2008. Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate. Cell 133:452–61 [Google Scholar]
  72. Perego M, Brannigan JA. 72.  2001. Pentapeptide regulation of aspartyl-phosphate phosphatases. Peptides 22:1541–47 [Google Scholar]
  73. Perez JC, Groisman EA. 73.  2007. Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica. Mol. Microbiol. 63:283–93 [Google Scholar]
  74. Perez JC, Shin D, Zwir I, Latifi T, Hadley TJ, Groisman EA. 74.  2009. Evolution of a bacterial regulon controlling virulence and Mg2+ homeostasis. PLOS Genet 5:e1000428 [Google Scholar]
  75. Pescaretti M, Farizano JV, Morero R, Delgado MA. 75.  2013. A novel insight on signal transduction mechanism of RcsCDB system in Salmonella enterica serovar Typhimurium. PLOS ONE 8:e72527 [Google Scholar]
  76. Pescaretti M, Lopez FE, Morero RD, Delgado MA. 76.  2010. Transcriptional autoregulation of the RcsCDB phosphorelay system in Salmonella enterica serovar Typhimurium. Microbiology 156:3513–21 [Google Scholar]
  77. Pescaretti M, Morero R, Delgado MA. 77.  2009. Identification of a new promoter for the response regulator rcsB expression in Salmonella enterica serovar Typhimurium. FEMS Microbiol. Lett. 300:165–73 [Google Scholar]
  78. Pontes MH, Smith KL, De Vooght L, Van Den Abbeele J, Dale C. 78.  2011. Attenuation of the sensing capabilities of PhoQ in transition to obligate insect-bacterial association. PLOS Genet 7:e1002349 [Google Scholar]
  79. Prajapat MK, Saini S. 79.  2013. Role of feedback and network architecture in controlling virulence gene expression in Bordetella. Mol. Biosyst. 9:2635–44 [Google Scholar]
  80. Quon KC, Marczynski GT, Shapiro L. 80.  1996. Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84:83–93 [Google Scholar]
  81. Raghavan V, Groisman EA. 81.  2010. Orphan and hybrid two-component system proteins in health and disease. Curr. Opin. Microbiol. 13:226–31 [Google Scholar]
  82. Raghavan V, Lowe EC, Townsend GE 2nd, Bolam DN, Groisman EA. 82.  2014. Tuning transcription of nutrient utilization genes to catabolic rate promotes growth in a gut bacterium. Mol. Microbiol. 93:1010–25 [Google Scholar]
  83. Raivio TL. 83.  2014. Everything old is new again: an update on current research on the Cpx envelope stress response. Biochim. Biophys. Acta 1843:1529–41 [Google Scholar]
  84. Raivio TL, Popkin DL, Silhavy TJ. 84.  1999. The Cpx envelope stress response is controlled by amplification and feedback inhibition. J. Bacteriol. 181:5263–72 [Google Scholar]
  85. Ravikumar S, Pham VD, Lee SH, Yoo IK, Hong SH. 85.  2012. Modification of CusSR bacterial two-component systems by the introduction of an inducible positive feedback loop. J. Ind. Microbiol. Biotechnol. 39:861–68 [Google Scholar]
  86. Ryndak M, Wang S, Smith I. 86.  2008. PhoP, a key player in Mycobacterium tuberculosis virulence. Trends Microbiol 16:528–34 [Google Scholar]
  87. Schilling B, Christensen D, Davis R, Sahu AK, Hu LI. 87.  et al. 2015. Protein acetylation dynamics in response to carbon overflow in Escherichia coli. Mol. Microbiol. 98:847–63 [Google Scholar]
  88. Schrecke K, Jordan S, Mascher T. 88.  2013. Stoichiometry and perturbation studies of the LiaFSR system of Bacillus subtilis. Mol. Microbiol. 87:769–88 [Google Scholar]
  89. Sherwood EJ, Bibb MJ. 89.  2013. The antibiotic planosporicin coordinates its own production in the actinomycete Planomonospora alba. PNAS 110:E2500–9 [Google Scholar]
  90. Shin D, Groisman EA. 90.  2005. Signal-dependent binding of the response regulators PhoP and PmrA to their _target promoters in vivo. J. Biol. Chem. 280:4089–94 [Google Scholar]
  91. Shin D, Lee EJ, Huang H, Groisman EA. 91.  2006. A positive feedback loop promotes transcription surge that jump-starts Salmonella virulence circuit. Science 314:1607–9 [Google Scholar]
  92. Shinagawa H, Makino K, Nakata A. 92.  1983. Regulation of the pho regulon in Escherichia coli K-12. Genetic and physiological regulation of the positive regulatory gene phoB. J. Mol. Biol. 168:477–88 [Google Scholar]
  93. Shu CJ, Zhulin IB. 93.  2002. ANTAR: an RNA-binding domain in transcription antitermination regulatory proteins. Trends Biochem. Sci. 27:3–5 [Google Scholar]
  94. Snavely MD, Florer JB, Miller CG, Maguire ME. 94.  1989. Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtA systems. J. Bacteriol. 171:4761–66 [Google Scholar]
  95. Soncini FC, García Véscovi E, Groisman EA. 95.  1995. Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J. Bacteriol. 177:4364–71 [Google Scholar]
  96. Soncini FC, García Véscovi E, Solomon F, Groisman EA. 96.  1996. Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J. Bacteriol. 178:5092–99 [Google Scholar]
  97. Soncini FC, Groisman EA. 97.  1996. Two-component regulatory systems can interact to process multiple environmental signals. J. Bacteriol. 178:6796–801 [Google Scholar]
  98. Soncini FC, Vescovi EG, Groisman EA. 98.  1995. Transcriptional autoregulation of the Salmonella Typhimurium phoPQ operon. J. Bacteriol 177:4364–71 [Google Scholar]
  99. Stock AM, Robinson VL, Goudreau PN. 99.  2000. Two-component signal transduction. Annu. Rev. Biochem. 69:183–215 [Google Scholar]
  100. Sureka K, Dey S, Datta P, Singh AK, Dasgupta A. 100.  et al. 2007. Polysphosphate kinase is involved in stress-induced mprAB-sigE-rel signaling in mycobacteria. Mol. Microbiol. 65:261–76 [Google Scholar]
  101. Takeda S, Fujisawa Y, Matsubara M, Aiba H, Mizuno T. 101.  2001. A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC → YojN → RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol. Microbiol. 40:440–50 [Google Scholar]
  102. Trajtenberg F, Albanesi D, Ruetalo N, Botti H, Mechaly AE. 102.  et al. 2014. Allosteric activation of bacterial response regulators: The role of the cognate histidine kinase beyond phosphorylation. mBio 5:e02105 [Google Scholar]
  103. Tu KC, Long T, Svenningsen SL, Wingreen NS, Bassler BL. 103.  2010. Negative feedback loops involving small regulatory RNAs precisely control the Vibrio harveyi quorum-sensing response. Mol. Cell 37:567–79 [Google Scholar]
  104. Verhamme DT, Arents JC, Postma PW, Crielaard W, Hellingwerf KJ. 104.  2002. Investigation of in vivo cross-talk between key two-component systems of Escherichia coli. Microbiology 148:69–78 [Google Scholar]
  105. Vishnoi M, Narula J, Devi SN, Dao HA, Igoshin OA, Fujita M. 105.  2013. Triggering sporulation in Bacillus subtilis with artificial two-component systems reveals the importance of proper Spo0A activation dynamics. Mol. Microbiol. 90:181–94 [Google Scholar]
  106. Vogt SL, Evans AD, Guest RL, Raivio TL. 106.  2014. The Cpx envelope stress response regulates and is regulated by small noncoding RNAs. J. Bacteriol. 196:4229–38 [Google Scholar]
  107. Wang FF, Deng CY, Cai Z, Wang T, Wang L. 107.  et al. 2014. A three-component signalling system fine-tunes expression kinetics of HPPK responsible for folate synthesis by positive feedback loop during stress response of Xanthomonas campestris. Environ. Microbiol. 16:2126–44 [Google Scholar]
  108. Wayne KJ, Li S, Kazmierczak KM, Tsui HC, Winkler ME. 108.  2012. Involvement of WalK (VicK) phosphatase activity in setting WalR (VicR) response regulator phosphorylation level and limiting cross-talk in Streptococcus pneumoniae D39 cells. Mol. Microbiol. 86:645–60 [Google Scholar]
  109. Williams CL, Cotter PA. 109.  2007. Autoregulation is essential for precise temporal and steady-state regulation by the Bordetella BvgAS phosphorelay. J. Bacteriol. 189:1974–82 [Google Scholar]
  110. Witan J, Monzel C, Scheu PD, Unden G. 110.  2012. The sensor kinase DcuS of Escherichia coli: two stimulus input sites and a merged signal pathway in the DctA/DcuS sensor unit. Biol. Chem. 393:1291–97 [Google Scholar]
  111. Wösten MM, Kox LF, Chamnongpol S, Soncini FC, Groisman EA. 111.  2000. A signal transduction system that responds to extracellular iron. Cell 103:113–25 [Google Scholar]
  112. Wösten MMSM, Groisman EA. 112.  1999. Molecular characterization of the PmrA regulon. J. Biol. Chem. 274:27185–90 [Google Scholar]
  113. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK. 113.  et al. 2003. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299:2074–76 [Google Scholar]
  114. Xu J, Chiang HC, Bjursell MK, Gordon JI. 114.  2004. Message from a human gut symbiont: Sensitivity is a prerequisite for sharing. Trends Microbiol 12:21–28 [Google Scholar]
  115. Yamada S, Akiyama S, Sugimoto H, Kumita H, Ito K. 115.  et al. 2006. The signaling pathway in histidine kinase and the response regulator complex revealed by X-ray crystallography and solution scattering. J. Mol. Biol. 362:123–39 [Google Scholar]
  116. Yeo WS, Zwir I, Huang HV, Shin D, Kato A, Groisman EA. 116.  2012. Intrinsic negative feedback governs activation surge in two-component regulatory systems. Mol. Cell 45:409–21 [Google Scholar]
  117. Zwir I, Latifi T, Perez JC, Huang H, Groisman EA. 117.  2012. The promoter architectural landscape of the Salmonella PhoP regulon. Mol. Microbiol. 84:463–85 [Google Scholar]
  118. Zwir I, Yeo WS, Shin D, Latifi T, Huang H, Groisman EA. 118.  2014. Bacterial nucleoid-associated protein uncouples transcription levels from transcription timing. mBio 5:e01485–14 [Google Scholar]
/content/journals/10.1146/annurev-micro-102215-095331
Loading
/content/journals/10.1146/annurev-micro-102215-095331
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
  NODES
admin 1
Association 2
Note 1