Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

X-ray cone-beam computed tomography geometric artefact reduction based on a data-driven strategy

Not Accessible

Your library or personal account may give you access

Abstract

Cone-beam computed tomography (CBCT) enables three-dimensional imaging of the internal structure of objects in a non-invasive way with high accuracy. Practical misalignment of the CBCT system causes geometric artefacts in reconstructed images, which seriously degrades image quality in ways such as detail loss and decreased spatial resolution. This leads to inaccurate distinction of defects in detection, especially in precise industrial fields like aerospace and instrument manufacturing. This paper presents a method to reduce the geometric artefacts based on a data-driven strategy, which is an end-to-end modified fully convolutional neural network (M-FCNN). The designed M-FCCN contains five convolution layers and five deconvolution layers for feature extraction and output image rebuilding, respectively. In addition, the pooling layer is not used in the designed M-FCNN, considering the preservation of details in the reconstructed image. In this M-FCCN, artefact images with different features have been trained separately. After training, the M-FCNN can be applied to directly reduce geometric artefacts in the reconstructed image. The designed M-FCNN has been demonstrated with different types of synthetic data and has achieved accurate results. It is also validated with practical data, including carbon composite and medical oral phantoms with comparable quality to phantom-based methods, proving that it is an effective way to reduce geometric artefacts in the image domain by means of a data-driven strategy.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Geometric correction of cone beam computed laminography based on projected address translation

Pan He, Rongsheng Lu, Ziyang Mu, Siyuan Shen, Gengyang Chen, and Hao Li
Appl. Opt. 63(27) 7329-7337 (2024)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
  NODES
admin 4
chat 1
INTERN 1
Note 5
Project 1