Skip to main content

Gene Replacement using Pretreated DNA

  • Protocol
Mycobacterium tuberculosis Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 54))

Abstract

Gene replacement by homologous recombination (HR) is an invaluable tool in understanding the physiology and the significance of specific genes in the virulence of Mycobacterium tuberculosis. It will also allow for the development of rationally attenuated strains as candidate vaccines to prevent the spread of tuberculosis. Classically, allelic replacement involves the introduction of nonreplicating DNA (suicide plasmids) carrying a mutated copy of the _targeted gene, most often disrupted by an antibiotic resistance determinant, into the chromosome. A single recombination event (cross-over) between the two alleles will result in integration of the entire plasmid to generate a single crossover (SCO) strain carrying both wild-type and mutated copies of the gene. If two recombination events occur, a double cross-over (DCO) is generated where the wild-type allele is replaced by the mutant allele. Strains with an SCO can also give rise to DCO strains when a second recombination event takes place (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
CHF 39.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 104.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 130.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
CHF 177.00
Price excludes VAT (Switzerland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Husson R. N., James B. E., and Young R. A. (1990) Gene replacement and expression of foreign DNA in mycobacteria. J. Bacteriol. 172, 519–524.

    CAS  PubMed  Google Scholar 

  2. Kalpana G. V., Bloom B. R., and Jacobs, Jr. W. R. (1991) Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc. Natl. Acad. Sci. USA 88, 5433–5473.

    Article  CAS  PubMed  Google Scholar 

  3. Gordhan B. G., Andersen S. J., De Meyer A. R., and Mizrahi V. (1996) Construction by homologous recombination and phenotypic characterization of apolA mutant of Mycobacterium smegmatis. Gene 178, 125–130.

    Article  CAS  PubMed  Google Scholar 

  4. Quan S.W., Venter H., and Dabbs E. R. (1997) Ribosylative in activation of rifampin by Mycobacterium smegmatis is a principle contributor to its low susceptibility to this antibiotic. Antimicrob. Agents Chemother. 41, 2456–2460.

    CAS  PubMed  Google Scholar 

  5. Boshoff H. I. M. and Mizrahi V. (1998) Purification, gene cloning, _targeted knockout, overexpression, and biochemical characterization of the major pyrazinamidase from Mycobacterium smegmatis. J. Bacteriol. 180, 5809–5814.

    CAS  PubMed  Google Scholar 

  6. McFadden J. (1996) Recombination in mycobacteria. Mol. Microbiol. 21, 205–211.

    Article  CAS  PubMed  Google Scholar 

  7. Aldovoni A., Husson R. N., and Young R. A. (1993) The uraA locus and homologous recombination in Mycobacterium bovis BCG. J. Bacteriol. 175, 7282–7289.

    Google Scholar 

  8. Pelicic V., Reyrat J. M., and Gicquel B. (1996) Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J. Bacteriol. 178, 1197–1199.

    CAS  PubMed  Google Scholar 

  9. Pelicic V., Reyrat J. M., and Gicquel B. (1996) Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Mol. Microbiol. 20, 191–925.

    Article  Google Scholar 

  10. Sander P., Meier A., and Bottger E. C. (1995) A dominant selectable marker for gene replacement in mycobacteria. Mol. Microbiol. 16, 991–1000.

    Article  CAS  PubMed  Google Scholar 

  11. Knipfer N., and Shrader T. E. (1997) Inactivation of the 20S proteasome in Mycobacterium smegmatis. Mol. Microbiol. 25, 375–383.

    Article  CAS  PubMed  Google Scholar 

  12. Reyrat J. M., Pelicic V., Gicquel B., and Rappuoli R. (1998) Counterselectable markers: untapped tools for bacterial genetics and pathogenesis. Infect. Immunol. 66, 4011–4017.

    CAS  Google Scholar 

  13. Balasubramanian V., Pavelka, Jr. M. S., Bardarov S. S., Martin J., Weisbrod T. R., McAdam R. A., Bloom B. R., and Jacobs, Jr. W. R. (1996) Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates. J. Bacteriol. 178, 273–279.

    CAS  PubMed  Google Scholar 

  14. Pelicic V., Reyrat J. M., and Gicquel B. (1996) Positive selection of allelic exchange mutants in Mycobacterium bovis BCG. FEMS Microbiol. Lett. 144, 161–166.

    Article  CAS  PubMed  Google Scholar 

  15. Azad A. K., Sirakova T. D., Rogers L. M., and Kolattukudy P. E. (1996) _targeted gene replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proc. Natl. Acad. Sci. USA 93, 4787–4792.

    Article  CAS  PubMed  Google Scholar 

  16. Azad A. K., Siakova T. D., Fernandes N. D., and Kolattukudy P. E. (1997) Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J. Biol. Chem. 272, 16,741–16,745.

    Article  CAS  PubMed  Google Scholar 

  17. Bardarov S., Kriakov J., Carriere C., Yu S. U., Vaamonde C., McAdam R. A., Bloom B. R., Hatfull G. F., and Jacobs, Jr. W. R. (1997) Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94, 10,961–10,966.

    Article  CAS  PubMed  Google Scholar 

  18. Baulard A., Kremer L., and Locht C., (1996) Efficient homologous recombination in fast growing and slow growing mycobacteria. J. Bacteriol. 178, 3091–3098.

    CAS  PubMed  Google Scholar 

  19. Stolt P., and Stoker N. G. (1996) Functional definitions of regions necessary for replication and incompatibility in the Mycobacterium fortuitum plasmid, pAL5000. Microbiology 142, 2795–2802.

    Article  CAS  PubMed  Google Scholar 

  20. Pelicic V., Jackson M., Reyrat J. M., Jacobs, Jr. W. R., Gicquel B., and Guilhot C. (1997) Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94, 10,955–10,960.

    Article  CAS  PubMed  Google Scholar 

  21. Hinds J., Mahenthiralingam E., Kempsell K. E., Duncan K., Stokes R. W., Parish T., and Stoker N. G. (1999) Enhanced gene replacement in mycobacteria. Microbiology 145, 519–527.

    Article  CAS  PubMed  Google Scholar 

  22. Parish T., Gordhan B. G., McAdam R. A., Duncan K., Mizrahi V., and Stoker N. G. (1999) Production of mutants in amino acid biosynthesis genes of Mycobacterium tuberculosis by homologous recombination. Microbiology 145, 3497–3503.

    CAS  PubMed  Google Scholar 

  23. Kowalczykowski S. C., Dixon D.A., Eggleston A. K., Lauder S. D., and Rehrauer W. M. (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58, 401–465.

    CAS  PubMed  Google Scholar 

  24. Davis E. O., Sedgwick S. G., and Colston M. J. (1991) Novel structure of the recA locus of Mycobacterium tuberculosis implies processing of the gene product. J. Bacteriol. 173, 5653–5662.

    CAS  PubMed  Google Scholar 

  25. Davis E. O., Jenner P. J., Brooks P. C., and Colston M. J., and Sedgwick, S. G. (1992) Protein splicing in the maturation of M. tuberculosis recA protein: a mechanism for tolerating a novel class of intervening sequence. Cell 71, 201–210.

    Google Scholar 

  26. Kumar R. A., Vase M. B., Chandra N. R., Vijayan M., and Muniyappa K. (1996) Functional characteristics of the precursor and spliced forms of RecA protein of Mycobacterium tuberculosis. Biochemistry 35, 1793–1802.

    Article  CAS  PubMed  Google Scholar 

  27. Davis E. O., Thangaraj H. S., Brooks P. C., and Colston M. J. (1994) Evidence of selection for protein introns in the recA’s of pathogenic mycobacteria. EMBO J. 13, 699–703.

    CAS  PubMed  Google Scholar 

  28. Papavinasasundaram K. G., Colston M. J., and Davis E. O. (1998) Construction and complementation of a recA deletion mutant of Mycobacterium smegmatis reveals that the intein in Mycobacterium tuberculosis recA does not affect RecA function. Mol. Microbiol. 30, 525–534.

    Article  CAS  PubMed  Google Scholar 

  29. Friedberg E. C., Walker G. C., and Siede W. (1995) DNArepair and mutagenesis. Wahington, DC: American Society for Microbiology.

    Google Scholar 

  30. Oh S.-H. and Chater K. F. (1997) Denaturation of circular or linear DNA facilitates _targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms. J. Bacteriol. 179, 122–127.

    CAS  PubMed  Google Scholar 

  31. Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press,Cold Spring Harbor, New York.

    Google Scholar 

  32. Norman E., Dellagostin O. A., McFadden J., and Dale J. W. (1995) Gene replacement by homologous recombination in Mycobacterium bovis BCG. Microbiology 16, 755–760.

    CAS  Google Scholar 

  33. Parish T., and Stoker N. G. (2000) Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146, 1969–1975.

    CAS  PubMed  Google Scholar 

  34. Cole S. T., Brosch R., Parkhill J., et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Gordhan, B.G., Parish, T. (2001). Gene Replacement using Pretreated DNA. In: Parish, T., Stoker, N.G. (eds) Mycobacterium tuberculosis Protocols. Methods in Molecular Medicine, vol 54. Humana Press. https://doi.org/10.1385/1-59259-147-7:077

Download citation

  • DOI: https://doi.org/10.1385/1-59259-147-7:077

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-776-2

  • Online ISBN: 978-1-59259-147-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

  NODES
chat 1