Skip to main content

Mutation Screening of the TP53 Gene by Temporal Temperature Gradient Gel Electrophoresis

  • Protocol
Molecular Toxicology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 291))

  • 1043 Accesses

Abstract

A protocol for detection of mutations in the TP53 gene using temporal temperature gradient gel electrophoresis (TTGE) is described. TTGE is a mutation detection technique that separates DNA fragments differing by single base pairs according to their melting properties in a denaturing gel. It is based on constant denaturing conditions in the gel combined with a temperature gradient during the electrophoretic run. This method combines some of the advantages of the related techniques denaturing gradient gel electrophoresis (DGGE) and constant denaturant gel electrophoresis (CDGE) and eliminates some of the problems. The result is a rapid and sensitive screening technique that is robust and easily set up in smaller laboratory environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
CHF 39.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 138.50
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 173.34
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hernandez-Boussard, T., Montesano, R., and Hainaut, P. (1999) Sources of bias in the detection and reporting of p53 mutations in human cancer: analysis of the IARC p53 mutation database. Genet. Anal. 14, 229–233.

    CAS  PubMed  Google Scholar 

  2. Hollstein, M., Rice, K., Greenblatt, M. S., et al. (1994) Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22, 3551–3555.

    CAS  PubMed  Google Scholar 

  3. Hussain, S. P., Hofseth, L. J., and Harris, C. C. (2001) Tumor suppressor genes: at the crossroads of molecular carcinogenesis, molecular epidemiology and human risk assessmen. Lung Cancer 34(suppl. 2), S7–S15.

    Article  PubMed  Google Scholar 

  4. Martin, A. C, Facchiano, A. M., Cuff, A. L., et al. (2002) Integrating mutation data and structural analysis of the TP53 tumor-suppressor protein. Hum. Mutat. 19, 149–164.

    Article  CAS  PubMed  Google Scholar 

  5. Soussi, T. and Beroud, C. (2002) Assessing TP53 status in human tumours to evaluate clinical outcome. Nat. Rev. Cancer 1, 233–240.

    Article  Google Scholar 

  6. Tyner, S. D., Venkatachalam, S., Choi, J., et al. (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415, 45–53.

    Article  CAS  PubMed  Google Scholar 

  7. Aas, T., Børresen, A.-L., Geisler, S., et al. (1996) Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat. Med. 2, 811–814.

    Article  CAS  PubMed  Google Scholar 

  8. Børresen-Dale, A.-L., Lothe, R. A., Meling, G. I., Hainaut, P., Rognum, T. O., and Skovlund, E. (1998) TP53 and long-term prognosis in colorectal cancer: mutations in the L3 zinc-binding domain predict poor survival. Clin. Cancer Res. 4, 203–210.

    PubMed  Google Scholar 

  9. Geisler, S., Lønning, P. E., Aas, T., et al. (2001) Influence of TP53 gene alterations and cerbB2 expression on the response to treatment with doxorubicin in locally advanced breast cancer. Cancer Res. 61, 2505–2512.

    CAS  PubMed  Google Scholar 

  10. Wallace-Brodeur, R. R. and Lowe, S. W. (1999) Clinical implications of p53 mutations. Cell. Mol. Life Sci. 55, 64–75.

    Article  CAS  PubMed  Google Scholar 

  11. Wattel, E., Preudhomme, C., Hecquet, B., et al. (1994) p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 84, 3148–3157.

    CAS  PubMed  Google Scholar 

  12. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., and Sekiya, T. (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770.

    Article  CAS  PubMed  Google Scholar 

  13. Orita, M., Suzuki, Y., Sekiya, T., and Hayashi, K. (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879.

    Article  CAS  PubMed  Google Scholar 

  14. Fischer, S. G. and Lerman, L. S. (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80, 1579–1583.

    Article  CAS  PubMed  Google Scholar 

  15. Børresen, A.-L., Hovig, E., Smith-Sorensen, B., et al. (1991) Constant denaturant gel electrophoresis as a rapid screening technique for p53 mutations. Proc. Natl. Acad. Sci. USA 88, 8405–8409.

    Article  PubMed  Google Scholar 

  16. Hovig, E., Smith-Sorensen, B., Brogger, A., and Børresen, A.-L. (1991) Constant denaturant gel electrophoresis, a modification of denaturing gradient gel electrophoresis, in mutation detection. Mutat. Res. 262, 63–71 [Published erratum: Mutat. Res. 263, 61].

    Article  CAS  PubMed  Google Scholar 

  17. Bjorheim, J., Gaudernack, G., and Ekstrom, P. O. (2001) Mutation analysis of TP53 exons 5–8 by automated constant denaturant capillary electrophoresis. Tumour Biol. 22, 323–327.

    Article  CAS  PubMed  Google Scholar 

  18. Khrapko, K., Hanekamp, J. S., Thilly, W. G., Belenkii, A., Foret, F., and Karger, B. L. (1994) Constant denaturant capillary electrophoresis (CDCE): a high resolution approach to mutational analysis. Nucleic Acids Res. 22, 364–369.

    Article  CAS  PubMed  Google Scholar 

  19. Sarkar, G., Yoon, H. S., and Sommer, S. S. (1992) Dideoxy fingerprinting (ddF): a rapid and efficient screen for the presence of mutations. Genomics 13, 441–443.

    Article  CAS  PubMed  Google Scholar 

  20. Gelfi, C., Cremonesi, L., Ferrari, M., and Righetti, P. G. (1996) Temperature-programmed capillary electrophoresis for detection of DNA point mutations. BioTechniques 21, 926–928, 930, 932.

    CAS  PubMed  Google Scholar 

  21. Riesner, D., Steger, G., Zimmat, R., et al. (1989). Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis 10, 377–389.

    Article  CAS  PubMed  Google Scholar 

  22. Børresen-Dale, A.-L., Lystad, S., and Langeroed, A. (1997) Temporal temperature gradient electrophoresis on the DCode system. Biorad Bull. 2133.

    Google Scholar 

  23. Zoller, P., Redila-Flores, T., Chu, D., and Patel, A. (1998) Temporal temperature gradient electrophoresis—a powerful mutation screening technique. Biomed. Prod. 9.

    Google Scholar 

  24. Lerman, L. S. and Silverstein, K. (1987) Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol. 155, 482–501.

    Article  CAS  PubMed  Google Scholar 

  25. Børresen, A.-L. (1996) Constant denaturant gel electrophoresis (CDGE) in mutation screening, in Technologies for Detection of DNA Damage and Mutation (Pfeifer, G. P., ed.), Plenum, New York, pp. 267–279.

    Google Scholar 

  26. Kraggerud, S. M., Szymanska, J., Abeler, V. M., et al. (2000) DNA copy number changes in malignant ovarian germ cell tumors. Cancer Res. 60, 3025–3030.

    CAS  PubMed  Google Scholar 

  27. Sheffield, V. C., Cox, D. R., Lerman, L. S., and Myers, R. M. (1989) Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA 86, 232–236.

    Article  CAS  PubMed  Google Scholar 

  28. Guldberg, P., Nedergaard, T., Nielsen, H. J., Olsen, A. C, Ahrenkiel, V., and Zeuthen, J. (1997) Single-step DGGE-based mutation scanning of the p53 gene: application to genetic diagnosis of colorectal cancer. Hum. Mutat. 9, 348–355.

    Article  CAS  PubMed  Google Scholar 

  29. Steger, G. (1994) Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction. Nucleic Acids Res. 22, 2760–2768.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Sørlie, T., Johnsen, H., Vu, P., Lind, G.E., Lothe, R., Børresen-Dale, AL. (2005). Mutation Screening of the TP53 Gene by Temporal Temperature Gradient Gel Electrophoresis. In: Keohavong, P., Grant, S.G. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology™, vol 291. Humana Press. https://doi.org/10.1385/1-59259-840-4:207

Download citation

  • DOI: https://doi.org/10.1385/1-59259-840-4:207

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-084-7

  • Online ISBN: 978-1-59259-840-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

  NODES