Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Aromatic Plants as Potential Resources to Combat Osteoarthritis

Author(s): Maphibanri Maring, Balaji C., Komala M., Sisir Nandi, Latha S.* and Balaji Raghavendran H.*

Volume 27, Issue 10, 2024

Published on: 09 October, 2023

Page: [1434 - 1465] Pages: 32

DOI: 10.2174/0113862073267213231004094629

Price: $65

TIMBC 2025
Abstract

Osteoarthritis, which affects an estimated 10% of men and 18% of women over the age of 60 and is increasing in genetic prevalence and incidence, is acknowledged as the condition that degrades the quality of life for older adults in the world. There is currently no known treatment for osteoarthritis. The majority of therapeutic methods slow the progression of arthritis or treat its symptoms, making effective treatment to end the degenerative process of arthritis elusive. When non-pharmacological therapy is ineffective, various pharmacological therapies may be used to treat osteoarthritis. Pharmacological therapy, however, can have major adverse effects and be very expensive. As a result, alternative remedies have been researched. The promise for the safe and efficient management of osteoarthritis has been demonstrated by herbal remedies. Experimental research suggests that herbal extracts and compounds can reduce inflammation, inhibit catabolic processes, and promote anabolic processes that are important for treating osteoarthritis. Due to their therapeutic and innate pharmacological qualities, aromatic herbs are frequently employed as herbal remedies. Recent research has shown that aromatic plants have the potency to treat osteoarthritis. Additionally, complex mixtures of essential oils and their bioactive ingredients, which have anti-inflammatory and antioxidant properties and are obtained from aromatic plants, are frequently utilized as complementary therapies for osteoarthritis. To establish new study avenues, the advantageous anti-osteoarthritic effects of aromatic herbal medicines, including plants, essential oils, and their bioactive components, are extensively discussed.

Keywords: Osteoarthritis, aromatic plants, essential oils, bioactives, marketed formulation, anti-osteoarthritic effects.

Graphical Abstract
[1]
Jang, S.; Lee, K.; Ju, J.H. Recent updates of diagnosis, pathophysiology, and treatment on osteoarthritis of the knee. Int. J. Mol. Sci., 2021, 22(5), 2619.
[http://dx.doi.org/10.3390/ijms22052619] [PMID: 33807695]
[2]
Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and treatment of hip and knee osteoarthritis. JAMA, 2021, 325(6), 568-578.
[http://dx.doi.org/10.1001/jama.2020.22171] [PMID: 33560326]
[3]
Yunus, M.H.M.; Nordin, A.; Kamal, H. Pathophysiological perspective of osteoarthritis. Medicina (Kaunas), 2020, 56(11), 614.
[http://dx.doi.org/10.3390/medicina56110614] [PMID: 33207632]
[4]
Nasiri, A.; Mahmodi, M.A. Aromatherapy massage with lavender essential oil and the prevention of disability in ADL in patients with osteoarthritis of the knee: A randomized controlled clinical trial. Complement. Ther. Clin. Pract., 2018, 30(30), 116-121.
[http://dx.doi.org/10.1016/j.ctcp.2017.12.012] [PMID: 29389470]
[5]
Barão Paixão, V.L.; Freire de Carvalho, J. Essential oil therapy in rheumatic diseases: A systematic review. Complement. Ther. Clin. Pract., 2021, 43, 101391.
[http://dx.doi.org/10.1016/j.ctcp.2021.101391] [PMID: 33865080]
[6]
Chen, D.; Shen, J.; Zhao, W.; Wang, T.; Han, L.; Hamilton, J.L. Im, H.J. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res., 2017, 5(1), 16044.
[http://dx.doi.org/10.1038/boneres.2016.44] [PMID: 28149655]
[7]
Mao, L.; Wu, W.; Wang, M.; Guo, J.; Li, H.; Zhang, S.; Xu, J.; Zou, J. _targeted treatment for osteoarthritis: drugs and delivery system. Drug Deliv., 2021, 28(1), 1861-1876.
[http://dx.doi.org/10.1080/10717544.2021.1971798] [PMID: 34515606]
[8]
Ahmed, T.; Dey, R.; Mukherjee, J.; Samadder, A.; Nandi, S. Age Related osteoarthritis: regenerative therapy, synthetic drugs, and naturopathy to combat abnormal signal transduction. Curr. Signal Transduct. Ther., 2022, 17(3), 9-25.
[9]
Hunter, D.J.; Felson, D.T. Osteoarthritis. BMJ, 2006, 332(7542), 639-642.
[http://dx.doi.org/10.1136/bmj.332.7542.639] [PMID: 16543327]
[10]
Steinmeyer, J.; Bock, F.; Stöve, J.; Jerosch, J.; Flechtenmacher, J. Pharmacological treatment of knee osteoarthritis: Special considerations of the new German guideline. Orthop. Rev. (Pavia), 2018, 10(4), 7782.
[http://dx.doi.org/10.4081/or.2018.7782] [PMID: 30662685]
[11]
Habib, G.S. Systemic effects of intra-articular corticosteroids. Clin. Rheumatol., 2009, 28(7), 749-756.
[http://dx.doi.org/10.1007/s10067-009-1135-x] [PMID: 19252817]
[12]
Hahn, D.; Shin, S.H.; Bae, J.S. Natural antioxidant and anti-inflammatory compounds in foodstuff or medicinal herbs inducing heme oxygenase-1 expression. Antioxidants, 2020, 9(12), 1191.
[http://dx.doi.org/10.3390/antiox9121191] [PMID: 33260980]
[13]
Petrovska, B.; Cekovska, S. Extracts from the history and medical properties of garlic. Pharmacogn. Rev., 2010, 4(7), 106-110.
[http://dx.doi.org/10.4103/0973-7847.65321] [PMID: 22228949]
[14]
Batiha, G.E.S.; Beshbishy, A.M.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; El-Hack, M.E.A. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): a review. Nutrients, 2020, 12(3), 872.
[15]
Williams, F.M.K.; Skinner, J.; Spector, T.D.; Cassidy, A.; Clark, I.M.; Davidson, R.M.; MacGregor, A.J. Dietary garlic and hip osteoarthritis: evidence of a protective effect and putative mechanism of action. BMC Musculoskelet. Disord., 2010, 11(1), 280.
[http://dx.doi.org/10.1186/1471-2474-11-280] [PMID: 21143861]
[16]
Dehghani, S.; Alipoor, E.; Salimzadeh, A.; Yaseri, M.; Hosseini, M.; Feinle-Bisset, C.; Hosseinzadeh-Attar, M.J. The effect of a garlic supplement on the pro-inflammatory adipocytokines, resistin and tumor necrosis factor-alpha, and on pain severity, in overweight or obese women with knee osteoarthritis. Phytomedicine, 2018, 48, 70-75.
[http://dx.doi.org/10.1016/j.phymed.2018.04.060] [PMID: 30195882]
[17]
Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M. Frankincense (rǔ xiāng; boswellia species): from the selection of traditional applications to the novel phytotherapy for the prevention and treatment of serious diseases. J. Tradit. Complement. Med., 2013, 3(4), 221-226.
[http://dx.doi.org/10.4103/2225-4110.119723] [PMID: 24716181]
[18]
Blain, E.J.; Ali, A.Y.; Duance, V.C. Boswellia frereana (frankincense) suppresses cytokine-induced matrix metalloproteinase expression and production of pro-inflammatory molecules in articular cartilage. Phytother. Res., 2010, 24(6), 905-912.
[http://dx.doi.org/10.1002/ptr.3055] [PMID: 19943332]
[19]
Annaz, H.; Sane, Y.; Bitchagno, G.T.M.; Ben Bakrim, W.; Drissi, B.; Mahdi, I.; El Bouhssini, M.; Sobeh, M. Caper (Capparis spinosa L.):an updated review on its phytochemistry, nutritional value, traditional uses, and therapeutic potential. Front. Pharmacol., 2022, 13, 878749.
[http://dx.doi.org/10.3389/fphar.2022.878749] [PMID: 35935860]
[20]
Zhang, H.; Ma, Z. Phytochemical and pharmacological properties of Capparis spinosa as a medicinal plant. Nutrients, 2018, 10(2), 116.
[http://dx.doi.org/10.3390/nu10020116] [PMID: 29364841]
[21]
Maresca, M.; Micheli, L.; Di Cesare Mannelli, L.; Tenci, B.; Innocenti, M.; Khatib, M.; Mulinacci, N.; Ghelardini, C. Acute effect of Capparis spinosa root extracts on rat articular pain. J. Ethnopharmacol., 2016, 193, 456-465.
[http://dx.doi.org/10.1016/j.jep.2016.09.032] [PMID: 27647009]
[22]
Wang, X.Y.; Hao, J.M.; Ren, Q.R.; Li, H.Y.; Wu, J.S.; Zhu, X.H.; Chen, J.Y.; Wang, Y.N.; Zhang, L.S. Cytotoxicity and apoptosis induced by Chenopodium ambrosioides L. Essential oil in human normal liver cell line L02via the endogenous mitochondrial pathway rather than the endoplasmic reticulum stress. Int. J. Environ. Res. Public Health, 2021, 18(14), 7469.
[http://dx.doi.org/10.3390/ijerph18147469] [PMID: 34299918]
[23]
Calado, G.P.; Lopes, A.J.O.; Costa, L.M., Junior; Lima, F.C.A.; Silva, L.A.; Pereira, W.S.; Amaral, F.M.M.; Garcia, J.B.S.; Cartágenes, M.S.S.; Nascimento, F.R.F. Chenopodium ambrosioides L. Reduces synovial inflammation and pain in experimental osteoarthritis. PLoS One, 2015, 10(11), e0141886.
[http://dx.doi.org/10.1371/journal.pone.0141886] [PMID: 26524084]
[24]
Bellamkonda, R.; Karuna, R.; Sasi Bhusana Rao, B.; Haritha, K.; Manjunatha, B.; Silpa, S.; Saralakumari, D. Beneficiary effect of Commiphora mukul ethanolic extract against high fructose diet induced abnormalities in carbohydrate and lipid metabolism in wistar rats. J. Tradit. Complement. Med., 2018, 8(1), 203-211.
[http://dx.doi.org/10.1016/j.jtcme.2017.05.007] [PMID: 29322010]
[25]
Shah, R.; Gulati, V.; Palombo, E.A. Pharmacological properties of guggulsterones, the major active components of gum guggul. Phytother. Res., 2012, 26(11), 1594-1605.
[http://dx.doi.org/10.1002/ptr.4647] [PMID: 22388973]
[26]
Sotoudeh, R.; Hadjzadeh, M.A.R.; Gholamnezhad, Z.; Aghaei, A. The anti-diabetic and antioxidant effects of a combination of Commiphora mukul, Commiphora myrrha and Terminalia chebula in diabetic rats. Avicenna J. Phytomed., 2019, 9(5), 454-464.
[PMID: 31516859]
[27]
Singh, B.B.; Mishra, L.C.; Vinjamury, S.P.; Aquilina, N.; Singh, V.J.; Shepard, N. The effectiveness of Commiphora mukul for osteoarthritis of the knee: an outcomes study. Altern. Ther. Health Med., 2003, 9(3), 74-79.
[PMID: 12776478]
[28]
Micheli, L.; Di Cesare Mannelli, L.; Mattoli, L.; Tamimi, S.; Flamini, E.; Garetto, S.; Lucci, J.; Giovagnoni, E.; Cinci, L.; D’Ambrosio, M.; Luceri, C.; Ghelardini, C. Intra-articular route for the system of molecules 14G1862 from Centella asiatica: pain relieving and protective effects in a rat model of osteoarthritis. Nutrients, 2020, 12(6), 1618.
[http://dx.doi.org/10.3390/nu12061618] [PMID: 32486519]
[29]
Sun, B.; Wu, L.; Wu, Y.; Zhang, C.; Qin, L.; Hayashi, M.; Kudo, M.; Gao, M.; Liu, T. Therapeutic potential of Centella asiatica and its triterpenes: a review. Front. Pharmacol., 2020, 11, 568032.
[http://dx.doi.org/10.3389/fphar.2020.568032] [PMID: 33013406]
[30]
Wong, J.H.; Barron, A.M. Abdullah, JM Mitoprotective effects of Centella asiatica (L.) Urb.: Anti-inflammatory and neuroprotective opportunities in neurodegenerative disease. Front. Pharmacol., 2021, 12, 687935.
[31]
Rotpenpian, N.; Arayapisit, T.; Roumwong, A.; Pakaprot, N.; Tantisira, M.; Wanasuntronwong, A. A standardized extract of Centella asiatica (ECa 233) prevents temporomandibular joint osteoarthritis by modulating the expression of local inflammatory mediators in mice. J. Appl. Oral Sci., 2021, 29, e20210329.
[http://dx.doi.org/10.1590/1678-7757-2021-0329] [PMID: 34705985]
[32]
Syamsunarno, M.R.A.A.; Safitri, R.; Kamisah, Y. Protective effects of Caesalpinia sappan Linn. and its bioactive compounds on cardiovascular organs. Front. Pharmacol., 2021, 12, 725745.
[http://dx.doi.org/10.3389/fphar.2021.725745] [PMID: 34603037]
[33]
Wu, S.Q.; Otero, M.; Unger, F.M.; Goldring, M.B.; Phrutivorapongkul, A.; Chiari, C.; Kolb, A.; Viernstein, H.; Toegel, S. Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages. J. Ethnopharmacol., 2011, 138(2), 364-372.
[http://dx.doi.org/10.1016/j.jep.2011.09.011] [PMID: 21963554]
[34]
Toegel, S.; Wu, S.Q.; Otero, M.; Goldring, M.B.; Leelapornpisid, P.; Chiari, C.; Kolb, A.; Unger, F.M.; Windhager, R.; Viernstein, H. Caesalpinia sappan extract inhibits IL1β-mediated overexpression of matrix metalloproteinases in human chondrocytes. Genes Nutr., 2012, 7(2), 307-318.
[http://dx.doi.org/10.1007/s12263-011-0244-8] [PMID: 21850498]
[35]
Abdel-Lateef, E.; Mahmoud, F.; Hammam, O.; El-Ahwany, E.; El-Wakil, E.; Kandil, S.; Abu Taleb, H.; El-Sayed, M.; Hassenein, H. Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2). Acta Pharm., 2016, 66(3), 387-398.
[http://dx.doi.org/10.1515/acph-2016-0028] [PMID: 27383887]
[36]
Wang, Z.; Jones, G.; Winzenberg, T.; Cai, G.; Laslett, L.L.; Aitken, D.; Hopper, I.; Singh, A.; Jones, R.; Fripp, J.; Ding, C.; Antony, B. Effectiveness of Curcuma longa extract for the treatment of symptoms and effusion-synovitis of knee osteoarthritis. Ann. Intern. Med., 2020, 173(11), 861-869.
[http://dx.doi.org/10.7326/M20-0990] [PMID: 32926799]
[37]
Henrotin, Y.; Malaise, M.; Wittoek, R.; de Vlam, K.; Brasseur, J.P.; Luyten, F.P.; Jiangang, Q.; Van den Berghe, M.; Uhoda, R.; Bentin, J.; De Vroey, T.; Erpicum, L.; Donneau, A.F.; Dierckxsens, Y. Bio-optimized Curcuma longa extract is efficient on knee osteoarthritis pain: a double-blind multicenter randomized placebo controlled three-arm study. Arthritis Res. Ther., 2019, 21(1), 179.
[http://dx.doi.org/10.1186/s13075-019-1960-5] [PMID: 31351488]
[38]
Gxaba, N.; Manganyi, M.C. The Fight against Infection and Pain: Devil’s Claw (Harpagophytum procumbens) a rich source of anti-inflammatory activity: 2011–2022. Molecules, 2022, 27(11), 3637.
[http://dx.doi.org/10.3390/molecules27113637] [PMID: 35684573]
[39]
Mariano, A.; Di Sotto, A.; Leopizzi, M.; Garzoli, S.; Di Maio, V.; Gullì, M.; Dalla Vedova, P.; Ammendola, S.; Scotto d’Abusco, A. Antiarthritic effects of a root extract from Harpagophytum procumbens DC: novel insights into the molecular mechanisms and possible bioactive phytochemicals. Nutrients, 2020, 12(9), 2545.
[http://dx.doi.org/10.3390/nu12092545] [PMID: 32842461]
[40]
Menghini, L.; Recinella, L.; Leone, S.; Chiavaroli, A.; Cicala, C.; Brunetti, L. Vladimir-Knežević S.; Orlando, G.; Ferrante, C. Devil’s claw (Harpagophytum procumbens) and chronic inflammatory diseases: A concise overview on preclinical and clinical data. Phytother. Res., 2019, 33(9), 2152-2162.
[http://dx.doi.org/10.1002/ptr.6395] [PMID: 31273865]
[41]
Mariano, A.; Bigioni, I.; Mattioli, R.; Di Sotto, A.; Leopizzi, M.; Garzoli, S.; Mariani, P.F.; Dalla Vedova, P.; Ammendola, S.; Scotto d’Abusco, A. Harpagophytum procumbens root extract mediates anti-inflammatory effects in osteoarthritis synoviocytes through CB2 activation. Pharmaceuticals (Basel), 2022, 15(4), 457.
[http://dx.doi.org/10.3390/ph15040457] [PMID: 35455454]
[42]
Paparella, A.; Nawade, B.; Shaltiel-Harpaz, L.; Ibdah, M. A review of the botany, volatile composition, biochemical and molecular aspects, and traditional uses of Laurus nobilis. Plants, 2022, 11(9), 1209.
[http://dx.doi.org/10.3390/plants11091209] [PMID: 35567209]
[43]
Maghsoudi, H.; Khosrogardi, M.; Akbarnejad Eshkalak, A.; Tatar Mamaghani, Y.; Bakhshi Khanaki, G.; Yazdanpanah, E. The effect of the alcoholic essence of Laurus nobilis L. on pro-inflammatory cytokine gene expression in synoviocytes and macrophage/monocyte. Biomed. Sci., 2022, 8(1), 10-19.
[http://dx.doi.org/10.11648/j.bs.20220801.13]
[44]
Zhang, L.; Wei, W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol. Ther., 2020, 207, 107452.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107452] [PMID: 31836457]
[45]
Zhou, Y.X.; Gong, X.H.; Zhang, H.; Peng, C. A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects. Biomed. Pharmacother., 2020, 130, 110505.
[http://dx.doi.org/10.1016/j.biopha.2020.110505] [PMID: 32682112]
[46]
Liang, S.B.; Cao, H.J.; Kong, L.Y.; Wei, J.L.; Robinson, N.; Yang, S.H.; Zhu, S.J.; Li, Y.Q.; Fei, Y.T.; Han, M.; Liu, J.P. Systematic review and meta-analysis of Chinese herbal formula Tongxie Yaofang for diarrhea-predominant irritable bowel syndrome: Evidence for clinical practice and future trials. Front. Pharmacol., 2022, 13, 904657.
[http://dx.doi.org/10.3389/fphar.2022.904657] [PMID: 36091782]
[47]
Lee, D.; Kim, S.J.; Kim, H.A. 12 week, randomized, double-blind, placebo-controlled clinical trial for the evaluation of the efficacy and safety of HT083 on mild osteoarthritis. Medicine (Baltimore), 2020, 99(28), e20907.
[http://dx.doi.org/10.1097/MD.0000000000020907] [PMID: 32664084]
[48]
Liu, H.; Lu, X.; Hu, Y.; Fan, X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol. Res., 2020, 161, 105263.
[http://dx.doi.org/10.1016/j.phrs.2020.105263] [PMID: 33127555]
[49]
Xie, W.; Meng, X.; Zhai, Y.; Zhou, P.; Ye, T.; Wang, Z.; Sun, G.; Sun, X. Panax notoginseng saponins: a review of its mechanisms of antidepressant or anxiolytic effects and network analysis on phytochemistry and pharmacology. Molecules, 2018, 23(4), 940.
[http://dx.doi.org/10.3390/molecules23040940] [PMID: 29673237]
[50]
Zhang, Y.; Cai, W.; Han, G.; Zhou, S.; Li, J.; Chen, M.; Li, H. Panax notoginseng saponins prevent senescence and inhibit apoptosis by regulating the PI3K AKT mTOR pathway in osteoarthritic chondrocytes. Int. J. Mol. Med., 2020, 45(4), 1225-1236.
[PMID: 32124939]
[51]
Ju, L.; Hu, P.; Chen, P.; Xue, X.; Li, Z.; He, F.; Qiu, Z.; Cheng, J.; Huang, F. Huoxuezhitong capsule ameliorates MIA-induced osteoarthritis of rats through suppressing PI3K/Akt/NF-κB pathway. Biomed. Pharmacother., 2020, 129, 110471.
[http://dx.doi.org/10.1016/j.biopha.2020.110471] [PMID: 32768958]
[52]
Jantan, I.; Haque, M.A.; Ilangkovan, M.; Arshad, L. An insight into the modulatory effects and mechanisms of action of Phyllanthus species and their bioactive metabolites on the immune system. Front. Pharmacol., 2019, 10, 878.
[http://dx.doi.org/10.3389/fphar.2019.00878] [PMID: 31440162]
[53]
Qi, W.; Hua, L.; Gao, K. Chemical constituents of the plants from the genus Phyllanthus. Chem. Biodivers., 2014, 11(3), 364-395.
[http://dx.doi.org/10.1002/cbdv.201200244] [PMID: 24634068]
[54]
Pinkaew, D.; Kiattisin, K.; Wonglangka, K.; Awoot, P. Phonophoresis of Phyllanthus amarus nanoparticle gel improves functional capacity in individuals with knee osteoarthritis: A randomized controlled trial. J. Bodyw. Mov. Ther., 2020, 24(1), 15-18.
[http://dx.doi.org/10.1016/j.jbmt.2019.04.013] [PMID: 31987536]
[55]
Buddhachat, K.; Chomdej, S.; Pradit, W.; Nganvongpanit, K.; Ongchai, S. In vitro chondroprotective potential of extracts obtained from various Phyllantus Species. Planta Med., 2017, 83(1-02), 87-96.
[PMID: 27340791]
[56]
Perera, P.; Perera, M.; Kumarasinghe, N. Effect of Sri Lankan traditional medicine and Ayurveda on Sandhigata Vata (osteoarthritis of knee joint). Ayu, 2014, 35(4), 411-415.
[http://dx.doi.org/10.4103/0974-8520.159007] [PMID: 26195904]
[57]
Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.K.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E.; Valussi, M.; Tumer, T.B.; Monzote Fidalgo, L.; Martorell, M.; Setzer, W.N. Piper species: a comprehensive review on their phytochemistry, biological activities and applications. Molecules, 2019, 24(7), 1364.
[http://dx.doi.org/10.3390/molecules24071364] [PMID: 30959974]
[58]
Nirmal, P.S.; Jagtap, S.D.; Devarshi, P.P.; Narkhede, A.N.; Koppikar, S.J.; Ingale, D.R. Cartilage protective effect of Sida cordifolia L. and Piper longum L. is through modulation of MMPs and TIMP. Int. J. Adv. Res. (Indore), 2015, 3(11), 480-488.
[59]
Igual, M.; García-Herrera, P.; Cámara, R.M.; Martínez-Monzó, J.; García-Segovia, P.; Cámara, M. Bioactive compounds in rosehip (Rosa canina) powder with encapsulating agents. Molecules, 2022, 27(15), 4737.
[http://dx.doi.org/10.3390/molecules27154737] [PMID: 35897912]
[60]
Ayati, Z.; Amiri, M.S.; Ramezani, M.; Delshad, E.; Sahebkar, A.; Emami, S.A. Phytochemistry, traditional uses and pharmacological profile of rose hip: a review. Curr. Pharm. Des., 2019, 24(35), 4101-4124.
[http://dx.doi.org/10.2174/1381612824666181010151849] [PMID: 30317989]
[61]
Schwager, J.; Richard, N.; Schoop, R.; Wolfram, S. A novel rose hip preparation with enhanced anti-inflammatory and chondroprotective effects. Mediators Inflamm., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/105710] [PMID: 25371599]
[62]
Jia, Q.; Zhu, R.; Tian, Y.; Chen, B.; Li, R.; Li, L.; Wang, L.; Che, Y.; Zhao, D.; Mo, F.; Gao, S.; Zhang, D. Salvia miltiorrhiza in diabetes: A review of its pharmacology, phytochemistry, and safety. Phytomedicine, 2019, 58, 152871.
[http://dx.doi.org/10.1016/j.phymed.2019.152871] [PMID: 30851580]
[63]
Jung, I.; Kim, H.; Moon, S.; Lee, H.; Kim, B. Overview of Salvia miltiorrhiza as a potential therapeutic agent for various diseases: an update on efficacy and mechanisms of action. Antioxidants, 2020, 9(9), 857.
[http://dx.doi.org/10.3390/antiox9090857] [PMID: 32933217]
[64]
Xu, X.; Lv, H.; Li, X.; Su, H.; Zhang, X.; Yang, J. Danshen attenuates cartilage injuries in osteoarthritis in vivo and in vitro by activating JAK2/STAT3 and AKT pathways. Exp. Anim., 2018, 67(2), 127-137.
[http://dx.doi.org/10.1538/expanim.17-0062] [PMID: 29093428]
[65]
Xu, X.; Lv, H.; Li, X.; Su, H.; Zhang, X.; Yang, J. Danshen attenuates osteoarthritis-related cartilage degeneration through inhibition of NF-κB signaling pathway in vivo and in vitro. Biochem. Cell Biol., 2017, 95(6), 644-651.
[http://dx.doi.org/10.1139/bcb-2017-0025] [PMID: 28662337]
[66]
Mandlik Ingawale, D.S.; Namdeo, A.G. Pharmacological evaluation of Ashwagandha highlighting its healthcare claims, safety, and toxicity aspects. J. Diet. Suppl., 2021, 18(2), 183-226.
[http://dx.doi.org/10.1080/19390211.2020.1741484] [PMID: 32242751]
[67]
White, P.T.; Subramanian, C.; Motiwala, H.F.; Cohen, M.S. Natural withanolides in the treatment of chronic diseases. Adv. Exp. Med. Biol., 2016, 928, 329-373.
[http://dx.doi.org/10.1007/978-3-319-41334-1_14] [PMID: 27671823]
[68]
Ramakanth, G.S.H.; Uday Kumar, C.; Kishan, P.V.; Usharani, P. A randomized, double blind placebo controlled study of efficacy and tolerability of Withaina somnifera extracts in knee joint pain. J. Ayurveda Integr. Med., 2016, 7(3), 151-157.
[http://dx.doi.org/10.1016/j.jaim.2016.05.003] [PMID: 27647541]
[69]
Ganesan, K.; Sehgal, P.K.; Mandal, A.B.; Sayeed, S. Protective effect of Withania somnifera and Cardiospermum halicacabum extracts against collagenolytic degradation of collagen. Appl. Biochem. Biotechnol., 2011, 165(3-4), 1075-1091.
[http://dx.doi.org/10.1007/s12010-011-9326-8] [PMID: 21789568]
[70]
Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H.B. Bioactive compounds and bioactivities of ginger (Zingiber officinale roscoe). Foods, 2019, 8(6), 185.
[http://dx.doi.org/10.3390/foods8060185] [PMID: 31151279]
[71]
Aborehab, N.M.; El Bishbishy, M.H.; Refaiy, A.; Waly, N.E. A putative Chondroprotective role for IL-1β and MPO in herbal treatment of experimental osteoarthritis. BMC Complement. Altern. Med., 2017, 17(1), 495.
[http://dx.doi.org/10.1186/s12906-017-2002-y] [PMID: 28049463]
[72]
Mozaffari-Khosravi, H.; Naderi, Z.; Dehghan, A.; Nadjarzadeh, A.; Fallah Huseini, H. Effect of ginger supplementation on proinflammatory cytokines in older patients with osteoarthritis: outcomes of a randomized controlled clinical trial. J. Nutr. Gerontol. Geriatr., 2016, 35(3), 209-218.
[http://dx.doi.org/10.1080/21551197.2016.1206762] [PMID: 27559855]
[73]
Kooshki, A.; Forouzan, R.; Rakhshani, M.H.; Mohammadi, M. Effect of topical application of Nigella Sativa Oil and oral acetaminophen on pain in elderly with knee osteoarthritis: a crossover clinical trial. Electron. Physician, 2016, 8(11), 3193-3197.
[http://dx.doi.org/10.19082/3193] [PMID: 28344755]
[74]
Tuna, H.I.; Babadag, B.; Ozkaraman, A.; Balci Alparslan, G. Investigation of the effect of black cumin oil on pain in osteoarthritis geriatric individuals. Complement. Ther. Clin. Pract., 2018, 31, 290-294.
[http://dx.doi.org/10.1016/j.ctcp.2018.03.013] [PMID: 29705470]
[75]
Turhan, Y. Arıcan, M.; Karaduman, Z.O.; Turhal, O.; Gamsızkan, M.; Aydın, D.; Kılıç, B.; Özkan, K. Chondroprotective effect of Nigella sativa oil in the early stages of osteoarthritis: an experimental study in rabbits. J. Musculoskelet. Neuronal Interact., 2019, 19(3), 362-369.
[PMID: 31475944]
[76]
Huseini, H.F.; Mohtashami, R.; Sadeghzadeh, E.; Shadmanfar, S.; Hashem-Dabaghian, F.; Kianbakht, S. Efficacy and safety of oral Nigella sativa oil for symptomatic treatment of knee osteoarthritis: A double-blind, randomized, placebo-controlled clinical trial. Complement. Ther. Clin. Pract., 2022, 49, 101666.
[http://dx.doi.org/10.1016/j.ctcp.2022.101666] [PMID: 36150238]
[77]
Diefenbach, A.L.; Muniz, F.W.M.G.; Oballe, H.J.R.; Rösing, C.K. Antimicrobial activity of copaiba oil (Copaifera ssp.) on oral pathogens: Systematic review. Phytother. Res., 2018, 32(4), 586-596.
[http://dx.doi.org/10.1002/ptr.5992] [PMID: 29193389]
[78]
Bahr, T.; Allred, K.; Martinez, D.; Rodriguez, D.; Winterton, P. Effects of a massage-like essential oil application procedure using Copaiba and Deep Blue oils in individuals with hand arthritis. Complement. Ther. Clin. Pract., 2018, 33, 170-176.
[http://dx.doi.org/10.1016/j.ctcp.2018.10.004] [PMID: 30396617]
[79]
Xavier-Junior, F.H.; Maciuk, A.; Rochelle do Vale Morais, A.; Alencar, E.N.; Garcia, V.L.; Tabosa do Egito, E.S.; Vauthier, C. Development of a gas chromatography method for the analysis of copaiba oil. J. Chromatogr. Sci., 2017, 55(10), 969-978.
[http://dx.doi.org/10.1093/chromsci/bmx065] [PMID: 28977501]
[80]
Cavaleiro, C.; Gonçalves, M.J.; Serra, D.; Santoro, G.; Tomi, F.; Bighelli, A.; Salgueiro, L.; Casanova, J. Composition of a volatile extract of Eryngium duriaei subsp. juresianum (M. Laínz) M. Laínz, signalised by the antifungal activity. J. Pharm. Biomed. Anal., 2011, 54(3), 619-622.
[http://dx.doi.org/10.1016/j.jpba.2010.09.039] [PMID: 21036502]
[81]
Tavares, A.C.; Loureiro, J.; Cavaleiro, C.; Salgueiro, L.; Canhoto, J.M.; Paiva, J. Characterization and distinction of two subspecies of Eryngium duriaei J. Gay ex Boiss., an Iberian endemic Apiaceae, using flow cytometry and essential oils composition. Plant Syst. Evol., 2013, 299(3), 611-618.
[http://dx.doi.org/10.1007/s00606-012-0747-9]
[82]
Rufino, A.T.; Cavaleiro, C.; Judas, F.; Salgueiro, L.; Lopes, M.C.; Mendes, A.F. The essential oil of Eryngium duriaei subsp. juresianum inhibits IL-1β induced NF-kB and MAPK activation in human chondrocytes. Osteoarthritis Cartilage, 2012, 20, S290.
[http://dx.doi.org/10.1016/j.joca.2012.02.502]
[83]
Zahra Emami-Razavi, S.; Khamessi, M.; Forough, B.; Karimi, M.; Mansoori, K.; Sajadi, S. Effects of galbanum oil on patients with knee osteoarthritis: a randomized controlled clinical. Trad. Integr. Med., 2016, 1(3), 101-107.
[84]
Sonigra, P.; Meena, M. Metabolic profile, bioactivities, and variations in the chemical constituents of essential oils of the Ferula genus (Apiaceae). Front. Pharmacol., 2021, 11, 608649.
[http://dx.doi.org/10.3389/fphar.2020.608649] [PMID: 33776754]
[85]
Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.G.; Hu, F.; Wei, Z.J. Antibacterial activity and mechanism of ginger essential oil against Escherichia coli and Staphylococcus aureus. Molecules, 2020, 25(17), 3955.
[http://dx.doi.org/10.3390/molecules25173955] [PMID: 32872604]
[86]
Jeena, K.; Liju, V.B.; Kuttan, R. Antioxidant, anti-inflammatory and antinociceptive activities of essential oil from ginger. Indian J. Physiol. Pharmacol., 2013, 57(1), 51-62.
[PMID: 24020099]
[87]
Tosun, B.; Unal, N.; Yigit, D.; Can, N.; Aslan, O.; Tunay, S. Effects of self-knee massage with ginger oil in patients with osteoarthritis: an experimental study. Res. Theory Nurs. Pract., 2017, 31(4), 379-392.
[http://dx.doi.org/10.1891/1541-6577.31.4.379] [PMID: 29137696]
[88]
de Groot, A.; Schmidt, E. Essential Oils, Part V: peppermint oil, lavender oil, and lemongrass oil. Dermatitis, 2016, 27(6), 325-332.
[http://dx.doi.org/10.1097/DER.0000000000000218] [PMID: 27775966]
[89]
Białoń M.; Krzyśko-Łupicka, T.; Nowakowska-Bogdan, E.; Wieczorek, P.P. Chemical composition of two different lavender essential oils and their effect on facial skin microbiota. Molecules, 2019, 24(18), 3270.
[http://dx.doi.org/10.3390/molecules24183270] [PMID: 31500359]
[90]
Silva, G.L.D.; Luft, C.; Lunardelli, A.; Amaral, R.H.; Melo, D.A.D.S.; Donadio, M.F.; Nunes, F.B.; Azambuja, M.S.D.; Santana, J.C.; Moraes, C.M.B.; Mello, R.O.; Cassel, E.; Pereira, M.A.D.A.; Oliveira, J.R.D. Antioxidant, analgesic and anti-inflammatory effects of lavender essential oil. An. Acad. Bras. Cienc., 2015, 87(2)(Suppl.), 1397-1408.
[http://dx.doi.org/10.1590/0001-3765201520150056] [PMID: 26247152]
[91]
Nasiri, A.; Mahmodi, M.A.; Nobakht, Z. Effect of aromatherapy massage with lavender essential oil on pain in patients with osteoarthritis of the knee: A randomized controlled clinical trial. Complement. Ther. Clin. Pract., 2016, 25, 75-80.
[http://dx.doi.org/10.1016/j.ctcp.2016.08.002] [PMID: 27863613]
[92]
Rodríguez-Chávez, J.L.; Egas, V.; Linares, E.; Bye, R.; Hernández, T.; Espinosa-García, F.J.; Delgado, G. Mexican Arnica (Heterotheca inuloides Cass. Asteraceae: Astereae): Ethnomedical uses, chemical constituents and biological properties. J. Ethnopharmacol., 2017, 195, 39-63.
[http://dx.doi.org/10.1016/j.jep.2016.11.021] [PMID: 27847336]
[93]
Martin, D.F-S.; Perea-Flores, M.J.; Morales-López, J.; Centeno-Alvarez, M.M.; Pérez-Ishiwara, G.; Pérez-Hernández, N.; Pérez-Hernández, E. Effect of Heterotheca inuloides essential oil on rat cytoskeleton articular chondrocytes. Nat. Prod. Res., 2013, 27(24), 2347-2350.
[http://dx.doi.org/10.1080/14786419.2013.828289] [PMID: 24088175]
[94]
Shetty, S.B.; Mahin-Syed-Ismail, P.; Varghese, S.; Thomas-George, B. Kandathil- Thajuraj, P.; Baby, D.; Haleem, S.; Sreedhar, S.; Devang-Divakar, D. Antimicrobial effects of Citrus sinensis peel extracts against dental caries bacteria: An in vitro study. J. Clin. Exp. Dent., 2016, 8(1), 0.
[http://dx.doi.org/10.4317/jced.52493] [PMID: 26855710]
[95]
Mannucci, C.; Calapai, F.; Cardia, L.; Inferrera, G.; D’Arena, G.; Di Pietro, M.; Navarra, M.; Gangemi, S.; Ventura Spagnolo, E.; Calapai, G. Clinical pharmacology of Citrus aurantium and Citrus sinensis for the treatment of anxiety. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-18.
[http://dx.doi.org/10.1155/2018/3624094] [PMID: 30622597]
[96]
Torres-Alvarez, C.; Castillo, S.; Sánchez-García, E.; Aguilera González, C.; Galindo-Rodríguez, S.A.; Gabaldón-Hernández, J.A.; Báez-González, J.G. Inclusion complexes of concentrated orange oils and β-cyclodextrin: physicochemical and biological characterizations. Molecules, 2020, 25(21), 5109.
[http://dx.doi.org/10.3390/molecules25215109] [PMID: 33153206]
[97]
Hekmatpou, D.; Pourandish, Y.; Farahani, P.; Parvizrad, R. The effect of aromatherapy with the essential oil of orange on pain and vital signs of patients with fractured limbs admitted to the emergency ward: A randomized clinical trial. Indian J. Palliat. Care, 2017, 23(4), 431-436.
[http://dx.doi.org/10.4103/IJPC.IJPC_37_17] [PMID: 29123351]
[98]
Kamatou, G.P.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry, 2013, 96, 15-25.
[http://dx.doi.org/10.1016/j.phytochem.2013.08.005] [PMID: 24054028]
[99]
Mohammadifar, M.; Aarabi, M.H.; Aghighi, F.; Kazemi, M.; Vakili, Z.; Memarzadeh, M.R.; Talaei, S.A. Anti-osteoarthritis potential of peppermint and rosemary essential oils in a nanoemulsion form: behavioral, biochemical, and histopathological evidence. BMC Compl. Med. Ther., 2021, 21(1), 57.
[http://dx.doi.org/10.1186/s12906-021-03236-y] [PMID: 33563269]
[100]
Ghasemzadeh Rahbardar, M.; Hosseinzadeh, H. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iran. J. Basic Med. Sci., 2020, 23(9), 1100-1112.
[PMID: 32963731]
[101]
Rašković A.; Milanović I.; Pavlović N.; Ćebović T.; Vukmirović S.; Mikov, M. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complement. Altern. Med., 2014, 14(1), 225.
[http://dx.doi.org/10.1186/1472-6882-14-225] [PMID: 25002023]
[102]
Belkhodja, H.; Meddah, B. Meddah TirTouil, A.; Slimani, K.; Tou, A. Radiographic and histopathologic analysis on osteoarthritis rat model treated with essential oils of Rosmarinus officinalis and Populus Alba. Ulum-i Daruyi, 2017, 23(1), 12-17.
[http://dx.doi.org/10.15171/PS.2017.03]
[103]
Pehlivan, S.; Karadakovan, A. Effects of aromatherapy massage on pain, functional state, and quality of life in an elderly individual with knee osteoarthritis. Jpn. J. Nurs. Sci., 2019, 16(4), 450-458.
[http://dx.doi.org/10.1111/jjns.12254] [PMID: 31144450]
[104]
Qiu, D.; Bai, S.; Ma, J.; Zhang, L.; Shao, F.; Zhang, K.; Yang, Y.; Sun, T.; Huang, J.; Zhou, Y.; Galbraith, D.W.; Wang, Z.; Sun, G. The genome of Populus alba x Populus tremula var. glandulosa clone 84K. DNA Res., 2019, 26(5), 423-431.
[http://dx.doi.org/10.1093/dnares/dsz020] [PMID: 31580414]
[105]
Pobłocka-Olech, L.; Głód, D.; Jesionek, A.; Łuczkiewicz, M.; Krauze-Baranowska, M. Studies on the polyphenolic composition and the antioxidant properties of the leaves of poplar (populus spp.) various species and hybrids. Chem. Biodivers., 2021, 18(7), e2100227.
[http://dx.doi.org/10.1002/cbdv.202100227] [PMID: 34138528]
[106]
Tawfeek, N.; Sobeh, M.; Hamdan, D.I.; Farrag, N.; Roxo, M.; El-Shazly, A.M.; Wink, M. Phenolic compounds from Populus alba L. and Salix subserrataWilld. (Salicaceae) counteract oxidative stress in Caenorhabditis elegans. Molecules, 2019, 24(10), 1999.
[http://dx.doi.org/10.3390/molecules24101999] [PMID: 31137712]
[107]
Allenspach, M. Steuer, C. α-Pinene: A never-ending story. Phytochemistry, 2021, 190, 112857.
[http://dx.doi.org/10.1016/j.phytochem.2021.112857] [PMID: 34365295]
[108]
Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; L.D., Jayaweera S.; A Dias, D.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; Cho, W.C.; Sharifi-Rad, J. Therapeutic potential of α-and β-pinene: a miracle gift of nature. Biomolecules, 2019, 9(11), 738.
[http://dx.doi.org/10.3390/biom9110738] [PMID: 31739596]
[109]
Rufino, A.T.; Ribeiro, M.; Judas, F.; Salgueiro, L.; Lopes, M.C.; Cavaleiro, C.; Mendes, A.F. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: structural and enantiomeric selectivity. J. Nat. Prod., 2014, 77(2), 264-269.
[http://dx.doi.org/10.1021/np400828x] [PMID: 24455984]
[110]
Fidyt, K.; Fiedorowicz, A. Strządała, L.; Szumny, A. β -caryophyllene and β -caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med., 2016, 5(10), 3007-3017.
[http://dx.doi.org/10.1002/cam4.816] [PMID: 27696789]
[111]
Scandiffio, R.; Geddo, F.; Cottone, E.; Querio, G.; Antoniotti, S.; Gallo, M.P.; Maffei, M.E.; Bovolin, P. Protective effects of (E)-β-caryophyllene (BCP) in chronic inflammation. Nutrients, 2020, 12(11), 3273.
[http://dx.doi.org/10.3390/nu12113273] [PMID: 33114564]
[112]
Mlost, J.; Kac, P. Kędziora, M.; Starowicz, K. Antinociceptive and chondroprotective effects of prolonged β-caryophyllene treatment in the animal model of osteoarthritis: Focus on tolerance development. Neuropharmacology, 2022, 204, 108908.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108908] [PMID: 34856202]
[113]
Mattiuzzo, E.; Faggian, A.; Venerando, R.; Benetti, A.; Belluzzi, E.; Abatangelo, G.; Ruggieri, P.; Brun, P. In vitro effects of low doses of β-caryophyllene, ascorbic acid and d-glucosamine on human chondrocyte viability and inflammation. Pharmaceuticals (Basel), 2021, 14(3), 286.
[http://dx.doi.org/10.3390/ph14030286] [PMID: 33806983]
[114]
Imran, M.; Aslam, M.; Alsagaby, S.A.; Saeed, F.; Ahmad, I.; Afzaal, M.; Arshad, M.U.; Abdelgawad, M.A.; El-Ghorab, A.H.; Khames, A.; Shariati, M.A.; Ahmad, A.; Hussain, M.; Imran, A.; Islam, S. Therapeutic application of carvacrol: A comprehensive review. Food Sci. Nutr., 2022, 10(11), 3544-3561.
[http://dx.doi.org/10.1002/fsn3.2994] [PMID: 36348778]
[115]
Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; Sharifi-Rad, J. Carvacrol and human health: A comprehensive review. Phytother. Res., 2018, 32(9), 1675-1687.
[http://dx.doi.org/10.1002/ptr.6103] [PMID: 29744941]
[116]
Xiao, Y.; Li, B.; Liu, J.; Ma, X. Carvacrol ameliorates inflammatory response in interleukin 1β-stimulated human chondrocytes. Mol. Med. Rep., 2018, 17(3), 3987-3992.
[PMID: 29257341]
[117]
Usai, F.; Di Sotto, A. Trans-cinnamaldehyde as a novel candidate to overcome bacterial resistance: an overview of in vitro studies. Antibiotics (Basel), 2023, 12(2), 254.
[http://dx.doi.org/10.3390/antibiotics12020254] [PMID: 36830165]
[118]
Zhu, R.; Liu, H.; Liu, C.; Wang, L.; Ma, R.; Chen, B.; Li, L.; Niu, J.; Fu, M.; Zhang, D.; Gao, S. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol. Res., 2017, 122, 78-89.
[http://dx.doi.org/10.1016/j.phrs.2017.05.019] [PMID: 28559210]
[119]
Xia, T.; Gao, R.; Zhou, G.; Liu, J.; Li, J.; Shen, J. Trans-cinnamaldehyde inhibits IL-1β-stimulated inflammation in chondrocytes by suppressing NF-κB and p38-JNK pathways and exerts chondrocyte protective effects in a rat model of osteoarthritis. BioMed Res. Int., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/4039472] [PMID: 31205941]
[120]
Atabaki, M.; Shariati-Sarabi, Z.; Tavakkol-Afshari, J.; Mohammadi, M. Significant immunomodulatory properties of curcumin in patients with osteoarthritis; a successful clinical trial in Iran. Int. Immunopharmacol., 2020, 85, 106607.
[http://dx.doi.org/10.1016/j.intimp.2020.106607] [PMID: 32540725]
[121]
Jamali, N.; Adib-Hajbaghery, M.; Soleimani, A. The effect of curcumin ointment on knee pain in older adults with osteoarthritis: a randomized placebo trial. BMC Compl. Med. Ther., 2020, 20(1), 305.
[http://dx.doi.org/10.1186/s12906-020-03105-0] [PMID: 33032585]
[122]
Velusami, C.C.; Bethapudi, B.; Murugan, S.; Illuri, R.; Mundkinajeddu, D. Bioactive turmerosaccharides from Curcuma longa Extract (NR-INF-02): Potential ameliorating effect on osteoarthritis pain. Pharmacogn. Mag., 2017, 13(51)(Suppl. 3), 623.
[http://dx.doi.org/10.4103/pm.pm_465_16] [PMID: 29142423]
[123]
Yuan, T.; Cai, D.; Hu, B.; Zhu, Y.; Qin, J. Therapeutic effects of curcumin on osteoarthritis and its protection of chondrocytes through the WNT/β-catenin signaling pathway. Altern. Ther. Health Med., 2022, 28(5), 28-37.
[PMID: 35452417]
[124]
Mitra, S.; Das, R.; Emran, T.B.; Labib, R.K. Noor-E-Tabassum; Islam, F.; Sharma, R.; Ahmad, I.; Nainu, F.; Chidambaram, K.; Alhumaydhi, F.A.; Chandran, D.; Capasso, R.; Wilairatana, P. Diallyl disulfide: a bioactive garlic compound with anticancer potential. Front. Pharmacol., 2022, 13, 943967.
[http://dx.doi.org/10.3389/fphar.2022.943967] [PMID: 36071845]
[125]
Song, X.; Yue, Z.; Nie, L.; Zhao, P.; Zhu, K.; Wang, Q. Biological functions of diallyl disulfide, a garlic-derived natural organic sulfur compound. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-13.
[http://dx.doi.org/10.1155/2021/5103626] [PMID: 34745287]
[126]
Yang, J.; Tang, R.; Yi, J.; Chen, Y.; Li, X.; Yu, T.; Fei, J. Diallyl disulfide alleviates inflammatory osteolysis by suppressing osteoclastogenesis via NF-κB-NFATc1 signal pathway. FASEB J., 2019, 33(6), 7261-7273.
[http://dx.doi.org/10.1096/fj.201802172R] [PMID: 30857415]
[127]
Mikaili, P.; Mojaverrostami, S.; Moloudizargari, M.; Aghajanshakeri, S. Pharmacological and therapeutic effects of Mentha Longifolia L. and its main constituent, menthol. Anc. Sci. Life, 2013, 33(2), 131-138.
[PMID: 25284948]
[128]
Topp, R.; Brosky, J.A., Jr; Pieschel, D. The effect of either topical menthol or a placebo on functioning and knee pain among patients with knee OA. J. Geriatr. Phys. Ther., 2013, 36(2), 92-99.
[http://dx.doi.org/10.1519/JPT.0b013e318268dde1] [PMID: 22976810]
[129]
Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene-what are the potential health benefits of this flavouring and aroma agent? Front. Nutr., 2021, 8, 699666.
[http://dx.doi.org/10.3389/fnut.2021.699666] [PMID: 34350208]
[130]
Rufino, A.T.; Ribeiro, M.; Sousa, C.; Judas, F.; Salgueiro, L.; Cavaleiro, C.; Mendes, A.F. Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. Eur. J. Pharmacol., 2015, 750, 141-150.
[http://dx.doi.org/10.1016/j.ejphar.2015.01.018] [PMID: 25622554]
[131]
Zhou, J.; Xie, X.; Tang, H.; Peng, C.; Peng, F. The bioactivities of sclareol: A mini review. Front. Pharmacol., 2022, 13, 1014105.
[http://dx.doi.org/10.3389/fphar.2022.1014105] [PMID: 36263135]
[132]
Zhong, Y.; Huang, Y.; Santoso, M.B.; Wu, L.D. Sclareol exerts anti-osteoarthritic activities in interleukin-1β-induced rabbit chondrocytes and a rabbit osteoarthritis model. Int. J. Clin. Exp. Pathol., 2015, 8(3), 2365-2374.
[PMID: 26045743]
[133]
Huang, G.J.; Pan, C.H.; Wu, C.H. Sclareol exhibits anti-inflammatory activity in both lipopolysaccharide-stimulated macrophages and the λ-carrageenan-induced paw edema model. J. Nat. Prod., 2012, 75(1), 54-59.
[http://dx.doi.org/10.1021/np200512a] [PMID: 22250858]
[134]
Pottoo, F.H.; Ibrahim, A.M.; Alammar, A.; Alsinan, R.; Aleid, M.; Alshehhi, A.; Alshehri, M.; Mishra, S.; Alhajri, N. Thymoquinone: review of its potential in the treatment of neurological diseases. Pharmaceuticals (Basel), 2022, 15(4), 408.
[http://dx.doi.org/10.3390/ph15040408] [PMID: 35455405]
[135]
Chen, W.P.; Tang, J.L.; Bao, J.P.; Wu, L.D. Thymoquinone inhibits matrix metalloproteinase expression in rabbit chondrocytes and cartilage in experimental osteoarthritis. Exp. Biol. Med. (Maywood), 2010, 235(12), 1425-1431.
[http://dx.doi.org/10.1258/ebm.2010.010174] [PMID: 21127340]
[136]
Kalamegam, G.; Alfakeeh, S.M.; Bahmaid, A.O.; AlHuwait, E.A.; Gari, M.A.; Abbas, M.M.; Ahmed, F.; Abu-Elmagd, M.; Pushparaj, P.N. In vitro evaluation of the anti-inflammatory effects of thymoquinone in osteoarthritis and in silico analysis of inter-related pathways in age-related degenerative diseases. Front. Cell Dev. Biol., 2020, 8, 646.
[http://dx.doi.org/10.3389/fcell.2020.00646] [PMID: 32793594]
[137]
Wang, D.; Qiao, J.; Zhao, X.; Chen, T.; Guan, D. Thymoquinone inhibits IL-1β-induced inflammation in human osteoarthritis chondrocytes by suppressing NF-κB and MAPKs signaling pathway. Inflammation, 2015, 38(6), 2235-2241.
[http://dx.doi.org/10.1007/s10753-015-0206-1] [PMID: 26156811]
[138]
Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and thyme essential oil-new insights into selected therapeutic applications. Molecules, 2020, 25(18), 4125.
[http://dx.doi.org/10.3390/molecules25184125] [PMID: 32917001]
[139]
Bouhtit, F.; Najar, M.; Rahmani, S.; Melki, R.; Najimi, M.; Sadki, K.; Boukhatem, N.; Twizere, J.C.; Meuleman, N.; Lewalle, P.; Lagneaux, L.; Merimi, M. Bioscreening and pre-clinical evaluation of the impact of bioactive molecules from Ptychotis verticillata on the multilineage potential of mesenchymal stromal cells towards immune- and inflammation-mediated diseases. Inflamm. Res., 2022, 71(7-8), 887-898.
[http://dx.doi.org/10.1007/s00011-022-01573-3] [PMID: 35716172]
[140]
Ibáñez, M.D.; Sánchez-Ballester, N.M.; Blázquez, M.A. Healthy Zerumbone: From natural sources to strategies to improve its bioavailability and oral administration. Plants, 2022, 12(1), 5.
[http://dx.doi.org/10.3390/plants12010005] [PMID: 36616138]
[141]
Chien, T.Y.; Huang, S.; Lee, C.J.; Tsai, P.W.; Wang, C.C. Antinociceptive and anti-inflammatory effects of zerumbone against mono-iodoacetate-induced arthritis. Int. J. Mol. Sci., 2016, 17(2), 249.
[http://dx.doi.org/10.3390/ijms17020249] [PMID: 26901193]
[145]
Hylan polymers A and B (Injection route, intra-articular route) description and brand names - mayo clinic. Available from: https://www.mayoclinic.org/drugs-supplements/hylan-polymers-a-and-b-injection-route-intra-articular-route/description/drg-20074573 (Accessed on: 2023 May 28).
[146]
Sodium hyaluronate injection uses, side effects & warning. Available from: https://www.drugs.com/mtm/sodium-hyaluronate-inject ion.html (Accessed on: 2023 May 28).
[147]
Migliore, A.; Procopio, S. Effectiveness and utility of hyaluronic acid in osteoarthritis. Clin. Cases Miner. Bone Metab., 2015, 12(1), 31-33.
[http://dx.doi.org/10.11138/ccmbm/2015.12.1.031] [PMID: 26136793]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy
  NODES
admin 1
chat 1
Idea 1
idea 1
INTERN 1
Note 2