Challenges and opportunities when moving food production and consumption toward sustainable diets in the Nordics: a scoping review for Nordic Nutrition Recommendations 2023

  • Helle Margrete Meltzer Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
  • Hanna Eneroth Swedish Food Agency, Uppsala, Sweden
  • Maijaliisa Erkkola Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
  • Ellen Trolle Technical University of Denmark, Kgs Lyngby, Denmark
  • Peter Fantke Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
  • Juha Helenius Ruralia Institute, Finland & Strategic Research Programme FOOD, University of Helsinki, Helsinki, Finland
  • Jørgen Eivind Olesen Department of Agroecology, Aarhus University, Tjele, Denmark
  • Merja Saarinen Natural Resources Institute Finland, Helsinki, Finland
  • Amund Maage Institute of Marine Research, Bergen, Norway
  • Trond Arild Ydersbond Statistics Norway, Oslo, Norway
Keywords: The Nordics, sustainability, diet, food production, food consumption

Abstract

The terms ‘Nordic countries’ or ‘The Nordics’ include the five countries Denmark, Finland, Island, Norway, and Sweden. This review includes evaluation of the Nordic countries against Food and Agricultural Organisation (FAO)/World Health Organizations’ (WHO) guiding principles for healthy, sustainable diets with respect to environmental impact (principles #9 – #13) and sociocultural aspects (principles #14 – #16). A food systems perspective is taken to summarize and discuss the most important challenges and opportunities for achieving sustainable diets. Food system, food security, self-sufficiency, and resilience perspectives are applied. The information can underpin decisions when developing and implementing Food Based Dietary Guidelines (FBDG) in the Nordics.

None of the Nordic countries are on track to reach the 2030 UN climate and biodiversity goals. We describe how food production, processing, and consumption contribute to these and other environmental challenges, and what kinds of dietary changes/transitions consistent with these goals are required.

A major challenge is the high production and consumption of meat and too low consumption of fish, vegetables, and fruits. Meat production is a major source of emissions and, together with farmed fish, heavily dependent on imported feed ingredients, leaving a large land-use and water footprint in exporting countries while domestic land resources are not used optimally. Dietary patterns have changed drastically over the past 50 years, and in large parts of the population, meat consumption has doubled since the 1970s, rendering historic food culture less useful as a basis for present-day recommendations. The Nordics have Europe’s lowest use of antibiotics in animal and fish production and have made some progress in reducing food waste along the food chain. A major opportunity is better alignment of food production and consumption based on local or regional production potentials, in conjunction with better and more constructive integration with the global food system while integrating novel technologies to reduce emissions and resource use.

Downloads

Download data is not yet available.

References


1.
Blomhoff R, Andersen R, Arnesen EK, Christensen JJ, Eneroth H, Erkkola M, et al. Nordic Nutrition Recommendations 2023. Copenhagen: Nordic Council of Ministers; 2023. Available from: https://pub.norden.org/nord2023-003. [cited 31 July 2023].

2.
Nordic Council of Ministers. The Nordic Region – towards being the most sustainable and integrated region in the world. Action Plan for 2021 to 2024. 2020. doi: 10.6027/politiknord2020-728

3.
Benton TG, Harwatt H, Høyer A, Meltzer HM, Trolle E, Blomhoff R. Assessing the environmental sustainability of diets – an overview of approaches and identificantion of 5 key considerations for comprehensive assessments. Food Nutr Res 2024; In press.

4.
Harwatt H, Benton TG, Bengtsson J, Blomhoff R, Birgisdóttir BE, Brown KA, et al. Overview of food consumption and environmental sustainability – considerations in the Nordic and Baltic region. Food Nutr Res 2024; In press.

5.
Trolle E, Meinilä J, Eneroth H, Meltzer HM, Þórsdóttir I, Halldorsson TI, et al. Integrating environmental sustainability into Food-Based Dietary Guidelines in the Nordic countries. Food Nutr Res 2024.

6.
Jackson P, Holm L. Social and economic dimensions of sustainability. Food Nutr Res 2024; In press.

7.
Grunfelder J, Rispling L, Norlén G, editors. Nordic Council of Ministers. State of the Nordic Region 2018. Copenhagen, Denmark; 2018. Available from: http://norden.diva-portal.org/smash/record.jsf?pid=diva2:1180241 [cited 17 June 2019].

8.
UNDP. Human Development Report 2021–22: uncertain times, unsettled lives: shaping our future in a transforming world. New York: United Nations Development Programme; 2022. Available from: https://hdr.undp.org/content/human-development-report-2021-22 [cited 14 April 2023].

9.
Sachs JD, Lafortune G, Fuller G, Drumm E. Sustainable Development Report 2023. Dublin: Dublin University Press; 2023. ISBN: 978-0-903200-13-4.

10.
Sachs J, Lafortune G, Kroll C, Fuller G, Woelm F. Sustainable development report 2022. Press CU; 2022. ISBN 978-1-009-21003-4. Available from: https://dashboards.sdgindex.org/ [cited 1 September 2023].

11.
FAO, WHO. Sustainable healthy diets. Guiding principles. Rome, Italy; 2019. Available from: https://www.fao.org/3/ca6640en/ca6640en.pdf [cited 6 August 2023].

12.
FAO. Food-based dietary guidelines: FAO 2022. Available from: https://www.fao.org/nutrition/education/food-dietary-guidelines/en/ [cited 6 August 2022].

13.
Wood A, editor. Stockholm Resilience Centre. Insight Paper #2. Stockholm; 2020. Nordic Food System Transformation Series. Available from: https://www.stockholmresilience.org/download/18.66e0efc517643c2b810389c/1618897906100/Brief%202%20Nordic%20cooperation%20access.pdf [cited 21 January 2023].

14.
Ammann J, Arbenz A, Mack G, Nemecek T, El Benni N. A review on policy instruments for sustainable food consumption. Sustain Prod Consum 2023; 36: 338–53. doi: 10.1016/j.spc.2023.01.012

15.
Olesen JE, Christensen S, Jensen PR, Schultz E, Rasmussen C, Kjer KH, et al. AgriFoodTure: roadmap for sustainable transformation of the Danish Agri-Food system. Aarhus, Denmark: SEGES; 2021. Available from: https://pure.au.dk/portal/files/219295609/Climate_roadmap_white_paper_06.07.2021_final_version.pdf [cited 1 September 2023].

16.
Poore J, Nemecek T. Reducing food’s environmental impacts through producers and consumers. Science (New York, NY) 2018; 360(6392): 987. doi: 10.1126/science.aaq0216

17.
Stylianou KS, Fulgoni VL, 3rd, Jolliet O. Small _targeted dietary changes can yield substantial gains for human health and the environment. Nat Food 2021; 2(8): 616–27. doi: 10.1038/s43016-021-00343-4

18.
Clapp J, Moseley WG, Burlingame B, Termine P. Viewpoint: the case for a six-dimensional food security framework. Food Policy 2022; 106. doi: 10.1016/j.foodpol.2021.102164

19.
FAO IFAD, UNICEF, WFP and WHO,. The State of Food Security and Nutrition in the World 2022. Repurposing food and agricultural policies to make healthy diets more affordable. Rome: FAO; 2022.

20.
Wood A, Queiroz C, Deutsch L, González-Mon B, Jonell M, Pereira L, et al. Reframing the local–global food systems debate through a resilience lens. Nat Food 2023; 4: 22–29. doi: 10.1038/s43016-022-00662-0

21.
Kummu M, Kinnunen P, Lehikoinen E, Porkka M, Queiroz C, Röös E, et al. Interplay of trade and food system resilience: gains on supply diversity over time at the cost of trade independency. Glob Food Sec 2020; 24: 100360. doi: 10.1016/j.gfs.2020.100360

22.
van Riel A-J, Nederlof MAJ, Chary K, Wiegertjes GF, de Boer IJM. Feed-food competition in global aquaculture: current trends and prospects. Rev Aqucult 2023; 15: 1142–1158. doi: 10.1111/raq.12804

23.
FAO. Agroecology Knowledge HubRome: Food and Agricultural Organization of the United Nations. Available from: https://www.fao.org/agroecology/home/en/ [cited 29 Janaury 2023].

24.
Stockholm Resilience Centre. Resilience dictionary. Stockholm: Stockholm University. Available from: https://www.stockholmresilience.org/research/resilience-dictionary.html [cited 29 January 2023].

25.
European Commission. The common agricultural policy at a glance. Available from: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-glance_en [cited 3 June 2023].

26.
Nordic Council of Ministers. Selvforsyning af fødevarer i fem nordiske øsamfund. Bornholm, Færøerne, Grønland, Island og Åland. 2022. TemaNord. 528. Available from: https://pub.norden.org/temanord2022-528/ [cited 1 January 2023].

27.
FAO. An Introduction to the Basic Concepts of Food Security: FAO Food Security Programme. Available from: https://www.fao.org/3/al936e/al936e00.pdf [cited 29 January 2023].

28.
Beillouin D, Ben-Ari T, Malézieux E, Seufert V, Makowski D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob Change Biol 2021; 27(19): 4697–710. doi: 10.1111/gcb.15747

29.
Lynch J, Cain M, Pierrehumbert R, Allen M. Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environ Res Lett 2020; 15: 044023. doi: 10.1088/1748-9326/ab6d7e

30.
Fankhauser S, Smith SM, Allen M, Axelsson K, Hale T, Hepburn C, et al. The meaning of net zero and how to get it right. Nat Clim Change 2022; 12: 15–21. doi: 10.1038/s41558-021-01245-w

31.
Wetlands international. A definition of paludiulture in the CAP. Available from: https://europe.wetlands.org/publications/what-does-paludiculture-mean-a-definition/ [cited 14 August 2023].

32.
Resilience Alliance. Resilience. Available from: https://www.resalliance.org/resilience [cited 14 May 2023].

33.
United Nations. Transforming our world: the 2030 Agenda for sustainable Development. Available from: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication [cited 29 January 2023].

34.
FAO. Food self-sufficiency and international trade: a false dichotomy? Available from: https://www.fao.org/3/i5222e/i5222e.pdf [cited 29 January 2023].

35.
Barrio IC, Arnalds O. Agricultural Land Degradation in Iceland. In: Pereira P, Muñoz-Rojas M, Bogunovic I, Zhao W, editors. The handbook of environmental chemistry. Berlin, Heidelberg: Springer; 2022, Vol. 121, pp. 159–177. doi: 10.1007/698_2022_920

36.
Helgadóttir Á, Eythórsdóttir E, Jóhannesson T. Agriculture in Iceland – a grassland based production. Grassl Sci Eur 2013; 18: 30–43. ISBN 978-9979-881-20-9

37.
Wood A, Gordon LJ, Röös E, Karlsson JO, Häyhä T, Bignet V, et al. Nordic food systems for improved health and sustainability – Baseline assessment to inform transformation. Stockholm Resilience Centre, Stockholm University; 2019. Available from: https://www.stockholmresilience.org/download/18.8620dc61698d96b1904a2/1554132043883/SRC_Report%20Nordic%20Food%20Systems.pdf [cited 8 August 2020].

38.
Helsedirektoratet. Utviklingen i norsk kosthold 2022. Helsedirektoratet: Oslo; 2022. IS-3064.

39.
Finnish Food Information Association. Forkful of facts – Finnish Food chain statistics Lahti, Finland: Lehtisepät Oy; 2022, 57. Available from: https://www.ruokatieto.fi/sites/default/files/media/flash/tietohaarukka_2022_englanti_nettiin.pdf [cited 12 January 2022].

40.
Clapp J. Food self-sufficiency: making sense of it, and when it makes sense. Food Policy 2017; 66: 88–96. doi: 10.1016/j.foodpol.2016.12.001

41.
Nordic Statistics database. Population by 1 January by reporting country. Available from: https://www.nordicstatistics.org/ [cited 11 January 2023].

42.
FAO. World Food and Agriculture – statistical yearbook 2022. Rome: FAO; 2022.

43.
NIBIO. Slik beregner vi selvforsyningsgrad: NIBIO. Available from: https://www.nibio.no/nyheter/slik-beregner-vi-selvforsyningsgrad [cited 12 January 2023].

44.
Båth K. Could we run out of food?: RISE. Available from: https://www.ri.se/en/our-stories/could-we-run-out-of-food [cited 13 January 2023].

45.
Eurostat. Final counsumption expenditure of households, by consumption purpose. Available from: https://ec.europa.eu/eurostat/databrowser/view/tec00134/default/table?lang=en [cited 2 January 2023].

46.
European Commission. A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system. 2020. COM(2020) 381 final. Available from: https://ec.europa.eu/info/sites/info/files/communication-annex-farm-fork-green-deal_en.pdf [cited 7 August 2022].

47.
European Commission. Climate Action. 2050 long-term strategy. Available from: https://climate.ec.europa.eu/eu-action/climate-strategies-_targets/2050-long-term-strategy_en [cited 24 January 2023].

48.
Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, IPCC et al, editors. Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge, UK and New York, NY, USA: Cambridge University Press; 2018. Available from: https://www.cambridge.org/core/books/global-warming-of-15c/D7455D42B4C820E706A03A169B1893FA [cited 1 September 2023]

49.
Miljødirektoratet. Klimatiltak i Norge mot 2030. Oslo: Oppdatert; 2023. M-2539/2023. Miljødirektoratet. Available from: https://www.miljodirektoratet.no/publikasjoner/2023/juni-2023/klimatiltak-i-norge-mot-2030/ [cited 3 June 2023].

50.
Dalgaard T, Olesen JE, Petersen SO, Petersen BM, Jørgensen U, Kristensen T, et al. Developments in greenhouse gas emissions and net energy use in Danish agriculture – how to achieve substantial CO(2) reductions? Environ Pollut 2011; 159(11): 3193–203. doi: 10.1016/j.envpol.2011.02.024

51.
Nissinen A, Savolainen H. Julkisten hankintojen ja kotitalouksien kulutuksen hiilijalanjälki ja luonnonvarojen käyttö. ENVIMAT-mallinnuksen tuloksia. 2019. Suomen ympäristökeskuksen raportteja 15. Available from: http://hdl.handle.net/10138/300737 [cited 29 December 2022].

52.
Kaljonen M, Karttunen K, Kortetmäki T. Reilu ruokamurros. Polkuja kestävään ja oikeudenmukaiseen ruokajärjestelmään (in Finnish with an English abstract). Helsinki: Finnish Environment Institute; 2022. Suomen ympäristökeskus Suomen ympäristökeskuksen raportteja ISBN: 978-952-11-5518-5. 38.

53.
Nepstad D, McGrath D, Stickler C, Alencar A, Azevedo A, Swette B, et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science (New York, NY) 2014; 344(6188): 1118–23. doi: 10.1126/science.1248525

54.
Hansen L. The weak sustainability of the Salmon feed transition in Norway – a bioeconomic case study. Front Mar Sci 2019: (764); 1–16: 6. doi: 10.3389/fmars.2019.00764

55.
Future in our hands, Rainforest Foundation Norway. Salmon on soy beans – Deforestation and land conflict in Brazil. Oslo, Norway; 2018. Available from: https://d5i6is0eze552.cloudfront.net/documents/Publikasjoner/Andre-rapporter/Salmon-on-soy-beans-deforestation-and-land-conflict-in-Brazil.pdf?mtime=20181029093010 [cited 31 May 2023].

56.
European Soy Monitor Report. Insights on European uptake of responsible, deforestation and conversion-free soy in 2020. Available from: https://www.idhsustainabletrade.com/publication/european-soy-monitor-2020/ [cited 29 May 2023].

57.
Norwegian Directorate of Agriculture. Bruk av norske fôrressurser. Utredning av forbedring av virkemidler med sikte på økt produksjon og bruk av norsk fôr. Norwegian Directorate of Agriculture; 2021, 10. Available from: https://www.landbruksdirektoratet.no/nb/filarkiv/rapporter/Utredning%20av%20forbedring%20av%20virkemidler%20med%20sikte%20p%C3%A5%20%C3%B8kt%20produksjon%20og%20bruk%20av%20norsk%20f%C3%B4r.pdf/_/attachment/inline/99fab4a2-d254-4ed3-b456-d868ec72a4d8:eac3ac586c044b1c07a0d2e36299802eb84af0b6/Utredning%20av%20forbedring%20av%20virkemidler%20med%20sikte%20p%C3%A5%20%C3%B8kt%20produksjon%20og%20bruk%20av%20norsk%20f%C3%B4r.pdf [cited 13 October 2023].

58.
Gephart JA, Henriksson PJG, Parker RWR, Shepon A, Gorospe KD, Bergman K, et al. Environmental performance of blue foods. Nature 2021; 597(7876): 360. doi: 10.1038/s41586-021-03889-2

59.
Hilmarsdóttir GS, Ögmundarson Ó, Arason S, Gudjónsdóttir M. Identification of environmental hotspots in fishmeal and fish oil production towards the optimization of energy-related processes. J Clean Prod 2022; 343(130880). doi: 10.1016/j.jclepro.2022.130880

60.
SAPEA (Science Advice for Policy by European Academies). Food from the oceans: how can more food and biomass be obtained from the oceans in a way that does not deprive future generations of their benefits? Berlin: 2017. doi: 10.26356/foodfromtheoceans

61.
Olsson M. Emissioner av växthusgaser från brukad torvmark i areella näringar. TORVFORSK. Stiftelsen Svensk TorvForskning; 2015, 15. Available from: https://www.energimyndigheten.se/4aa2df/contentassets/0fe36d82aacc46deae659e396ed64aba/svensk-torv-3.pdf [cited 24 January 2023].

62.
Farstad FM, Hermansen ET, van Oort B, Grønlund A, Mittenzwei K, Brudevoll K, et al. Forbudet mot nydyrking av myr: Bakgrunn, effekter og utfordringer. Oslo: CICERO; 2020, 11. Available from: https://pub.cicero.oslo.no/cicero-xmlui/bitstream/handle/11250/2721935/Rapport%202020%2011%20web%20-%20def%202.pdf?sequence=6&isAllowed=y [cited 24 January 2023].

63.
Regina K, Lehtonen H. Facts about peatlands and their cultivation in Finland – importance of peatlands for agriculture. Tilgjengelig fra. Available from: https://projects.luke.fi/sompa/wp-content/uploads/sites/27/2019/10/Finland_facts.pdf [cited 24 January 2023].

64.
Kløve B, Berglund K, Berglund Ö, Weldon S, Maljanen M. Future options for cultivated Nordic peat soils: can land management and rewetting control greenhouse gas emissions? Environ Sci Policy 2017; 69: 85–93. doi: 10.1016/j.envsci.2016.12.017

65.
The Danish Government. Aftale om grøn omstilling af dansk landbrug; 2021. Available from: https://fm.dk/media/25302/aftale-om-groen-omstilling-af-dansk-landbrug_a.pdf [cited 11 August 2023].

66.
Danish Council on Climate Change. Status Outlook 2023. Denmark’s national climate _targets and international obligations. Copenhagen, Denmark. Available from: https://klimaraadet.dk/en/report/status-outlook-2023 [cited 15 September 2023].

67.
Finnish Ministry of Agriculture and Forestry. Climate Food Programme; 2021. Available from: https://mmm.fi/en/climatefriendlyfoodprogramme [cited 1 September 2023].

68.
Ministry for the Environment and Natural Resources. Iceland’s Climate Action Plan. Umhverfisraduneytid Adgerdaaaetlun; 2020. Available from: https://www.government.is/library/01-Ministries/Ministry-for-The-Environment/201004 [cited 1 September 2023].

69.
Ministry of Climate and Environment. Norway’s Climate Action Plan for 2021–2030. Melding til Stortinget. Oslo: Det kongelige klima-og miljødepartement; 2020, 13. Available from: https://www.regjeringen.no/contentassets/a78ecf5ad2344fa5ae4a394412ef8975/en-gb/pdfs/stm202020210013000engpdfs.pdf [cited 1 September 2023].

70.
Norges bondelag. Landbrukets klimaplan 2021–2030. 2020. Available from: https://www.bondelaget.no/tema/klimaplanen/landbrukets-klimaplan [cited 4 August 2020]

71.
FAOSTAT 2023. Cropland Nutrient Balance. Rome. Available from: https://www.fao.org/faostat/en/#data/ESB [cited 5 January 2023].

72.
IPCC, editor. Climate change 2022. Mitigation of Climate Change Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change; 2022. ISBN 978-92-9169-160-9.

73.
UNEP, editor. Emissions Gap Report 2022: the closing window – climate crisis calls for rapid transformation of societies. Nairobi; 2022. Available from: https://www.unep.org/emissions-gap-report-2022 [cited 1 September 2023].

74.
Searchinger TD, Zionts J, Wirsenius S, Peng L, Beringer T, Dumas P. A pathway to carbon neutral agriculture in Denmark. World Resources Institute; 2021. doi: 10.46830/wrirpt.20.00006

75.
Bardalen A, Pettersen I, Dombu SV, Rosnes O, Mittenzwei K, Skulstad A. Klimaendring utfordrer det norske matsystemet. NIBIO, Vista Analyse, Ruralis; 2022. 110. ISBN 978-82-17-03128-4.

76.
World Economic Forum. The Global Risks Report 2023. Geneva, Switzerland; 2023. ISBN-13: 978-2-940631-36-0

77.
Ivanovich CC, Sun T, Gordon DR, Ocko IB. Future warming from global food consumption. Nat Clim Change 2023; 13: 297–302. doi: 10.1038/s41558-023-01605-8

78.
Myndighetsnätverket för klimatanpassning. Sweden: Jordbruk | Klimatanpassning.se. Available from: https://www.klimatanpassning.se/hur-samhallet-paverkas/areella-naringar/jordbruk-1.21502 [cited 7 August 2023].

79.
Zhao J, Bindi M, Eitzinger J, Ferrise R, Gaile Z, Gobin A, et al. Priority of adaptive measures to climate change in Euro-pean crop production systems. Eur J Agron 2022; 138: 126516. doi: 10.1016/j.eja.2022.126516

80.
Kuliński K, Rehder G, Asmala E, Bartosova A, Carstensen J, Gustafsson B, et al. Biogeochemical functioning of the Baltic Sea. Earth Syst Dyn 2022; 13: 633–85. doi: 10.5194/esd-13-633-2022

81.
Brady MV, Andersen MS, Andersson A, Kilis E, Saarela SR, Hvarregaard Thorsøe M. Strengthening the policy framework to resolve lax implementation of the Baltic Sea Action Plan for agriculture. Ambio 2022; 51(1): 69–83. doi: 10.1007/s13280-021-01573-3

82.
Persson L, Almroth BMC, Collins CD, Cornell S, de Wit CA, Diamond ML, et al. Outside the safe operating space of the planetary boundary for novel entities. Environ Sci Technol 2022; 56(3): 1510–21. doi: 10.1021/acs.est.1c04158

83.
Kosnik MB, Hauschild MZ, Fantke P. Toward assessing absolute environmental sustainability of chemical pollution. Environ Sci Technol 2022; 56(8): 4776–87. doi: 10.1021/acs.est.1c06098

84.
Fantke P, Friedrich R, Jolliet O. Health impact and damage cost assessment of pesticides in Europe. Environ Int 2012; 49: 9–17. doi: 10.1016/j.envint.2012.08.001

85.
Steingrímsdóttir MM, Petersen A, Fantke P. A screening framework for pesticide substitution in agriculture. J Clean Prod 2018; 192: 306–15. doi: 10.1016/j.jclepro.2018.04.266

86.
Jacquet F, Jeuffroy M-H, Jouan J, Le Cadre E, Litrico I, Malausa T, et al. Pesticide-free agriculture as a new paradigm for research. Agron Sustain Dev 2022; 42(8). doi: 10.1007/s13593-021-00742-8

87.
Manevski K, Laerke PE, X. J, Santhome S, Jørgensen U. Biomass productivity and radiation utilisation of innovative cropping systems for biorefinery. Agric Forest Meteorol 2017; 233: 250–64. doi: 10.1016/j.agrformet.2016.11.245

88.
Sandström V, Chrysafi A, Lamminen M, Troell M, Jalava M, Piipponen J, et al. Food system by-products upcycled in livestock and aquaculture feeds can increase global food supply. Nat Food 2022; 3(9): 729–40. doi: 10.1038/s43016-022-00589-6

89.
Koppelmäki K, Helenius J, Schulte RPO. Nested circularity in food systems: a Nordic case study on connecting biomass, nutrient and energy flows from field scale to continent. Resour Conserv Recycl 2021; 164: 105218. doi: 10.1016/j.resconrec.2020.105218

90.
UNEP. Kunming-Montreal Global biodiversity framework. Montreal, Canada: Convention on Biological Diversity; 2022. Available from: https://www.cbd.int/doc/c/e6d3/cd1d/daf663719a03902a9b116c34/cop-15-l-25-en.pdf [cited June 17, 2023].

91.
The Food and Land Use Coalition. Growing better: ten critical transitions to transform food and land use. 2019. Available from: https://www.foodandlandusecoalition.org/global-report/

92.
Svalbard Global Seed Vault. Safeguaring seeds for the future. Available from: https://www.seedvault.no/ [cited 4 July 2023].

93.
FAO. Coping with climate change – the roles of genetic resources for food and agriculture. Rome; 2015. ISBN 978-92-5-108441-0

94.
Scherf BD, Pilling D, editors. FAO. The second report on the state of the world’s animal genetic resources for food and agriculture. Rome: FAO; 2015. Available from: http://www.fao.org/3/a-i4787e/index.html [cited 1 September 2023].

95.
Ovaska U, Bläuer A, Kroløkke C, Kjetså M, Kantanen J, Honkatukia M. The Conservation of native domestic animal breeds in Nordic countries: from genetic resources to cultural heritage and good governance. Animals (Basel) 2021; 11(9): 2730. doi: 10.3390/ani11092730

96.
Phillips J, Magos Brehm J, van Oort B, Asdal Å, Rasmussen M, Maxted N. Climate change and national crop wild relative conservation planning. Ambio 2017; 46(6): 630–43. doi: 10.1007/s13280-017-0905-y

97.
Weibull J, Phillips J. Swedish Crop Wild Relatives: towards a nationalstrategy forin situconservation of CWR. Genet Resour 2020; 1: 17–23. doi: 10.46265/genresj.2020.1.17-24

98.
Arnalds Ó, Guðmundsson J. Climate, carbon and soil. In Icelandic: Loftslag, kolefni og mold. Agricultural University of Iceland; 2020, 133. Available from: https://www.lbhi.is/images/pdf/utgefid efni/fjolrit rannsoknastofnunar landbunadarins/rit_lbhi_nr_133_ok.pdf [cited 23 January 2023].

99.
Hessle A, Danielsson R. Antal nötkreatur som krävs för att nå gynnsam bevarandestatus i svenska naturbetesmarker och djurens metanutsläpp. Skara, Sweden: Swedish University of Agricultural Sciences; 2023, p. 60. ISSN 1652-2885.

100.
Bele B, Norderhaug A, Sickel H. Localized agri-food systems and biodiversity. Agriculture 2018; 8(2): 22. doi: 10.3390/agriculture8020022

101.
Luoto M, Pykälä J, Kuussaari M. Decline of landscape-scale habitat and species diversity after the end of cattle grazing. J Nat Conserv 2003; 11(3): 171–8. doi: 10.1078/1617-1381-00052

102.
Swedish Board of Agriculture. Ett rikt odlingslandskap. Fördjupad utvärdering 2023 Jönköping, Sweden. Available from: Ett rikt odlingslandskap – fördjupad utvärdering 2023 (jordbruksverket.se) [cited 13 May 2023].

103.
DM BIO. Biodiversiteten bliver fattigere – og det gør naturplejerne også. Frederiksberg, Denmark. Available from: https://dm.dk/bio/artikler/alle-artikler/biodiversitet/biodiversiteten-bliver-fattigere-og-det-goer-naturplejerne-ogsaa/ [cited 11 August 2023].

104.
Torres-Miralles M, Särkelä K, Koppelmäki K, Lamminen M, Tuomisto HL, Herzon I. Contribution of high nature value farming systems to sustainable livestock production: a case from Finland. Sci Total Environ 2022; 839: 156267. doi: 10.1016/j.scitotenv.2022.156267

105.
Ahlgren S, Morell K, Hallström E. Mapping of biodiversity impacts and hotspot products in Nordic food consumption. Uppsala: RISE Reseach Institutes of Sweden; 2022, 25. ISBN: 978-91-89561-42-7.

106.
Eriksson O. Coproduction of food, cultural heritage and biodiversity by livestock grazing in Swedish semi-natural grasslands. Front Sustain Food Syst 2022; 6(801327). doi: 10.3389/fsufs.2022.801327

107.
Baronti S, Ungaro F, Maienza A, Ugolini F, Lagomarsino A, Agnelli AE, et al. Rotational pasture management to increase the sustainability of mountain livestock farms in the Alpine region. Reg Environ Change 2022; 22(50). doi: 10.1007/s10113-022-01896-1

108.
Enri SR, Probo M, Farruggia A, Lanore L, Blanchetete A, Dumont B. A biodiversity-friendly rotational grazing system enhancing flower-visiting insect assemblages while maintaining animal and grassland productivity. Agric Ecosyst Environ 2017; 241: 1–10. doi: 10.1016/j.agee.2017.02.030

109.
Álvarez C, Nielsen NI, Weisbjerg MR, Volden H, Eknæs M, Prestløkken E. High-digestible silages allow low concentrate supply without affecting milk production or methane emissions. J Dairy Sci 2022; 105(4): 3633–47. doi: 10.3168/jds.2021-21479

110.
Bengtsson J, Ahnström J, Weibull A-C. The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 2005; 42(2): 261–9. doi: 10.1111/j.1365-2664.2005.01005.x

111.
Tuomisto HL, Hodge ID, Riordan P, Macdonald DW. Does organic farming reduce environmental impacts? – a meta-analysis of European research. J Environ Manage 2012; 112: 309–20. doi: 10.1016/j.jenvman.2012.08.018

112.
Smith LG, Kirk GJD, Jones PJ, Williams AG. The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nat Commun 2019; 10(1): 4641. doi: 10.1038/s41467-019-12622-7

113.
Dreoni I, Matthews Z, Schaafsma M. The impacts of soy production on multi-dimensional well-being and ecosystem services: a systematic review. J Clean Prod 2022; 335(130182). doi: 10.1016/j.jclepro.2021.130182

114.
Norwegian Directorate of Agriculture. Markedsrapport 2021. Oslo: 2022, Available from: https://www.landbruksdirektoratet.no/nb/filarkiv/rapporter/Markedsrapport%202021_Markeds-%20og%20prisvurderinger%20av%20sentrale%20norske%20landbruksvarer%20og%20R%C3%85K-varer.pdf/_/attachment/inline/36c6d5df-bbc8-4a21-bdc3-1253ba12f1dc:de99a08bea2aad9e866636775deec0965e4b5cd7/Markedsrapport%202021_Markeds-%20og%20prisvurderinger%20av%20sentrale%20norske%20landbruksvarer%20og%20R%C3%85K-varer.pdf [cited 13 October 2023].

115.
Birgersson L, Söderström S, Belhaj M. The decline of cod in the Baltic sea – a review of biology, fisheries and management, including recommendations for cod recovery. Stockholm, Sweden: The Fisheries Secretariat; 2022. Available from: https://www.fishsec.org/app/uploads/2022/04/FishSec-Report-Decline-Baltic-Cod-March2022.pdf [cited 1 September 2023].

116.
Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH, et al. A 20-year retrospective review of global aquaculture. Nature 2021; 591: 551–63. doi: 10.1038/s41586-021-03308-6

117.
Silvenius F, Grönroos J, Kankainen M, Kurppa S, Mäkinen T, Vielma J. Impact of feed raw material to climate and eutrophication impacts of Finnish rainbow trout farming and comparisons on climate impact and eutrophication between farmed and wild fish. J Clean Prod 2017; 164: 1467–73. doi: 10.1016/j.jclepro.2017.07.069

118.
European Commission. REGULATION (EU) 2019/6 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC. 2019/6. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0006&from=SV [cited 24 February 2023].

119.
Henriksson PJG, Rico A, Troell M, Klinger DH, Buschmann AH, Saksida S, et al. Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustain Sci 2018; 13: 1105–20. doi: 10.1007/s11625-017-0511-8

120.
Sommerset I, Wiik-Nielsen J, Oliveira VHS, Moldal T, Bornø G, Haukaas A, et al. Fiskehelserapporten 2022. Veterinærinstituttet; 2023. Veterinærinstituttets rapportserie. 5a/2023. Available from: https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2023/fiskehelserapporten-2022 [cited 2 September 2023].

121.
Love DC, Fry JP, Cabello F, Good CM, Lunestad BT. Veterinary drug use in United States net pen Salmon aquaculture: implications for drug use policy. Aquaculture 2020; 518: 734820. doi: 10.1016/j.aquaculture.2019.734820.

122.
Ernstoff AS, Fantke P, Huang L, Jolliet O. High-throughput migration modelling for estimating exposure to chemicals in food packaging in screening and prioritization tools. Food Chem Toxicol 2017; 109(Pt 1): 428–38. doi: 10.1016/j.fct.2017.09.024

123.
Groh KJ, Geueke B, Martin O, Maffini M, Muncke J. Overview of intentionally used food contact chemicals and their hazards. Environ Int 2021; 150: 106225. doi: 10.1016/j.envint.2020.106225

124.
Aurisano N, Weber R, Fantke P. Enabling a circular economy for chemicals in plastics. Curr Opin Green Sustain Chem 2021; 100513. 31. doi: 10.1016/j.cogsc.2021.100513

125.
Nunan C. Ending routine farm antibiotic use in Europe. Achieving responsible farm antibiotic use through improving animal health and welfare in pig and poultry production. 2022. Available from: https://epha.org/ending-routine-farm-antibiotic-use/ [cited 2 September 2023].

126.
European Medicines Agency. Sales of veterinary antimicrobial agents in 31 European countries in 2021–2022. European Surveillance of Veterinary Antimicrobial Consumption, EMA/795956/2022. Available from: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2021-trends-2010-2021-twelfth-esvac_en.pdf [cited 21 February 2023].

127.
Svensson K, Olafsson G. Riskprofil för material i kontakt med livsmedel. National Food Administration, Sweden. Environmental and Food agency, Iceland; 2011, 5. Available from: https://www.livsmedelsverket.se/globalassets/publikationsdatabas/rapporter/2011/rapport_5_riskprofil_material_i_kontakt_med_livsmedel.pdf [cited 2 September 2023].

128.
United Nations Environment Programme and Secretariat of the Basel RaSC. Chemicals in plastics: a technical report. Geneva, Switzerland: 2023. Available from: https://www.unep.org/resources/report/chemicals-plastics-technical-report [cited 14 May 2023].

129.
European Commission. European Green Deal: putting an end to wasteful packaging, boosting reuse and recycling Brussels. Available from: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_7155 [cited 7 July 2023].

130.
European Commission. EU restrictions on certain single-use plastics. Available from: https://environment.ec.europa.eu/topics/plastics/single-use-plastics/eu-restrictions-certain-single-use-plastics_en [cited 24 January 2023].

131.
Ögmundarson Ó, Kalweit LS, Venkatachalam V, Kristjánsdóttir R, Endres H, Spierling S. Plastic packaging waste management in iceland: challenges and opportunities from a life cycle assessment perspective. Sustainability 2022; 14(24): 16837. doi: 10.3390/su142416837

132.
Nordic Council of Ministers. Nordic Ministerial Declaration on a global agreement on plastic pollution and ambitions for UNEA 5.2. Available from: https://www.norden.org/en/declaration/nordic-ministerial-declaration-global-agreement-plastic-pollution-and-ambitions-unea-52 [cited 24 Janaury 2023].

133.
Springmann M, Clark M, Mason-D’Croz D, Wiebe K, Bodirsky BL, Lassaletta L, et al. Options for keeping the food system within environmental limits. Nature 2018; 562(7728): 519–25. doi: 10.1038/s41586-018-0594-0

134.
Willett W, Rockstrom J, Loken B, Springmann M, Lang T, Vermeulen S, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet (London, England) 2019; 393(10170): 447–92. doi: 10.1016/S0140-6736(18)31788-4

135.
The Norwegian Government. Hovedrapport; 2020. Bransjeavtalen om reduksjon av matsvinn. 2021. Available from: https://www.regjeringen.no/no/dokumenter/bransjeavtalen-om-reduksjon-av-matsvinn-hovedrapport-2020/id2891243/?ch=1 [cited 14 May 2023].

136.
Swedish Environmental Protection Agency. Matavfall i Sverige. Jönköping; Sweden: 2022. ISBN: 978-91-620-8861-3.

137.
Silvennoinen K, Nisonen S, Katajajuuri J-M. Food waste amount, type, and climate impact in urban and suburban regions in Finnish households. J Clean Prod 2022; 378: 134430. doi: 10.1016/j.jclepro.2022.134430

138.
Saarinen M, Kaljonen M, Niemi J, Antikainen R, Hakala K, Hartikainen H, et al. Effects of dietary change and policy mix supporting the change. End report of the FoodMin project. (In Finnish with an English abstract). 2019:47. Publications of the Government’s analysis, assessment and research activities (Finland). Available from: https://julkaisut.valtioneuvosto.fi/handle/10024/161742 [cited 2 September 2023].

139.
Seppälä J, Ollikainen M, Savolainen H, Häkkinen T, Saarinen M, Liimatainen H, et al. Kuluttajien mahdollisuudet Suomen päästövähennysten vauhdittamiseksi. 2022. Suomen ilmastopaneelin raportti 5/2022 (in Finnish with summary in English and Swedish). Available from: https://researchportal.helsinki.fi/en/publications/kuluttajien-mahdollisuudet-suomen-p%C3%A4%C3%A4st%C3%B6v%C3%A4hennysten-vauhdittamise [cited 13 October 2023].

140.
van Oort B, Bergan Holmelin N, Milford AB. Offentlige innkjøp som klimapolitisk virkemiddel: potensialet for å kutte utslipp i matsystemet. CICERO; 2021. Available from: https://pub.cicero.oslo.no/cicero-xmlui/handle/11250/2837073 [cited 8 July 2023].

141.
Umhverfis– og auðlindaráðuneytið. Minni matarsóun. Aðgerðaáætlun gegn matarsóun. Reykjavik: Stjórnarráð Íslands; 2021. ISBN 978-9935-9610-7-5

142.
Hanssen OJ, Östergren K, Hartikainen H, Andersson T. Monitoring food waste and loss in the Nordic region: definitions, methods and measures for prevention. Copenhagen: Nordic Council of Ministers; 2021. Available from: https://norden.diva-portal.org/smash/record.jsf?pid=diva2%3A1540045&dswid=7874 [cited 15 January 2023]

143.
Hartikainen, H., Riipi, I., Katajajuuri, JM., Silvennoinen, K. (2020). From Measurement to Management: Food Waste in the Finnish Food Chain. In Närvänen E, Mesiranta N, Mattila M, Heikkinen A, editors. Food Waste Management. Cham: Palgrave Macmillan. doi: 10.1007/978-3-030-20561-4_16

144.
Shurson GC, Urriola PE, van de Ligt JLG. Can we effectively manage parasites, prions, and pathogens in the global feed industry to achieve One Health? Transbound Emerg Dis 2022; 69(1): 4–30. doi: 10.1111/tbed.14205

145.
Dou Z, Galligan D, Shurson G. Food waste as untapped resources for climate mitigation. In: The role of agricultural science and technology in climate 21 project implementation. Council for Agricultural Science and Technology; 2021, pp. 14–17. Available from: https://www.cast-science.org/wp-content/uploads/2021/07/QTA2021-1-Climate-21.pdf [cited 7 July 2023].

146.
Zu Ermgassen EK, Phalan B, Green RE, Balmford A. Reducing the land use of EU pork production: where there’s swill, there’s a way. Food Policy 2016; 58: 35–48. doi: 10.1016/j.foodpol.2015.11.001

147.
Ascheman-Witzel J, Asioli D, Banovic M, Perito MA, Peschel AO, Stancu V. Defining upcycled food: the dual role of upcycling in reducing food loss and waste. Trends Food Sci Technol 2023; 132: 132–7. doi: 10.1016/j.tifs.2023.01.001

148.
Béné C, Oosterveer P, Lamotte L, Brouwer ID, de Haan S, Prager SD, et al. When food systems meet sustainability – current narratives and implications for actions. World Dev 2019; 113: 116–30. doi: 10.1016/j.worlddev.2018.08.011

149.
Popkin BM. Relationship between shifts in food system dynamics and acceleration of the global nutrition transition. Nutr Rev 2017; 75(2): 73–82. doi: 10.1093/nutrit/nuw064

150.
Gordon LJ, Bignet V, Crona B, Henriksson PG, Van Holt T, Jonell M, et al. Rewiring food systems to enhance human health and biosphere stewardship. Environ Res Lett 2017; 12: 100201. doi: 10.1088/1748-9326/aa81dc

151.
Viinisalo M, Nikkilä M, Varjonen J. Elintarvikkeiden kulutusmuutokset kotitalouksissa vuosina 1966–2006 Kuluttajatutkimuskeskus, julkaisuja 7 2008 (Konsumentforskningscentralen, publikationer 7, 2008), National Consumer Research Centre editor. 2008, 7. Available from: https://helda.helsinki.fi/server/api/core/bitstreams/64ba9726-2ab9-4eaf-9570-ff639c7cafb5/content [cited 2 September 2023].

152.
Aalto K. Elintarvikkeiden kulutus kotitalouksissa vuonna 2016 ja muutokset vuosista 2012, 2006 ja 1998. Helsinki; 2018. Helsingin yliopisto: valtiotieteellisen tiedekunnan julkaisuja; 2018, 80. Available from: https://helda.helsinki.fi/items/c245ae6f-e26f-41e6-ad66-bcc5d11b20de [cited 2 September 2023].

153.
Aalto K, Peltoniemi A. Elintarvikkeiden kulutusmuutokset kotitalouksissa 2006–2012. Kuluttajatutkimuskeskuksen tutkimuksia ja selvityksiä 10/2014. 2014. Available from: https://helda.helsinki.fi/items/d6245c96-8c2f-427e-9297-d319a959e888 [cited 2 September 2023].

154.
Swedish Board of Agriculture. Livsmedelskonsumtionen i siffror – Hur har konsumtionen utvecklats de senaste femtio åren och varför? 2015. Rapport 2015, 15. Available from: https://webbutiken.jordbruksverket.se/sv/artiklar/ra1515.html [cited 2 September 2023].

155.
Valsta LM, Tapanainen H, Kortetmäki T, Sares-Jäske L, Paalanen L, Kaartinen NE, et al. Disparities in nutritional adequacy of diets between different socioeconomic groups of finnish adults. Nutrients 2022; 14(7): 1347. doi: 10.3390/nu14071347

156.
Swedish Food Agency. Socioekonomiska skillnader i matvanor i Sverige. Uppsala, Sweden; 2016. Livsmedelsverkets rapportserie 9/2016. Available from: https://www.livsmedelsverket.se/globalassets/publikationsdatabas/rapporter/2016/rapport-nr-9-2016-socioekonomiska-skillnader-i-matvanor-i-sverige.pdf [cited 2 September 2023].

157.
Matthiessen J. Personal communication, DTU Food, based on Euromonitor data, to: Ellen Trolle. Copenhagen.

158.
Bryggeri og drikkevareforeningen. Salgsstatistikk brus. Available from: https://bryggeriforeningen.no/tall-og-fakta/salgsstatistikk/?PT_Radnr=3&mnd=8&aar=2023 [cited 5 October 2023].

159.
GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England) 2018; 392(10159): 1923–94. doi: 10.1016/s0140-6736(18)32225-6

160.
Stockmarr A, Hejgaard T, Matthiessen J. Obesity Prevention in the Nordic Countries. Curr Obes Rep 2016; 5(2): 156–65. doi: 10.1007/s13679-016-0206-y

161.
Matthiessen J, Andersen LF, Barbieri HE, Borodulin K, Knudsen VK, Kørup K, et al. The Nordic Monitoring System 2011–2014: status and development of diet, physical activity, smoking, alcohol and overweight. Denmark; 2016. Available from: https://norden.diva-portal.org/smash/get/diva2:1066553/FULLTEXT01.pdf [cited 2 September 2023].

162.
Bechthold A, Boeing H, Schwedhelm C, Hoffmann G, Knüppel S, Iqbal K, et al. Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr 2019; 59(7): 1071–90. doi: 10.1080/10408398.2017.1392288

163.
World Cancer Research Fund / American Institute for Cancer Research. Continuous Update Project Expert Report 2018. Meat, fish, and dairy products and the risk of cancer. 2018. Available from: dietandcancerreport.org [cited 13 Oc
Published
2024-04-15
How to Cite
Meltzer H. M., Eneroth H., Erkkola M., Trolle E., Fantke P., Helenius J., Olesen J. E., Saarinen M., Maage A., & Ydersbond T. A. (2024). Challenges and opportunities when moving food production and consumption toward sustainable diets in the Nordics: a scoping review for Nordic Nutrition Recommendations 2023. Food & Nutrition Research, 68. https://doi.org/10.29219/fnr.v68.10489
Section
Nordic Nutrition Recommendations

Most read articles by the same author(s)