The Effect of Open Field and Foil Tunnel on Yield and Quality of the Common Thyme (Thymus vulgaris L.), in Organic Farming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Chemical Analysis
2.2.1. Content of Essential Oil
2.2.2. Analysis of Essential Oils by GC-MS and GC-FID
2.2.3. Total Content of Phenolic Compounds
2.3. Sensory Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Yield of Herb
3.2. Essential Oil Content and Composition
3.3. Phenolic Compounds Content
3.4. Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stahl Biskup, E.; Sáez, F. The Genus Thymus; Medicinal and Aromatic Plants—Industrial Profiles Series; Taylor and Francis: London, UK, 2002. [Google Scholar]
- Wichtl, M. Herbal Drugs and Phytopharmaceuticals, a Handbook of Practice on a Scientific Basis, 3rd ed.; CRC Press: Stuttgart, Germany, 2004. [Google Scholar]
- European Directorate for the Quality of Medicines and Health Care (EDQM), Council of Europe. European Pharmacopoeia, 7th ed.; European Directorate for the Quality of Medicines and Health Care (EDQM), Council of Europe: Strasbourg, France, 2010. [Google Scholar]
- EMA (European Medicines Agency). Assessment Report on Thymus vulgaris L., vulgaris zygis L., herba; EMA/HMPC/342334; EMA: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Agili, F.A. Chemical composition, antioxidant and antitumor activity of Thymus vulgaris L. essential oil. Middle East. J. Sci. Res. 2014, 21, 1670–1676. [Google Scholar]
- Morgan, R.K. Chemotypic characteristics of Thymus vulgaris L. in Central Otago, New Zealand. J. Biogeogr. 1989, 16, 483–491. [Google Scholar] [CrossRef]
- Thompson, J.D.; Chalchat, J.C.; Michet, A.; Linhart, Y.B.; Ehlers, B. Qualitative and quantitative variation on monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. J. Chem. Ecol. 2003, 29, 859–880. [Google Scholar] [CrossRef] [PubMed]
- Torras, J.; Grau, M.D.; Lopez, J.F.; de las Heras, F.X. Analysis of essential oils from chemotypes of Thymus vulgaris in Catalonia. J. Sci. Food Agric. 2007, 87, 2327–2333. [Google Scholar] [CrossRef]
- Chizzola, R.; Michitsch, H.; Franz, C. Antioxidant properties of Thymus vulgaris leaves: Comparison of different extracts and essential oil chemotypes. J. Agric. Food Chem. 2008, 56, 6897–6904. [Google Scholar] [CrossRef] [PubMed]
- Satyal, P.; Murray, B.L.; McFeeters, R.L.; Setzer, W.N. Essential oil characterization of Thymus vulgaris from various geographical locations. Foods 2016, 5, 1–12. [Google Scholar] [CrossRef]
- Vila, R. Flavonoids and further polyphenols in the genus Thymus. In Thyme. The Genus Thymus; Medicinal and Aromatic Plants—Industrial Profiles Series; Stahl-Biskup, E., Sáez, F., Eds.; Taylor and Francis: London, UK; New York, NY, USA, 2002; pp. 144–177. [Google Scholar]
- Bazylko, A.; Strzelecka, H. A HPTLC densitometric determination of luteolin in Thymus vulgaris and its extracts. Fitoterapia 2007, 78, 391–395. [Google Scholar] [CrossRef]
- Pereira, O.R.; Cardoso, S.M. Overview on Mentha and Thymus Polyphenols. Curr. Anal. Chem. 2013, 9, 382–396. [Google Scholar] [CrossRef] [Green Version]
- Alu’datt, M.H.; Rababah, T.; Johargy, A.; Gammoh, S.; Ereifej, K.; Alhamad, M.N.; Brewer, M.S.; Saati, A.A.; Kubow, S.; Rawshdeh, M. Extraction, optimisation and characterisation of phenolics from Thymus vulgaris L.: Phenolic content and profiles in relation to antioxidant, antidiabetic and antihypertensive properties. IJFST 2015, 51, 720–730. [Google Scholar] [CrossRef]
- Reddy, P.; Kandisa, R.V.; Varsha, P.V.; Satyam, S. Review on Thymus vulgaris traditional uses and pharmacological properties. Med. Aromat. Plants 2014, 3, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Dauqan, E.M.A.; Abdullah, A. Medicinal and functional values of thyme (Thymus vulgaris L.) herb. JABB 2017, 5, 17–22. [Google Scholar] [CrossRef] [Green Version]
- WHO. Herba Thymi. In WHO Monographs of Selected Medicicnal Plans; WHO: Geneva, Switzerland, 1999; pp. 259–266. [Google Scholar]
- Lawrence, B.M.; Tucker, A.O. The genus Thymus as a source of commercial products. In Thyme. The Genus Thymus; Medicinal and Aromatic Plants—Industrial Profiles Series; Stahl-Biskup, E., Sáez, F., Eds.; Taylor and Francis: London, UK; New York, NY, USA, 2002; pp. 252–263. [Google Scholar]
- Zarzuelo, A.; Crespo, E. The medicinal and non medicinal uses of thyme. In Thyme. The Genus Thymus; Medicinal and Aromatic Plants—Industrial Profiles Series; Stahl-Biskup, E., Sáez, F., Eds.; Taylor and Francis: London, UK; New York, NY, USA, 2002; pp. 263–293. [Google Scholar]
- Salgueiro, L.; Martins, A.P.; Correia, H. Raw materials: The importance of quality and safety. A Review. Flavour Frag. J. 2010, 25, 253–271. [Google Scholar] [CrossRef]
- Rheinholds, I.; Pugajeva, I.; Bavrins, K.; Kuckovska, G.; Bertkevics, V. Mycotoxins, pesticides and toxic metals in commercial spices and herbs. Food Addit. Contam. Part B Surveill. 2017, 10, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Romero-Games, M.; Anton, A.; Soriano, T.; Suarez-Rey, E.M. Environmental impact of greenbean cultivation: Comparison of screen greenhouses vs. open field. J. Food Agric. Environ. 2009, 7, 754–760. [Google Scholar]
- Murillo-Amador, B.; Nieto-Garibay, A.; López-Aguilar, R.; Rueda-Puente, E.O.; Flores-Hernández, A.; Ruiz-Espinoza, H.F. Physiological, morphometric characteristics and yield of Origanum vulgare L. and Thymus vulgaris L. exposed to open-field and shade-enclosure. Ind. Crop. Prod. 2013, 49, 659–667. [Google Scholar] [CrossRef]
- Bączek, K.; Kosakowska, O.; Gniewosz, M.; Gientka, I.; Węglarz, Z. Sweet basil (Ocimum basilicum L.) productivity and raw material quality from organic cultivation. Agronomy 2019, 9, 279. [Google Scholar] [CrossRef] [Green Version]
- Kosakowska, O.; Węglarz, Z.; Bączek, K. Yield and quality of ‘Greek oregano’ (Origanum vulgare L. subsp. hirtum) herb from organic production system in temperate climate. Ind. Crop. Prod. 2019, 141, 111782. [Google Scholar] [CrossRef]
- Rey, C.; Sáez, F. Field culture, in vitro culture and selection of Thymus. In Thyme. The Genus Thymus; Medicinal and Aromatic Plants—Industrial Profiles Series; Stahl-Biskup, E., Sáez, F., Eds.; Taylor and Francis: London, UK; New York, NY, USA, 2002; pp. 117–197. [Google Scholar]
- Venskutonis, P. Harvesting and postharvest handling in the genus Thymus. In Thyme. The Genus Thymus; Medicinal and Aromatic Plants—Industrial Profiles Series; Stahl-Biskup, E., Sáez, F., Eds.; Taylor and Francis: London, UK; New York, NY, USA, 2002; pp. 197–224. [Google Scholar]
- Badi, N.H.; Yazdani, D.; Mohammad, S.; Nazari, F. Effects of spacing and harvesting time on herbage yield and quality/quantity of oil in thyme, Thymus vulgaris L. Ind. Crop. Prod. 2004, 19, 231–236. [Google Scholar] [CrossRef]
- Hendawy, S.F.; Aziz, E.E.; Omer, E. Productivity and oil quality of Thymus vulgaris L. under organic fertilization conditions. OJAS 2010, 3, 203–216. [Google Scholar]
- Juárez-Rosete, C.R.; Aguilar-Castillo, J.A.; Rodriguez-Medoza, M.N. Fertilizer source in biomass production and quality of essential oils of thyme (Thymus vulgaris L.). EJMP 2014, 4, 865–871. [Google Scholar] [CrossRef]
- Wesołowska, A.; Jadczak, D. Comparison of the chemical composition of essential oils isolated from two thyme (Thymus vulgaris L.) cultivars. Not. Bot. Horti. Agrobot. Clu. J. Napoca. 2019, 47, 829–835. [Google Scholar] [CrossRef] [Green Version]
- Seidler-Łożykowska, K.; Mordalski, R.; Kucharski, W.; Golcz, A.; Kozik, E.; Wójcik, J. Economic and qualitative value of the raw material of chosen species of medicinal plants from organic farming part I. Yield and quality of garden thyme herb (Thymus vulgaris L.). Acta Sci. Pol. Agric. 2009, 8, 23–28. [Google Scholar]
- Edris, A.E.; Shalaby, A.S.; Fadel, H.M. Effect of organic agriculture practices on the volatile flavor components of in Egypt: III. some essential oilplants growing Thymus vulgaris L. essential oil. J. Essent. Oil Bear. Plants 2009, 12, 319–326. [Google Scholar] [CrossRef]
- Bączek, K.; Kosakowska, O.; Przybył, J.L.; Kuźma, P.; Ejdys, M.; Obiedziński, M.; Węglarz, Z. Intraspecific variability of yarrow (Achillea millefolium L. s.l.) in respect of developmental and chemical traits. Herba Pol. 2015, 61, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Polish Pharmaceutical Society. Polish Pharmacopoeia, 6th ed.; Office of Registration of Medicinal Products, Medical Devices and Biocidal Products. Polish Pharmaceutical Society: Warsaw, Poland, 2002. [Google Scholar]
- Kosakowska, O.; Bączek, K.; Przybył, J.L.; Ejdys, M.; Kuźma, P.; Obiedziński, M.; Węglarz, Z. Intraspecific variability in the content of phenolic compounds, essential oil and mucilage of small-leaved lime (Tilia cordata Mill.) from Poland. Ind. Crop. Prod. 2015, 78, 58–65. [Google Scholar] [CrossRef]
- Kołodziej, B. Uprawa Ziół Poradnik dla Plantatorów, 2nd ed.; Powszechne Wydawnictwo Rolnicze i Leśne: Warsaw, Poland, 2018. [Google Scholar]
- Hudaib, M.; Speroni, E.; Maria, A.; Pietra, D.; Cavrini, V. GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J. Pharm. Biomed. Anal. 2002, 29, 691–700. [Google Scholar] [CrossRef]
- Kopcewicz, J.; Lewak, S. Fizjologia Roślin; PWN: Warsaw, Poland, 2012. [Google Scholar]
- Rohloff, J. Essential oil drugs—terpene composition of aromatic herbs. In Production Practices and Quality Assessment of Food Crops; Dris, R., Jain, S.M., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2004; Volume 3, pp. 73–128. [Google Scholar]
- Figueiredo, A.C.; Barroso, J.G.; José, G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Başer, K.H.C.; Bouchbauer, G. Handbook of Essential Oils: Science, Technology and Applications; Chemical Rubber Company Press: London, UK, 2009. [Google Scholar]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. JARMAP 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Jordán, M.J.; Martinez, R.M.; Goodner, K.L.; Baldwin, E.A.; Sotomayor, J.A. Seasonal variation of Thymus hyemalis Lange and Spanish Thymus vulgaris L. essential oils composition. Ind. Crop. Prod. 2006, 24, 253–263. [Google Scholar] [CrossRef]
- Golparvar, A.R.; Hadipanah, A.; Salehi, S. Comparative effect of harvest time on essential oil and thymol content of (Thymus vulgaris L.) and (Thymus daenensis Celak) in Iran Province. Electron. J. Biol. 2014, 10, 85–92. [Google Scholar]
- Clark, G.S. An aroma chemical profile. Thymol. Perfumer Flavorist 1995, 20, 41–44. [Google Scholar]
- Taiz, L.; Zeiger, E. Secondary Metabolites and Plant Defense Plant Physiology, 4th ed.; Sinauer Associates: Sunderland, MA, USA, 2006. [Google Scholar]
- Andersen, R.M.; Markham, K.R. Flavonoids: Chemistry, Biochemistry, and Applications; Taylor and Francis, CRC Press: Boca Raton, FL, USA, 2006; ISBN 0-8493-2021-6. [Google Scholar]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Goleniowski, M.; Bonfill, M.; Cusido, R.; Palazon, J. Phenolic Acids. In Natural Products; Ramawat, K.G., Merillon, J.M., Eds.; Springer Berlin Heidelberg: Berlin, Germany, 2013. [Google Scholar]
- Mouradov, A.; Spangenberg, G. Flavonoids: A metabolic network mediating plants adaptation to their real estate. Front. Plant Sci. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.K.; Chapple, C. The origin and evolution of lignin biosynthesis. New Phytol. 2010, 187, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Di Ferdinando, M.; Brunetti, C.; Fini, A.; Tattini, M. Flavonoids as Antioxidants in plant under abiotic stresses. In Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability; Ahmad, P., Prasad, M.N.V., Eds.; Springer Science and Business Media: Berlin, Germany, 2012; pp. 159–179. [Google Scholar]
- Alizadeh, A. Essential oil constituents, phenolic content and antioxidant activity in Iranian and British Thymus vulgaris L. IJACS 2013, 30, 213–218. [Google Scholar]
- Amamra, S.; Cartea, M.E.; Belhaddad, O.E.; Soengas, P.; Baghiani, A.; Kaabi, I.; Arrar, L. Determination of total phenolics contents, antioxidant capacity of Thymus vulgaris extracts using electrochemical and spectrophotometric methods. Int. J. Electrochem. Sci. 2018, 13, 7882–7893. [Google Scholar] [CrossRef]
- Sárosi, S.; Sipos, L.; Kókai, Z.; Pluhár, Z.; Szilvássy, B.; Novák, I. Effect of different drying techniques on the aroma profile of Thymus vulgaris analyzed by GC–MS and sensory profile methods. Ind. Crop. Prod. 2013, 46, 210–216. [Google Scholar] [CrossRef]
- Baranauskiene, R.; Kazernavičiute, R.; Pukalskiene, M.; Maždžieriene, R.; Venskutonis, P.R. Agrorefinery of Tanacetum vulgare L. into valuable products and evaluation of their antioxidant properties and phytochemical composition. Ind. Crop. Prod. 2014, 60, 113–122. [Google Scholar] [CrossRef]
- Król, B.; Kiełtyka-Dadasiewicz, A. Wpływ metody suszenia na cechy sensoryczne oraz skład olejku eterycznego tymianku własciwego (Thymus vulgaris L.). ŻNTJ 2015, 4, 162–175. [Google Scholar]
Open Field | Foil Tunnel | |||
---|---|---|---|---|
Months | 2015 | 2016 | 2015 | 2016 |
May | 13 | 15 | 21 | 22 |
June | 17 | 19 | 26 | 27 |
July | 20 | 19 | 29 | 29 |
August | 22 | 19 | 31 | 30 |
September | 14 | 16 | 21 | 22 |
Open Field | Foil Tunnel | |
---|---|---|
pH | 6.00 ± 0.12 | 6.10 ± 0.14 |
NO3− (mg × L−1) | 70.75 ± 2.98 | 78.50 * ± 2.84 |
NH4+ (mg × L−1) | 17.70 ± 1.50 | 19.00 ± 1.27 |
P2O5 (mg × 100 g−1) | 18.75 ± 1.21 | 20.75 ± 1.77 |
K2O (mg × 100 g−1) | 38.25 ± 1.98 | 37.90 ± 1.91 |
Organic matter (%) | 2.99 ± 0.41 | 3.01 ± 0.46 |
Cut 1 | Cut 2 | Cut 3 | ||||||
---|---|---|---|---|---|---|---|---|
No | Compound | RI a | OF | FT | OF | FT | OF | FT |
1 | α-thujene | 1023 | 0.62 | 0.53 | 0.70 | 0.68 | 0.67 | 0.61 |
2 | α-pinene | 1028 | 1.59 | 1.26 | 1.81 | 1.92 | 1.38 | 1.20 |
3 | camphene | 1074 | 0.42 | 0.25 | 0.46 | 0.30 | 0.49 | 0.40 |
4 | β-pinene | 1114 | 0.21 | 0.17 | 0.22 | 0.23 | 0.19 | 0.18 |
5 | 3-carene | 1149 | 1.91 | 1.65 | 2.07 | 2.17 | 1.94 | 1.80 |
6 | β-myrcen | 1165 | 2.05 | 1.98 | 1.25 | 2.31 | 1.82 | 1.62 |
7 | α-phellandrene | 1169 | 0.18 | 0.16 | 0.19 | 0.20 | 0.16 | 0.14 |
8 | α-terpinene | 1182 | 0.39 | 0.24 | 0.35 | 0.38 | 0.34 | 0.36 |
9 | limonen | 1203 | 0.37 | 0.39 | 0.42 | 0.41 | 0.33 | 0.36 |
10 | β-ocimene | 1234 | 0.09 | 0.07 | 0.10 | 0.08 | 0.05 | 0.12 |
11 | γ-terpinene | 1247 | 19.79 | 17.15 | 18.04 | 17.68 | 20.29 * | 17.23 |
12 | p-cymene | 1273 | 6.31b | 5.13C | 7.60ab | 8.09B | 8.27a | 11.80A * |
13 | terpinolene | 1279 | 0.07 | 0.32 | 0.08 | 0.09 | 0.08 | 0.10 |
14 | 3-octanol | 1390 | 0.83 | 1.03 | 0.95 | 0.72 | 0.98 | 0.13 |
15 | 1-octen-3-ol | 1446 | 0.84 | 0.92 | 0.96 | 1.10 | 0.68 | 0.90 |
16 | β-cubebene | 1539 | 0.14 | 0.13 | 0.14 | 0.13 | 0.76 | 0.79 |
17 | linalool | 1542 | 1.50 | 1.30 | 1.56 | 1.97 | 0.16 | 0.19 |
18 | bornyl acetate | 1576 | 0.11 | 0.19 | 0.11 | 0.10 | 0.09 | 0.11 |
19 | β-copaene | 1580 | 0.94 | 0.28 | 0.89 | 0.85 | 0.14 | 0.15 |
20 | β-caryophyllene | 1592 | 0.36 | 0.11 | 0.19 | 0.55 | 0.14 | 0.08 |
21 | terpinen-4-ol | 1599 | 2.31 | 2.37 | 2.36 | 2.47 | 2.99 | 2.52 |
22 | cis-β-terpineol | 1616 | 0.22 | 1.55 | 0.11 | 0.09 | 1.51 | 1.87 |
23 | γ-elemene | 1640 | 0.11 | 0.19 | 0.11 | 0.11 | 0.08 | 0.09 |
24 | borneol | 1687 | 0.81 | 0.61 | 0.77 | 0.43 | 0.70 | 0.49 |
25 | geranial | 1722 | 0.15 | 0.21 | 0.13 | 0.13 | 0.07 | 0.09 |
26 | α-cadinene | 1770 | 0.72 | 0.56 | 0.73 | 0.63 | 0.11 | 0.06 |
27 | geraniol | 1826 | 0.23 | 0.09 | 0.16 | 0.12 | 0.18 | 0.21 |
28 | caryophyllene oxide | 1975 | 0.12 | 0.11 | 0.13 | 0.08 | 0.09 | 0.17 |
29 | germacrene-D-4-ol | 2024 | 0.11 | 0.09 | 0.09 | 0.08 | 0.06 | 0.06 |
30 | thymol | 2163 | 53.77a | 57.08A * | 53.26a | 52.41B | 50.56b | 51.39B |
31 | carvacrol | 2214 | 2.52 | 2.63 | 2.60 | 2.48 | 2.14 | 2.23 |
Monoterpene hydrocarbons | 34.00 | 29.30 | 33.29 | 34.54 | 36.01 | 35.92 | ||
Oxygenated monoterpenes | 5.22 | 6.13 | 5.09 | 5.21 | 5.61 | 5.37 | ||
Phenolic monoterpenes | 56.29 | 59.71 | 55.86 | 54.89 | 52.70 | 53.62 | ||
Sesquiterpene hydrocarbons | 2.38 | 1.46 | 2.17 | 2.37 | 1.32 | 1.28 | ||
Oxygenated sesquiterpenes | 0.23 | 0.20 | 0.22 | 0.16 | 0.15 | 0.23 | ||
Others | 1.67 | 1.95 | 1.91 | 1.82 | 1.66 | 1.03 | ||
Total content of identified compounds (%) | 99.79 | 98.75 | 98.54 | 98.99 | 97.45 | 97.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosakowska, O.; Węglarz, Z.; Bączek, K. The Effect of Open Field and Foil Tunnel on Yield and Quality of the Common Thyme (Thymus vulgaris L.), in Organic Farming. Agronomy 2021, 11, 197. https://doi.org/10.3390/agronomy11020197
Kosakowska O, Węglarz Z, Bączek K. The Effect of Open Field and Foil Tunnel on Yield and Quality of the Common Thyme (Thymus vulgaris L.), in Organic Farming. Agronomy. 2021; 11(2):197. https://doi.org/10.3390/agronomy11020197
Chicago/Turabian StyleKosakowska, Olga, Zenon Węglarz, and Katarzyna Bączek. 2021. "The Effect of Open Field and Foil Tunnel on Yield and Quality of the Common Thyme (Thymus vulgaris L.), in Organic Farming" Agronomy 11, no. 2: 197. https://doi.org/10.3390/agronomy11020197
APA StyleKosakowska, O., Węglarz, Z., & Bączek, K. (2021). The Effect of Open Field and Foil Tunnel on Yield and Quality of the Common Thyme (Thymus vulgaris L.), in Organic Farming. Agronomy, 11(2), 197. https://doi.org/10.3390/agronomy11020197