Role of Gravitational Processes in the Migration of Heavy Metals in Soils of the Priolkhonye Mountain-Steppe Landscapes, Lake Baikal: Methodology of Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Description and Experimental Design
2.2. Analytical Methodology
2.2.1. Flowchart of the Analytical Methodology
2.2.2. Quality Assurance Control
2.3. Data Processing
3. Results and Discussion
3.1. Distribution of Anthropogenic Heavy Metals in Soils in Comparison with Guideline and Background Values
3.1.1. Field Zone
3.1.2. Landslide Zone
3.1.3. Coastal Zone
3.2. Assessment of Soil Pollution Level
3.3. Migration of Heavy Metals and TOC
3.4. Role of Gravitational Processes in Migration and Accumulation of Heavy Metals and TOC
3.5. Methodology for Geoecological and Geodynamic Monitoring of Soils
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Order of the Ministry of Natural Resources, No. 251 (18 July 2013). On the Reorganization of State Institutions Subordinate to the Ministry of Natural Resources and Environment of the Russian Federation. Available online: http://www.consultant.ru/cons/cgi/online.cgi?req=doc&base=EXP&n=640409#06705075793851771 (accessed on 11 June 2021).
- World Heritage List of UNESCO. Available online: http://whc.unesco.org/en/list/754 (accessed on 10 September 2020).
- Semenov, Y.M.; Antipov, A.N.; Bufal, V.V. Environmentally Oriented Planning of Land Use in the Baikal Region. Olkhon Province: Framework Plan of Oriented Land Use in the Scale 1:200000; Siberian Branch of Russian Academy of Science: Irkutsk, Russia, 1998. [Google Scholar]
- Kozireva, E.A.; Rybchenko, A.A.; Schipec, T.; Pellinen, V.A. Solifluctional landslides on the coast of Olkhon Island. Proceed. Irkutsk State Technic. Univer. 2011, 4, 41–49. [Google Scholar]
- Pellinen, V.A. Application of direct and remote sensing methods in the study of abrasion-accumulative shores of Olkhon Island in Lake Baikal. Bull. Russ. Geogr. Soc. 2018, 150, 43–58. [Google Scholar] [CrossRef]
- Cherkashina, T.Y.; Pellinen, V.A. Assessment of soil pollution level using environmental indices in Olkhon Island, Lake Baikal, Russia: Primary data. Int. J. Environ. Anal. Chem. 2020, 1–12. [Google Scholar] [CrossRef]
- Pellinen, V.A.; Cherkashina, T.Y.; Gustaytis, M.A. Assessment of metal pollution and subsequent ecological risk in the coastal zone of Olkhon Island, Lake Baikal, Russia. Sci. Tot. Environ. 2021, 786, 147441. [Google Scholar] [CrossRef]
- Trzhtsinskii, Y.B. Technogenic Changes in the Geological Environment (on the Example of the Siberian Region); Institute of the Earth’s Crust, SB RAS: Irkutsk, Russia, 2007; p. 115. [Google Scholar]
- Pellinen, V.A.; Shtel’makh, S.I.; Cherkashina, T.Y. Chemical composition of soils in the foothill steppes of Olkhon Island. Bull. Irkutsk State Univer. 2019, 27, 90–111. [Google Scholar] [CrossRef]
- Galaziy, G.I. Baikal in Questions and Answers; East-Siberian Book Publishing House: Irkutsk, Russia, 1987; p. 383. [Google Scholar]
- Yaqin, J.I.; Yinchang, F.E.N.G.; Jianhui, W.U.; Tan, Z.H.U.; Zhipeng, B.A.I.; Chiqing, D.U.A.N. Using geoaccumulation index to study sources profiles of soil dusts in China. J. Environ. Sci. 2008, 20, 571–578. [Google Scholar]
- Il’in, V.B. Heavy Metals in Soil-Plant System; Nauka Press: Novosibirsk, Russia, 1991; p. 151. [Google Scholar]
- Gulyaeva, N.G. Methodological Recommendations for the Ecological and Geochemical Assessment of Territories in Carrying Out Multipurpose Geochemical Mapping of Scales 1: 1,000,000 and 1: 200,000; IMGRE: Moscow, Russia, 2002; p. 70. [Google Scholar]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Kuz’min, V.A. Soil Geochemistry of the South of the Eastern Siberia; Geography Institute, SB RAS: Irkutsk, Russia, 2005; p. 137. [Google Scholar]
- Industrial Standard, 41-08-212-04. Quality Control of Analytical Works. 2005. Available online: https://standartgost.ru/g/%D0%9E%D0%A1%D0%A2_41-08-212-04 (accessed on 15 May 2021).
- Service Manual, S8 TIGER XRF Spectrometer; Bruker AXS GmbH: Karlsruhe, Germany, 2007.
- SPECTRAplus, Version 2.2.3.1. Software Package for X-Ray Spectrometers; Bruker AXS GmbH: Karlsruhe, Germany, 2008.
- FPRD, Federal Preservation Regulation Document, PND F 16.1:2:2.2.80-2013. The Determination of Hg Content in Soils, Grounds, Benthal Deposits, and Clays. Technique M 03-09-2013, LUMEX, St. Petersburg. 2013. Available online: https://www.lumex.ru/metodics/13AR08.25.01-1.pdf (accessed on 11 June 2021).
- Church, S.E. Multi-element analysis of fifty-four geochemical reference samples using inductively coupled plasma-atomic emission spectrometry. Geostand. Geoanal. Res. 1981, 5, 133–160. [Google Scholar] [CrossRef]
- State Industrial Standard 701-89. Concentrated Nitric Acid. Specifications; Publishing House of Standards: Moscow, Russia, 1989; Available online: https://docs.cntd.ru/document/1200018954 (accessed on 21 September 2021).
- M-MVI-80-2008 (F.R. 1.31.2004.01278), Method of the Measuring Performance of the Mass Fraction of the Soil Samples, Grounds, and Bottom Sediments by Atomic Emission and Atomic Absorption Spectrometry; St. Petersburg Press: St. Petersburg, Russia, 2008.
- Samofalova, I.A.; Lobanova, E.S. Soil Sciene: Laboratory Workshop; Publishing and Printing Center: Perm, Russia, 2021; p. 139. Available online: http://pgsha.ru:8008/books/pract.pdf (accessed on 10 March 2021).
- Arinushkina, E.B. Manual for Chemical Analysis of Soils; Moscow State University Publishing House: Moscow, Russia, 1970; pp. 130–139. [Google Scholar]
- Ryashchenko, T.G. Regional Soil Science (Eastern Siberia); Institute of the Earth’s Crust, SB RAS: Irkutsk, Russia, 2010; p. 287. [Google Scholar]
- State Industrial Standard 29269-91. Soils. General Requirements for the Fulfilment of Analyses; Souzsel’khozkhimia: Moscow, Russia, 1993; Available online: https://docs.cntd.ru/document/1200023560 (accessed on 2 March 2021).
- Cherkashina, T.Y.; Pellinen, V.A. Applicability of X-ray fluorescence spectrometry for assessing geochemical features and heavy metal contamination of soils: Primary data. Int. J. Environ. Anal. Chem. 2020, 1–16. [Google Scholar] [CrossRef]
- NSAM 118–X Chemical Analytical Methods. Determination of Loss on Ignition (LOI) in Bauxite, in Some Silicate and Carbonate Rocks by Gravimetric Method. 2015. Available online: https://vims-geo.ru/documents/76/reestr_metodik_06_2019.pdf (accessed on 12 March 2021).
- Catalog of Reference Materials of the Composition of Natural and Industrial Environments; Institute of Geochemistry, SB RAS: Irkutsk, Russia, 2013; Available online: http://www.igc.irk.ru/ru/component/flexicontent/item/3412-standartnye-obraztsy-sostava?Itemid=746> (accessed on 13 July 2021).
- Govindaraju, K. Compilation of Working Value sand Sample Description for 383 Geostandards. Geostand. Geoanalyt. Res. 1994, 18, 1–158. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). Available online: https://www.usgs.gov/centers/gggsc (accessed on 13 July 2021).
- Geological Survey of Japan (GSJ). Available online: https://gbank.gsj.jp/geostandards/welcome.html (accessed on 14 July 2021).
- Magnusson, B.; Örnemark, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2rd ed.; Eurachem Press: London, UK, 2014; p. 70. [Google Scholar]
- Barwick, V. Eurachem/CITAC Guide: Guide to Quality in Analytical Chemistry: An Aid to Accreditation, 3rd ed.; CITAC: London, UK, 2016; p. 66. [Google Scholar]
- Margui, E.; Hidalgo, M.; Queralt, I. Multielemental fast analysis of vegetation samples by wavelength dispersive X-ray fluorescence spectrometry: Possibilities and drawbacks. Spectrochim. Acta. Part B 2005, 60, 1363–1372. [Google Scholar] [CrossRef]
- Coskun, M.; Steinnes, E.; Frontasyeva, M.V.; Sjobakk, T.E.; Demkina, S. Heavy metal pollution of surface soil in the Thrace region, Turkey. Environ. Monit. Assess. 2006, 119, 545–556. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Meng, F.; Du, Y.; Tan, Y. Distribution, speciation, and ecological risk assessment of heavy metals in surface sediments of Jiaozhou Bay, China. Hum. Ecol. Risk. Assess. 2016, 22, 1253–1267. [Google Scholar] [CrossRef]
- Li, H.; Kang, X.; Li, X.; Li, Q.; Song, J.; Jiao, N.; Zhang, Y. Heavy metals in surface sediments along the Weihai coast, China: Distribution, sources and contamination assessment. Mar. Pollut. Bull. 2017, 115, 551–558. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Patimar, R. Ecological risk assessment of heavy metals in surface sediments from the Gorgan Bay, Caspian Sea. Mar. Pollut. Bull. 2018, 137, 662–667. [Google Scholar] [CrossRef]
- Al-Absi, E.; Manasrah, R.; Abukashabeh, A.; Wahsha, M. Assessment of heavy metal pollutants at various sites along the Jordanian coastline of the Gulf of Agaba, Red Sea. J. Environ. Anal. Chem. 2019, 99, 726–740. [Google Scholar] [CrossRef]
- Rinklebe, J.; Antoniadis, V.; Shaheen, S.M.; Rosche, O.; Altermann, M. Health risk of potentially toxic elements in soils along the Central Elbe River, Germany. Environ. Int. 2019, 126, 76–88. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Pillai, G.S.; Venkatraman, B. Spatial and heavy metal assessment in beach sands of east coast of Tamil Nadu, India. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100324. [Google Scholar] [CrossRef]
- Liu, P.; Hu, W.; Tian, K.; Huang, B.; Zhao, Y.; Wang, X.; Zhou, Y.; Shi, B.; Kwon, B.-O.; Choi, K.; et al. Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: A comparative study of China and South Korea. Environ. Int. 2020, 137, 105519. [Google Scholar] [CrossRef]
- Saraee, K.R.E.; Abdi, M.R.; Naghavi, K.; Saion, E.; Shafaei, M.A.; Soltani, N. Distribution of heavy metals in surface sediments from the South China Sea ecosystem. Malaysia. Environ. Monit. Assess. 2011, 183, 545–554. [Google Scholar] [CrossRef]
- Grebenshchikova, V.I.; Lustenberg, E.E.; Kitayev, N.A.; Lomonosov, I.S. Geochemistry of the Environment of the Baikal Region (Baikal Geoecological Polygon); Academic Publishing House “GEO”: Novosibirsk, Russia, 2008; p. 234. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- El Zrelli, R.; Courjault-Rade, P.; Rabaoui, L.; Castet, S.; Michel, S.; Bejaoui, N. Heavy metal contamination and ecological risk assessment in the surface sediments of the coastal area surrounding the industrial complex of Gabes city, Gulf of Gabes, SE Tunisia. Mar. Pollut. Bull. 2015, 101, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Simex, S.A.; Helz, G.R. Regional geochemistry of trace elements in Checapeake Bay. Environ. Geol. 1981, 3, 315–323. [Google Scholar] [CrossRef]
- Ergin, M.; Saydam, C.; Basturk, O.; Erdem, E.; Yoruk, R. Heavy metal concentrations in surface sediments fromthe two coastal inlets (Golden Horn Estuary and Izmit Bay) of the northeastern Sea of Marmara. Chem. Geol. 1991, 91, 269–285. [Google Scholar] [CrossRef]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Havaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.L. Riverine composition and estuarine geochemistry of particulate metals in China—Weathering features, anthropogenic impact and chemical fluxes. Estuar. Coast. Shelf Sci. 2002, 54, 1051–1070. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Mar. Res. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Tao, L.; Liu, X.; Hou, J.; Wang, A.; Li, R. Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China. J. Geochem. Explor. 2013, 132, 156–163. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Wei, B.; Jiang, F.; Li, X.; Mu, S. Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumgi, NW China. Microchem. J. 2009, 93, 147–152. [Google Scholar] [CrossRef]
- Pellinen, V.A.; Cherkashina, T.Y.; Pashkova, G.V.; Gustaitis, M.A.; Zhurkova, I.S.; Shtelmakh, S.I.; Panteeva, S.V. Assessment of the ecological state of the soil cover of the Olkhon Island (according to experimental data). Bull. Irkutsk State Univer. Ser. Earth Sci. 2016, 16, 79–90. [Google Scholar]
- Cherkashina, T.Y.; Shtel’makh, S.I.; Pashkova, G.V. Determination of trace elements in calcium rich carbonate rocks by Wavelength Dispersive X-ray Fluorescence Spectrometry for environmental and geochemical studies. Appl. Radiat. Isot. 2017, 130, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Batuev, A.R.; Korytny, L.M.; Oyuungere, J.; Enhtayvan, D. Ecological Atlas of the Baikal Basin; Geography Institute, SB RAS: Irkutsk, Russia, 2015; Available online: http://www.bic.iwlearn.org/en/atlas/atlas (accessed on 17 December 2020).
- Onishchenko, G.G. Maximum Permissible Concentrations (MACs) of Chemicals in Soil: Hygienic Standards 2.1.7.2042-06. Federal Center for Hygiene and Epidemiology of Rospotrebnadzor, Moscow. 2006. Available online: https://files.stroyinf.ru/Data2/1/4293850/4293850510.htm (accessed on 17 June 2021).
- CCME, Canadian Council of Ministers of the Environment. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health. 2017. Available online: http://esdat.net/Environmental%20Standards/Canada/SOIL/rev_soil_summary_tbl_7.0_e.pdf (accessed on 27 June 2021).
- Volgina, T.N.; Novikov, V.T.; Denekova, A.Y. One of the ways to solve the problem of destruction of organometallic pesticides. Mod. Knowl. Intens. Tech. 2009, 3, 55–56. [Google Scholar]
- World Health Organization Classifications, IARC. 2018. Available online: https://monographs.iarc.who.int/list-of-classifications/ (accessed on 5 August 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellinen, V.A.; Cherkashina, T.Y.; Ukhova, N.N.; Komarova, A.V. Role of Gravitational Processes in the Migration of Heavy Metals in Soils of the Priolkhonye Mountain-Steppe Landscapes, Lake Baikal: Methodology of Research. Agronomy 2021, 11, 2007. https://doi.org/10.3390/agronomy11102007
Pellinen VA, Cherkashina TY, Ukhova NN, Komarova AV. Role of Gravitational Processes in the Migration of Heavy Metals in Soils of the Priolkhonye Mountain-Steppe Landscapes, Lake Baikal: Methodology of Research. Agronomy. 2021; 11(10):2007. https://doi.org/10.3390/agronomy11102007
Chicago/Turabian StylePellinen, Vadim A., Tatiana Yu. Cherkashina, Natalia N. Ukhova, and Anastasia V. Komarova. 2021. "Role of Gravitational Processes in the Migration of Heavy Metals in Soils of the Priolkhonye Mountain-Steppe Landscapes, Lake Baikal: Methodology of Research" Agronomy 11, no. 10: 2007. https://doi.org/10.3390/agronomy11102007
APA StylePellinen, V. A., Cherkashina, T. Y., Ukhova, N. N., & Komarova, A. V. (2021). Role of Gravitational Processes in the Migration of Heavy Metals in Soils of the Priolkhonye Mountain-Steppe Landscapes, Lake Baikal: Methodology of Research. Agronomy, 11(10), 2007. https://doi.org/10.3390/agronomy11102007