Agronomic Effects of Tectona grandis Biochar from Wood Residues on the Growth of Young Cedrela odorata Plants in a Nursery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design of the Trial
2.2. Substrate Preparation
2.3. Preparation of Treatments
2.4. Plant Material
2.5. Management of the Trial
2.6. Plant Growth in Height, Diameter, and Number of Leaves
2.7. Plant Biomass
2.8. Data Processing and Statistical Analysis
3. Results
3.1. Growth in Diameter, Height, and Number of Leaves over Time
3.2. Average Growth in the Diameter, Height, and Number of Leaves at 42 Days of Evaluation
3.3. Variation of the Increase in the Diameter, Height, and Number of Leaves
3.4. Biomass in Cedrela odorata Plant
3.5. Carbon, Hydrogen, Nitrogen, and Sulfur in the Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Escalante Rebolledo, A.; Pérez González, G.; Hidalgo Moreno, C.; López Collado, J.; Campo Alves, J.; Valtierra Pacheco, E.; Etchevers Barra, J.D.; Rebolledo, E.; Pérez López, G.; Hidalgo Moreno, C.; et al. Biocarbón (Biochar) I: Naturaleza, historia, fabricación y uso en el suelo. Terra Latinoam. 2016, 34, 367–382. [Google Scholar]
- Guo, X.X.; Liu, H.T.; Zhang, J. The role of biochar in organic waste composting and soil improvement: A review. Waste Manag. 2020, 102, 884–899. [Google Scholar] [CrossRef]
- Serna, E. Investigación Formativa En Ingeniería, 4th ed.; Instituto Antioqueño de Investigación: Medellín, Colombia, 2020; pp. 15–27. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A Review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar] [CrossRef]
- Semida, W.M.; Beheiry, H.R.; Sétamou, M.; Simpson, C.R.; Abd El-Mageed, T.A.; Rady, M.M.; Nelson, S.D. Biochar implications for sustainable agriculture and environment: A Review. S. Afr. J. Bot. 2019, 127, 333–347. [Google Scholar] [CrossRef]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; Van Der Velde, M.; Diafas, I. Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; JRC55799; European Commission: Luxembourg, 2010. [Google Scholar] [CrossRef]
- Stadler-Kaulich, N.; Perteguer, A.H. Más allá de la agroforestería el biocarbón activado y la madera Rameal Fragmentada: Utilización y preparación en Mollesnejta. Acta Nova 2018, 8, 572–592. [Google Scholar]
- Subedi, R.; Taupe, N.; Pelissetti, S.; Petruzzelli, L.; Bertora, C.; Leahy, J.J.; Grignani, C. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type. J. Environ. Manag. 2016, 166, 73–83. [Google Scholar] [CrossRef]
- Guillermo-Ramírez, J. Desarrollo en etapa de vivero de Gmelina arborea Roxb. Ex Sm sometida a tres dosis de fertilización y Ddos sustratos. Cultiv. Trop. 2017, 38, 45–52. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362017000200006&lng=es&tlng=es (accessed on 25 January 2021).
- Nelson, S.D.; Nelson, M.D.; Nelson, D.S.; Johnston, D.; Nelson, S.C.; Veritas Substrates LLC. Plant Substrate Growing Medium. U.S. Patent 10,959,384. Available online: https://patents.justia.com/patent/20190387695 (accessed on 12 January 2021).
- García, P.G. Evaluación de diferentes sustratos en la producción de plantas de timbó (Enterolobium Contortisiliquum (Vell.) Morong) en contenedor. Bachelor’s Thesis, Universidad Nacional de Luján, Luján, Argentina, 2019. Available online: https://ri.unlu.edu.ar/xmlui/handle/rediunlu/544 (accessed on 31 January 2021).
- Herrera, E.; Feijoo, C.; Alfaro, R.; Solís, J.; Gómez, M.; Keiski, R.; Cruz, G. Producción de biocarbón a partir de biomasa residual y su uso en la germinación y crecimiento en vivero de Capparis scabrida (Sapote). Sci. Agropecu. 2018, 9, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Medina, B.L.; Alex, D. Evaluación del Efecto de Biocarbón Obtenido a Partir de Residuos Sólidos Orgánicos del Mercado Central de Tumbes Sobre la Germinación y Crecimiento de Plantones de Especies Forestales Ceiba Trichistandra y Bursera Graveolens en Etapa de Vivero. Bachelor’s Thesis, Universidad Nacional de Tumbes, Tumbes, Perú, 2019. [Google Scholar]
- Gruda, N.; Qaryouti, M.; Leonardi, C. Growing media. In Good Agricultural Practices for Greenhouse Vegetable Crops—Principles for Mediterranean Climate Areas; Plant Production and Protection Paper 217; FAO: Rome, Italy, 2013; pp. 271–302. Available online: http://www.fao.org/3/i3284e/i3284e.pdf (accessed on 15 February 2021).
- Morales-Maldonado, E.R.; Casanova-Lugo, F. Mezclas de sustratos orgánicos e inorgánicos, tamaño de partícula y proporción. Agron. Mesoam. 2015, 26, 365–372. [Google Scholar] [CrossRef]
- Delaye, L.A.; Ullé, J.Á.; Andruilo, A.E. Aplicación de biochar en un suelo degradado bajo producción de batata. efecto sobre propiedades edáficas. Cienc. del suelo 2020, 38, 162–173. [Google Scholar]
- González-Marquetti, I.; Rodríguez, M.G.; Delgado-Oramas, B.; Hans-Peter, S. Biochar y su contribución a la nutrición, Ccrecimiento y defensa de las plantas. Rev. Protección Veg. 2020, 35, 1–16. [Google Scholar]
- Bader, A.N.; Salerno, G.L.; Covacevich, F.; Consolo, F. Bioformulación de Trichoderma harzianum en sustrato sólido y efectos de su aplicación sobre plantas de pimiento. Rev. Fac. Agron. La Plata 2020, 119, 1–9. [Google Scholar] [CrossRef]
- Manzanilla-Quijada, G.E.; Treviño-Garza, E.J.; Aguirre-Calderón, O.A.; Yerena-Yamallel, J.I.; Manzanilla-Quiñones, U. Current and future potential distribution and identification of suitable areas for the conservation of Cedrela Odorata L. in the Yucatan Peninsula. Rev. Chapingo Ser. Cienc. For. Ambiente 2020, 26, 391–408. [Google Scholar] [CrossRef]
- Calvé Jarque, S.; Murillo, O.; Salazar, L.; Córdoba, D. Aporte económico de la madera de Cedro (Cedrela Odorata L.) como árbol de sombra en cafetales de Pérez Zeledón, Costa Rica. Rev. For. Mesoam. Kurú 2020, 17, 68–77. [Google Scholar] [CrossRef]
- Tenorio, C.; Moya, R. Evaluation of wood properties of four ages of Cedrela odorata trees growing in agroforestry systems with Theobroma cacao in Costa Rica. Agrofor. Syst. 2019, 93, 973–988. [Google Scholar] [CrossRef]
- Aguirre-Medina, J.F.; Mina-Briones, F.O.; Cadena-Iñiguez, J.; Dardón-Zunun, J.D.; Hernández-Sedas, D.A. Crecimiento de Cedrela odorata L. biofertilizada con Rhizophagus intraradices y Azospirillum brasilense en vivero. Rev. Chapingo Ser. Cienc. For. Ambiente 2014, 20, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Sampayo-Maldonado, S.; Jiménez-Casas, M.; López-Upton, J.; Sánchez-Monsalvo, V.; Jasso-Mata, J.; Equihua-Martínez, A.; Castillo-Martínez, C.R. Enraizado de miniestacas de Cedrela Odorata L. Agrociencia 2016, 50, 919–929. [Google Scholar]
- Tualombo Toalombo, P.R. Crecimiento y supervivencia de plántulas de Cedrela Odorata L. (Cedro) en dos sustratos, en el vivero de La Universidad Estatal Amazónica. Bachelor’s Thesis, Universidad Estatal Amazónica, Puyo, Ecuador, 2019. Available online: https://repositorio.uea.edu.ec/handle/123456789/546 (accessed on 24 February 2021).
- IMN, Instituto Metereologico Naciona de Costa Rica. Clima en Costa Rica. 2021. Available online: https://www.imn.ac.cr/clima-en-Costa-Rica (accessed on 7 February 2021).
- Holdridge, L. Ecología Basada en Zonas de Vida; Instuto Interamericano de Cooperación para la Agricultura: San José, Costa Rica, 2000; p. 206. Available online: http://www.cct.or.cr/contenido/wp-content/uploads/2017/11/Ecologia-Basada-en-Zonas-de-Vida-Libro-IV.pdf (accessed on 7 February 2021).
- Berrocal-Méndez, N. Production, cost and characteristics of charcoal from Tectona grandis residues from the logging and sawing process. Instituto Tecnologico de Costa Rica, Escuela de Ingeniería Forestal. B.S, Thesis: Cartago, Costa Rica. Available online: https://repositoriotec.tec.ac.cr/handle/2238/10856 (accessed on 18 October 2021).
- Alberto, E.C.; Reséndez, A.M.; Carrillo, M.G.; Quiroga Garza, H.M.; García, O.Á. Influencia del biocarbón aplicado al suelo sobre atributos de rendimiento y calidad de Avena forrajera. Terra Latinoam. 2018, 36, 221–228. [Google Scholar] [CrossRef]
- Oliveira, D.d.M.C. Preparação, caracterização e avaliação da incorporação de biochar ao solo para germinação de sementes de Pinus Elliottii; Universidade Estadual Paulista (UNESP): Sorocaba, Brazil, 2017; 154p, Available online: http://hdl.handle.net/11449/151866 (accessed on 25 February 2021).
- Sohi, S.; Lopez-Capel, E.; Krull, E.; Bol, R. Biochar, Climate change and soil: A review to guide future research. In CSIRO Land and Water Science Report; CSIRO: Canberra, Australia, 2009; Volume 5, pp. 17–31. [Google Scholar] [CrossRef]
- Haider, G.; Steffens, D.; Moser, G.; Müller, C.; Kammann, C.I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 2017, 237, 80–94. [Google Scholar] [CrossRef]
- Liu Xu, L. Desarrollo de Nuevos Sustratos a Base de Compost y Biochar Para la Propagación y Producción de Rosmarinus Officinalis L. en Vivero Profesional; Universitat Politècnica de València: Valencia, España, 2015; Available online: http://hdl.handle.net/10251/54191 (accessed on 27 February 2021).
- Olmo, M.; Villar, R.; Salazar, P.; Alburquerque, J. Changes in soil nutrient availability explain biochar’s impact on wheat root development. Plant Soil 2015, 57–74. [Google Scholar] [CrossRef]
- Atkinson, D. Root Characteristics: Why and what to measure. In Root Methods; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–32. [Google Scholar] [CrossRef]
- Wang, C.; Alidoust, D.; Yang, X.; Isoda, A. Effects of bamboo biochar on soybean root nodulation in multi-elements contaminated soils. Ecotoxicol. Environ. Saf. 2018, 150, 62–69. [Google Scholar] [CrossRef] [PubMed]
Time | Diameter | Total Height | Number of Leaves | Increment of Diameter | Increment of Height | Increment of Number of Leaves |
---|---|---|---|---|---|---|
7 | 7.88 *** | 36.07 | 2.38 *** | 0 | 0 | 0 |
14 | 10.57 *** | 34.49 *** | 5.02 *** | 1.07 | 1.07 *** | 3.04 |
21 | 12.85 *** | 32.31 *** | 4.61 *** | 1.75 | 0.89 | 1.63 |
28 | 13.52 *** | 32.42 *** | 8.79 *** | 0.33 | 2.45 | 1.93 |
35 | 10.58 *** | 33.83 *** | 9.65 *** | 0.39 | 1.07 | 2.59 |
42 | 9.90 *** | 37.25 *** | 4.63 *** | 1.63 | 6.20 *** | 2.12 |
ANOVA for Biomass | ||||||
Dry biomass leaves | Dry biomass in stem | Dry biomass in root | Total dry biomass | |||
42 | 16.26 *** | 1.18 | 2.20 | 3.00 |
Application Rate (ton/ha) | Leaves (g) | Stem (g) | Root (g) | Total (g) |
---|---|---|---|---|
Control | 0.3607 | 0.6246 | 0.1208 | 1.1060 |
25 | 0.3179 | 0.5951 | 0.2341 | 1.1471 |
50 | 0.4353 | 0.5955 | 0.1622 | 1.1929 |
75 | 0.2215 *** | 0.4504 | 0.1219 | 0.7939 |
Application Rate (ton/ha) | Part of Plant | N (%) | C (%) | H (%) | S (%) | C/N Ratio | C/H Ratio |
---|---|---|---|---|---|---|---|
Control | Leaves | 2.99 | 43.88 | 6.74 | 0.22 | 146.71 | 45.66 |
Root | 2.53 | 39.81 | 5.88 | 0.19 | 157.41 | 67.73 | |
Stem | 1.21 | 40.36 | 6.57 | 0.06 | 333.38 *** | 61.44 | |
25 | Leaves | 3.07 | 45.11 | 6.64 | 0.23 | 102.22 | 67.96 |
Root | 2.81 | 39.05 | 5.61 | 0.23 | 139.07 | 69.61 | |
Stem | 1.25 | 42.06 | 6.57 | 0.06 *** | 337.34 *** | 64.05 *** | |
50 | Leaves | 3.43 *** | 46.32 *** | 6.69 | 0.19 | 134.97 | 69.23 |
Root | 2.23 | 42.11 *** | 6.07 | 0.22 | 188.90 | 69.39 | |
Stem | 1.48 *** | 42.33 *** | 6.47 | 0.06 *** | 287.03 *** | 65.47 *** | |
75 | Leaves | 3.03 | 44.47 *** | 6.59 | 0.23 | 146.65 | 67.52 |
Root | 3.03 *** | 42.59 *** | 6.39 *** | 0.30 | 52.93 *** | 66.64 | |
Stem | 1.09 *** | 42.69 *** | 6.68 | 0.05 *** | 393.27 *** | 63.88 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez Solís, A.; Badilla Valverde, Y.; Moya, R. Agronomic Effects of Tectona grandis Biochar from Wood Residues on the Growth of Young Cedrela odorata Plants in a Nursery. Agronomy 2021, 11, 2079. https://doi.org/10.3390/agronomy11102079
Rodríguez Solís A, Badilla Valverde Y, Moya R. Agronomic Effects of Tectona grandis Biochar from Wood Residues on the Growth of Young Cedrela odorata Plants in a Nursery. Agronomy. 2021; 11(10):2079. https://doi.org/10.3390/agronomy11102079
Chicago/Turabian StyleRodríguez Solís, Arantxa, Yorleny Badilla Valverde, and Róger Moya. 2021. "Agronomic Effects of Tectona grandis Biochar from Wood Residues on the Growth of Young Cedrela odorata Plants in a Nursery" Agronomy 11, no. 10: 2079. https://doi.org/10.3390/agronomy11102079
APA StyleRodríguez Solís, A., Badilla Valverde, Y., & Moya, R. (2021). Agronomic Effects of Tectona grandis Biochar from Wood Residues on the Growth of Young Cedrela odorata Plants in a Nursery. Agronomy, 11(10), 2079. https://doi.org/10.3390/agronomy11102079