Evaluating the Relationship between Mandibular Third Molar and Mandibular Canal with Semiautomatic Segmentation: A Pilot Study on CBCT Datasets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. CBCT Segmentation
2.3. Image Analysis
2.4. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Image Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ueda, M.; Nakamori, K.; Shiratori, K.; Igarashi, T.; Sasaki, T.; Anbo, N.; Kaneko, T.; Suzuki, N.; Dehari, H.; Sonoda, T.; et al. Clinical significance of computed tomographic assessment and anatomic features of the inferior alveolar canal as risk factors for injury of the inferior alveolar nerve at third molar surgery. J. Oral Maxillofac. Surg. 2012, 70, 514–520. [Google Scholar] [CrossRef]
- Hasegawa, T.; Ri, S.; Shigeta, T.; Akashi, M.; Imai, Y.; Kakei, Y.; Shibuya, Y.; Komori, T. Risk factors associated with inferior alveolar nerve injury after extraction of the mandibular third molar—A comparative study of preoperative images by panoramic radiography and computed tomography. Int. J. Oral Maxillofac. Surg. 2013, 42, 843–851. [Google Scholar] [CrossRef]
- Qi, W.; Lei, J.; Liu, Y.N.; Li, J.N.; Pan, J.; Yu, G.Y. Evaluating the risk of post-extraction inferior alveolar nerve injury through the relative position of the lower third molar root and inferior alveolar canal. Int. J. Oral Maxillofac. Surg. 2019, 48, 1577–1583. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, Y.T.; Kayıpmaz, S.; Senel, F.C.; Atasoy, K.T.; Gumrukcu, Z. Does additional cone beam computed tomography decrease the risk of inferior alveolar nerve injury in high-risk cases undergoing third molar surgery? Does CBCT decrease the risk of IAN injury? Int. J. Oral Maxillofac. Surg. 2017, 46, 628–635. [Google Scholar] [CrossRef]
- Borgonovo, A.E.; Rigaldo, F.; Maiorana, C.; Grossi, G.B.; Augusti, D.; Re, D. CBCT evaluation of the tridimensional relationship between impacted lower third molar and the inferior alveolar nerve position. Minerva Stomatol. 2017, 66, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Lin, T.; Wang, Y.; Sun, C.; Yang, L.; Jiang, H.; Cheng, J. Radiographic features of anatomic relationship between impacted third molar and inferior alveolar canal on coronal CBCT images: Risk factors for nerve injury after tooth extraction. Arch. Med. Sci. 2018, 14, 532–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, L.F.; Dutra, K.; Porporatti, A.L.; Mezzomo, L.A.; De Luca Canto, G.; Flores-Mir, C.; Corrêa, M. Anatomical variations of mandibular canal detected by panoramic radiography and CT: A systematic review and meta-analysis. Dentomaxillofac. Radiol. 2016, 45, 20150310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izzetti, R.; Gaeta, R.; Caramella, D.; Giuffra, V. Cone-Beam Computed Tomography vs. Multi-Slice Computed Tomography in paleoimaging: Where we stand. Homo 2020, 71, 63–72. [Google Scholar] [CrossRef]
- Izzetti, R.; Vitali, S.; Gabriele, M.; Caramella, D. Feasibility of a combination of intraoral UHFUS and CBCT in the study of peri-implantitis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, e89–e94. [Google Scholar] [CrossRef] [PubMed]
- Izzetti, R.; Nisi, M.; Aringhieri, G.; Crocetti, L.; Graziani, F.; Nardi, C. Basic Knowledge and New Advances in Panoramic Radiography Imaging Techniques: A Narrative Review on What Dentists and Radiologists Should Know. Appl. Sci. 2021, 11, 7858. [Google Scholar] [CrossRef]
- Del Lhano, N.C.; Ribeiro, R.A.; Martins, C.C.; Assis, N.; Devito, K.L. Panoramic versus CBCT used to reduce inferior alveolar nerve paresthesia after third molar extractions: A systematic review and meta-analysis. Dentomaxillofac. Radiol. 2020, 49, 20190265. [Google Scholar] [CrossRef] [PubMed]
- Sklavos, A.; Delpachitra, S.; Jaunay, T.; Kumar, R.; Chandu, A. Degree of Compression of the Inferior Alveolar Canal on Cone-Beam Computed Tomography and Outcomes of Postoperative Nerve Injury in Mandibular Third Molar Surgery. J. Oral Maxillofac. Surg. 2021, 79, 974–980. [Google Scholar] [CrossRef]
- Alsufyani, N.A.; Flores-Mir, C.; Major, P.W. Three-dimensional segmentation of the upper airway using cone beam CT: A systematic review. Dentomaxillofac. Radiol. 2012, 41, 276–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burström, G.; Buerger, C.; Hoppenbrouwers, J.; Nachabe, R.; Lorenz, C.; Babic, D.; Homan, R.; Racadio, J.M.; Grass, M.; Persson, O.; et al. Machine learning for automated 3-dimensional segmentation of the spine and suggested placement of pedicle screws based on intraoperative cone-beam computer tomography. J. Neurosurg. Spine 2019, 31, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, B.C.; Kharbanda, O.P.; Sardana, V.; Gupta, A.; Vasamsetti, S.; Balachandran, R.; Rana, S.S.; Sardana, H.K. A pilot study for segmentation of pharyngeal and sino-nasal airway subregions by automatic contour initialization. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1877–1893. [Google Scholar] [CrossRef] [PubMed]
- Galibourg, A.; Dumoncel, J.; Telmon, N.; Calvet, A.; Michetti, J.; Maret, D. Assessment of automatic segmentation of teeth using a watershed-based method. Dentomaxillofac. Radiol. 2018, 47, 20170220. [Google Scholar] [CrossRef]
- Kauke, M.; Safi, A.F.; Kreppel, M.; Grandoch, A.; Nickenig, H.J.; Zöller, J.E.; Dreiseidler, T. Size distribution and clinicoradiological signs of aggressiveness in odontogenic myxoma-three-dimensional analysis and systematic review Dentomaxillofac. Radiol. 2018, 47, 20170262. [Google Scholar] [CrossRef]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botticelli, S.; Verna, C.; Cattaneo, P.M.; Heidmann, J.; Melsen, B. Two- versus three-dimensional imaging in subjects with unerupted maxillary canines. Eur. J. Orthod. 2011, 33, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michetti, J.; Maret, D.; Mallet, J.P.; Diemer, F. Validation of cone beam computed tomography as a tool to explore root canal anatomy. J. Endod. 2010, 36, 1187–1190. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qiao, S.C.; Gu, Y.X.; Zhang, X.M.; Shi, J.Y.; Lai, H.C. A novel semiautomatic segmentation protocol to evaluate guided bone regeneration outcomes: A pilot randomized, controlled clinical trial. Clin. Oral Implant. Res. 2019, 30, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Antila, K.; Lilja, M.; Kalke, M. Segmentation of facial bone surfaces by patch growing from cone beam CT volumes. Dentomaxillofac. Radiol. 2016, 45, 20150435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdolali, F.; Zoroofi, R.A.; Otake, Y.; Sato, Y. A novel image-based retrieval system for characterization of maxillofacial lesions in cone beam CT images. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Koerich, L.; Burns, D.; Weissheimer, A.; Claus, J.D.P. Three-dimensional maxillary and mandibular regional superimposition using cone beam computed tomography: A validation study. Int. J. Oral Maxillofac. Surg. 2016, 45, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, E.; Khalil, W.; Ezeldeen, M.; Van de Casteele, E.; Sun, Y.; Politis, C.; Jacobs, R. Accuracy of segmentation of tooth structures using 3 different CBCT machines. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017, 123, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Agbaje, J.O.; de Casteele, E.V.; Salem, A.S.; Anumendem, D.; Lambrichts, I.; Politis, C. Tracking of the inferior alveolar nerve: Its implication in surgical planning. Clin. Oral Investig. 2017, 21, 2213–2220. [Google Scholar] [CrossRef]
- Vallaeys, K.; Kacem, A.; Legoux, H.; Le Tenier, M.; Hamitouche, C.; Arbab-Chirani, R.l. 3D dento-maxillary osteolytic lesion and active contour segmentation pilot study in CBCT: Semiautomatic vs manual methods. Dentomaxillofac. Radiol. 2015, 44, 20150079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ICC (95% CIs) CBCT | ICC (95% CIs) Segmented Images | |
---|---|---|
Root morphology | ||
Root axis parallel to the major tooth axis | 0.912 (0.899, 0.947) | 0.941 (0.879, 0.972) * |
Presence of root curvature | 0.961 (0.954, 0.973) | 0.973 (0.964, 0.998) |
Bifid apex | 0.936 (0.902, 0.958) | 0.985 (0.971, 0.993) * |
Canal course | ||
Absence of relationship with third molar roots | 0.969 (0.954, 0.983) | 0.987 (0.974, 0.991) * |
Contact with IAN (preservation of lamina dura) | 0.865 (0.857, 0.872) | 0.954 (0.949, 0.963) * |
Close contact with IAN (loss of lamina dura) | 0.842 (0.821, 0.8.56) | 0.921(0.909, 0.927) * |
Cortical bone | ||
Preserved bone thickness | 0.934 (0.926, 0.939) | 0.992 (0.988, 0.999) * |
Thinning of the cortical bone | 0.949 (0.919, 0.964) | 0.967 (0.964, 0.971) |
Cortical bone fenestration | 0.893 (0.889, 0.897) | 0.996 (0.982, 0.99) * |
ICC (95% CIs) | |||
---|---|---|---|
Oral Surgeons | General Practitioners | Residents in Oral Surgery | |
Root morphology | |||
CBCT | 0.97 (0.89, 0.99) * | 0.93 (0.86, 0.95) | 0.94 (0.90, 0.96) |
Segmented images | 0.99 (0.97, 0.99) * | 0.95 (0.92, 0.98) | 0.97 (0.95, 0.99) |
Canal course | |||
CBCT | 0.96 (0.91, 0.99) | 0.94 (0.87, 0.96) | 0.94 (0.93, 0.96) |
Segmented images | 0.98 (0.96, 0.99) * | 0.95 (0.87, 0.95) | 0.96 (0.94, 0.97) |
Cortical bone | |||
CBCT | 0.96 (0.93, 0.97) | 0.93 (0.88, 0.94) | 0.93 (0.89, 0.95) |
Segmented images | 0.99 (0.97, 0.99) * | 0.97 (0.95, 0.98) | 0.95 (0.93, 0.96) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izzetti, R.; Nisi, M.; Gennai, S.; Graziani, F. Evaluating the Relationship between Mandibular Third Molar and Mandibular Canal with Semiautomatic Segmentation: A Pilot Study on CBCT Datasets. Appl. Sci. 2022, 12, 502. https://doi.org/10.3390/app12010502
Izzetti R, Nisi M, Gennai S, Graziani F. Evaluating the Relationship between Mandibular Third Molar and Mandibular Canal with Semiautomatic Segmentation: A Pilot Study on CBCT Datasets. Applied Sciences. 2022; 12(1):502. https://doi.org/10.3390/app12010502
Chicago/Turabian StyleIzzetti, Rossana, Marco Nisi, Stefano Gennai, and Filippo Graziani. 2022. "Evaluating the Relationship between Mandibular Third Molar and Mandibular Canal with Semiautomatic Segmentation: A Pilot Study on CBCT Datasets" Applied Sciences 12, no. 1: 502. https://doi.org/10.3390/app12010502
APA StyleIzzetti, R., Nisi, M., Gennai, S., & Graziani, F. (2022). Evaluating the Relationship between Mandibular Third Molar and Mandibular Canal with Semiautomatic Segmentation: A Pilot Study on CBCT Datasets. Applied Sciences, 12(1), 502. https://doi.org/10.3390/app12010502