Rylene Dye-Loaded Polymeric Nanoparticles for Photothermal Eradication of Harmful Dinoflagellates, Akashiwo sanguinea and Alexandrium pacificum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Reagents and Solvents for NP
2.1.2. Cell Isolation and Cultures
2.2. Methods
2.2.1. Preparation of Dye Loaded sIPN
2.2.2. CMT Test
2.2.3. Dynamic Light Scattering
2.2.4. Settling Assay of NP Uptake by Algal Species
2.2.5. Statistical Analysis
2.2.6. SEM Imaging
2.2.7. NIR Laser Irradiation—Power Variation
2.2.8. NIR Laser Irradiation—Time Variation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arranja, A.; Schroder, A.P.; Schmutz, M.; Waton, G.; Schosseler, F.; Mendes, E. Cytotoxicity and internalization of Pluronic micelles stabilized by core cross-linking. J. Control. Release 2014, 196, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Kabanov, A.V.; Nazarova, I.R.; Astafieva, I.V.; Batrakova, E.V.; Alakhov, V.Y.; Yaroslavov, A.A.; Kabanov, V.A. Micelle formation and solubilization of fluorescent probes in poly (oxyethylene-b-oxypropylene-b-oxyethylene) solutions. Macromolecules 1995, 28, 2303–2314. [Google Scholar] [CrossRef]
- Torchilin, V.P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 2007, 24, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.T.; Bronich, T.K.; Kabanov, A.V. Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic® block copolymers. J. Control. Release 2004, 94, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Hao, J.; Yuan, S.; Li, Y.; Juan, W.; Sha, X.; Fang, X. Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: Formulation, optimization and in vitro characterization. Int. J. Pharm. 2009, 376, 176–185. [Google Scholar] [CrossRef]
- Rösler, A.; Vandermeulen, G.W.; Klok, H.-A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev. 2012, 64, 270–279. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Bae, J.W.; Choi, J.H.; Lee, J.S.; Park, K.D. Bioreducible cross-linked Pluronic micelles: pH-triggered release of doxorubicin and folate-mediated cellular uptake. J. Bioact. Compat. Polym. 2013, 28, 341–354. [Google Scholar] [CrossRef]
- Panyam, J.; Labhasetwar, V. Dynamics of endocytosis and exocytosis of poly (d,l-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm. Res. 2003, 20, 212–220. [Google Scholar] [CrossRef]
- Bjerk, T.R.; Severino, P.; Jain, S.; Marques, C.; Silva, A.M.; Pashirova, T.; Souto, E.B. Biosurfactants: Properties and applications in drug delivery, biotechnology and ecotoxicology. Bioengineering 2021, 8, 115. [Google Scholar] [CrossRef]
- Yang, L.; Alexandridis, P. Physicochemical aspects of drug delivery and release from polymer-based colloids. Curr. Opin. Colloid Interface Sci. 2000, 5, 132–143. [Google Scholar] [CrossRef]
- Choi, K.Y.; Liu, G.; Lee, S.; Chen, X. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: Current approaches and future perspectives. Nanoscale 2012, 4, 330–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2012, 64, 37–48. [Google Scholar] [CrossRef]
- Kwon, G.S.; Naito, M.; Kataoka, K.; Yokoyama, M.; Sakurai, Y.; Okano, T. Block copolymer micelles as vehicles for hydrophobic drugs. Colloids Surf. B Biointerfaces 1994, 2, 429–434. [Google Scholar] [CrossRef]
- Ferrari, M. Nanovector therapeutics. Curr. Opin. Chem. Biol. 2005, 9, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nano-Enabled Med. Appl. 2007, 2, 751–760. [Google Scholar] [CrossRef]
- Ryu, J.H.; Lee, S.; Son, S.; Kim, S.H.; Leary, J.F.; Choi, K.; Kwon, I.C. Theranostic nanoparticles for future personalized medicine. J. Control. Release 2014, 190, 477–484. [Google Scholar] [CrossRef]
- Kim, H.K.; Park, T.G. Surface stabilization of diblock PEG-PLGA micelles by polymerization of N-vinyl-2-pyrrolidone. Macromol. Rapid Commun. 2002, 23, 26–31. [Google Scholar] [CrossRef]
- Ishida, O.; Maruyama, K.; Sasaki, K.; Iwatsuru, M. Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int. J. Pharm. 1999, 190, 49–56. [Google Scholar] [CrossRef]
- Pruitt, J.D.; Husseini, G.; Rapoport, N.; Pitt, W.G. Stabilization of Pluronic P-105 micelles with an interpenetrating network of N,N-diethylacrylamide. Macromolecules 2000, 33, 9306–9309. [Google Scholar] [CrossRef]
- Lee, H.; Lee, Y.S.; Lee, K.D.; Park, S.Y. Development of disulfide core-crosslinked pluronic nanoparticles as an effective anticancer-drug-delivery system. Macromol. Biosci. 2011, 11, 1264–1271. [Google Scholar]
- Petrov, P.; Bozukov, M.; Tsvetanov, C.B. Innovative approach for stabilizing poly (ethylene oxide)-b-poly (propylene oxide)-b-poly (ethylene oxide) micelles by forming nano-sized networks in the micelle. J. Mater. Chem. 2005, 15, 1481–1486. [Google Scholar] [CrossRef]
- Rapoport, N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci. 2007, 32, 962–990. [Google Scholar] [CrossRef]
- Avlasevich, Y.; Müllen, K. An efficient synthesis of quaterrylenedicarboximide NIR dyes. J. Org. Chem. 2007, 72, 10243–10246. [Google Scholar] [CrossRef] [PubMed]
- Avlasevich, Y.; Li, C.; Müllen, K. Synthesis and applications of core-enlarged perylene dyes. J. Mater. Chem. 2010, 20, 3814–3826. [Google Scholar] [CrossRef]
- Guo, L. Doing battle with the green monster of Taihu Lake. Science 2007, 317, 1166. [Google Scholar] [CrossRef]
- Jin, X.; Xu, Q.; Huang, C. Current status and future tendency of lake eutrophication in China. Sci. China Ser. C Life Sci. 2005, 48, 948–954. [Google Scholar]
- Choi, H.; Kim, S. Heterocapsa busanensis sp. nov. (Peridiniales, Dinophyceae): A new marine thecate dinoflagellate from Korean coastal waters. Eur. J. Protistol. 2021, 79, 125797. [Google Scholar] [CrossRef]
- Van Apeldoorn, M.E.; Van Egmond, H.P.; Speijers, G.J.; Bakker, G.J. Toxins of cyanobacteria. Mol. Nutr. Food Res. 2007, 51, 7–60. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Zhu, Y. Identification of microcystins in waters used for daily life by people who live on Tai Lake during a serious cyanobacteria dominated bloom with risk analysis to human health. Environ. Toxicol. Int. J. 2009, 24, 82–86. [Google Scholar] [CrossRef]
- Oliver, R.L.; Ganf, G.G. Freshwater blooms. In The Ecology of Cyanobacteria; Springer: Dordrecht, The Netherlands, 2000; pp. 149–194. [Google Scholar]
- Hall, T.; Hart, J.; Croll, B.; Gregory, R. Laboratory-scale investigations of algal toxin removal by water treatment. Water Environ. J. 2000, 14, 143–149. [Google Scholar] [CrossRef]
- Ghernaout, B.; Ghernaout, D.; Saiba, A. Algae and cyanotoxins removal by coagulation/flocculation: A review. Desalination Water Treat. 2010, 20, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Alexandridis, P.; Nivaggioli, T.; Hatton, T.A. Temperature effects on structural properties of Pluronic P104 and F108 PEO-PPO-PEO block copolymer solutions. Langmuir 1995, 11, 1468–1476. [Google Scholar] [CrossRef]
- Rapoport, N. Stabilization and activation of Pluronic micelles for tumor-_targeted drug delivery. Colloids Surf. B Biointerfaces 1999, 16, 93–111. [Google Scholar] [CrossRef]
- Kabanov, A.V.; Batrakova, E.V.; Alakhov, V.Y. Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release 2002, 82, 189–212. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Kim, H.; Kang, M.; Kwak, M.; Kang, H.W. Application of organic IR788-loaded semi-interpenetrating network dyes for photoacoustic imaging. Jpn. J. Appl. Phys. 2017, 56, 07JF12. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.; Kim, H.; Lee, T.H.; Huh, Y.H.; Kim, Y.S.; Park, S.J.; Jin, J.-O.; Lee, P.C.W.; Kwak, M. Highly photostable rylene-encapsulated polymeric nanoparticles for fluorescent labeling in biological system. J. Ind. Eng. Chem. 2019, 80, 239–246. [Google Scholar] [CrossRef]
- Oktavia, L.; Jeong, S.M.; Kang, M.; Kim, H.; Lee, T.H.; Zhang, J.; Seo, H.; Lee, J.; Han, D.; An, Y.; et al. Dye encapsulated polymeric nanoprobes for in vitro and in vivo fluorescence imaging in panchromatic range. J. Ind. Eng. Chem. 2019, 73, 87–94. [Google Scholar] [CrossRef]
- Tănase, M.A.; Raducan, A.; Oancea, P.; Diţu, L.M.; Stan, M.; Petcu, C.; Scomoroşcenco, C.; Ninciuleanu, C.M.; Nistor, C.L.; Cinteza, L.O. Mixed pluronic—Cremophor polymeric micelles as nanocarriers for poorly soluble antibiotics—The influence on the antibacterial activity. Pharmaceutics 2021, 13, 435. [Google Scholar] [CrossRef] [PubMed]
- Bohorquez, M.; Koch, C.; Trygstad, T.; Pandit, N. A study of the temperature-dependent micellization of pluronic F127. J. Colloid Interface Sci. 1999, 216, 34–40. [Google Scholar] [CrossRef]
- Hwang, J.; Kang, M.; Sari, M.I.; Lee, T.H.; Kim, K.; Choi, Y.K.; Lee, E.; Ryu, J.H.; Baek, S.K.; Ahn, D.J.; et al. Phosphate-functionalized stabilized F127 nanoparticles: Introduction of discrete surface charges and electrophoretic determination of aggregation number. Macromol. Res. 2019, 27, 657–662. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, C.; Tan, L.; Wang, J. Toxicity of Co nanoparticles on three species of marine microalgae. Environ. Pollut. 2018, 236, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Jeon, B.S.; Park, M.G. Parvilucifera multicavata sp. nov. (Alveolata, Perkinsozoa), a new parasitoid infecting marine dinoflagellates having abundant apertures on the sporangium. Protist 2020, 171, 125743. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Yang, W.; Leaw, C.P.; Pospelova, V.; Bilien, G.; Liow, G.R.; Lim, P.T.; Gu, H. Cryptic diversity within the harmful dinoflagellate Akashiwo sanguinea in coastal Chinese waters is related to differentiated ecological niches. Harmful Algae 2017, 66, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Soeriawidjaja, B.F.; Kang, M.; Kim, H.; Yang, H.K.; Kim, J.H.; Kwak, M. Near infrared dye-encapsulated polymeric nanoparticles with enhanced photostability under hyperthermal condition. Mol. Cryst. Liq. Cryst. 2019, 687, 53–59. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumpa, N.F.; Kang, M.; Yoo, J.; Kim, S.; Kwak, M. Rylene Dye-Loaded Polymeric Nanoparticles for Photothermal Eradication of Harmful Dinoflagellates, Akashiwo sanguinea and Alexandrium pacificum. Bioengineering 2022, 9, 170. https://doi.org/10.3390/bioengineering9040170
Tumpa NF, Kang M, Yoo J, Kim S, Kwak M. Rylene Dye-Loaded Polymeric Nanoparticles for Photothermal Eradication of Harmful Dinoflagellates, Akashiwo sanguinea and Alexandrium pacificum. Bioengineering. 2022; 9(4):170. https://doi.org/10.3390/bioengineering9040170
Chicago/Turabian StyleTumpa, Naz Fathma, Mingyeong Kang, Jiae Yoo, Sunju Kim, and Minseok Kwak. 2022. "Rylene Dye-Loaded Polymeric Nanoparticles for Photothermal Eradication of Harmful Dinoflagellates, Akashiwo sanguinea and Alexandrium pacificum" Bioengineering 9, no. 4: 170. https://doi.org/10.3390/bioengineering9040170
APA StyleTumpa, N. F., Kang, M., Yoo, J., Kim, S., & Kwak, M. (2022). Rylene Dye-Loaded Polymeric Nanoparticles for Photothermal Eradication of Harmful Dinoflagellates, Akashiwo sanguinea and Alexandrium pacificum. Bioengineering, 9(4), 170. https://doi.org/10.3390/bioengineering9040170