Association of RS708272 (CETP Gene Variant) with Lipid Profile Parameters and the Risk of Myocardial Infarction in the White Population of Western Siberia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CVD | cardiovascular disease |
HDL-C | high-density lipoprotein cholesterol |
LDL-C | low-density lipoprotein cholesterol |
PCR | polymerase chain reaction |
SNV | single-nucleotide variant |
TC | total cholesterol |
TGs | triglycerides |
References
- Nielsen, S.H.; Mouton, A.J.; DeLeon-Pennell, K.Y.; Genovese, F.; Karsdal, M.; Lindsey, M.L. Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix Biol. 2019, 75–76, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Lewington, S.; Whitlock, G.; Clarke, R.; Sherliker, P.; Emberson, J.; Halsey, J.; Qizilbash, N.; Peto, R.; Collins, R. Blood cholesterol and vascular mortality by age, sex, and blood pressure: A meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 2007, 370, 1829–1839. [Google Scholar] [CrossRef] [PubMed]
- Bruce, C.; Chouinard, R.A., Jr.; Tall, A.R. Plasma lipid transfer proteins, high-density lipoproteins, and reverse cholesterol transport. Annu. Rev. Nutr. 1998, 18, 297–330. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.V.; Cuchel, M.; de la Llera-Moya, M.; Rodrigues, A.; Burke, M.F.; Jafri, K.; French, B.C.; Phillips, J.A.; Mucksavage, M.L.; Wilensky, R.L.; et al. Cholesterol Efflux Capacity, High-Density Lipoprotein Function, and Atherosclerosis. N. Engl. J. Med. 2011, 364, 127–135. [Google Scholar] [CrossRef]
- Paththinige, C.S.; Sirisena, N.D.; Dissanayake, V.H.W. Genetic determinants of inherited susceptibility to hypercholesterolemia—A comprehensive literature review. Lipids Health Dis. 2017, 16, 103. [Google Scholar] [CrossRef]
- Iwanicka, J.; Iwanicki, T.; Niemiec, P.; Balcerzyk, A.; Krauze, J.; Górczyńska-Kosiorz, S.; Ochalska-Tyka, A.; Grzeszczak, W.; Żak, I. Relationship between CETP gene polymorphisms with coronary artery disease in Polish population. Mol. Biol. Rep. 2018, 45, 1929–1935. [Google Scholar] [CrossRef]
- Arikan, G.D.; Isbir, S.; Yilmaz, S.G.; Isbir, T. Characteristics of coronary artery disease patients who have a polymorphism in the cholesterol ester transfer protein (CETP) gene. In Vivo 2019, 33, 787–792. [Google Scholar] [CrossRef]
- Vargas-Alarcon, G.; Perez-Mendez, O.; Herrera-Maya, G.; Garcia-Sanchez, C.; Martinez-Rios, M.A.; Peña-Duque, M.A.; Posadas-Sanchez, R.; Posadas-Romero, C.; Escobedo, G.; Fragoso, J.M. CETP and LCAT Gene Polymorphisms Are Associated with High-Density Lipoprotein Subclasses and Acute Coronary Syndrome. Lipids 2018, 53, 157–166. [Google Scholar] [CrossRef]
- Guo, S.X.; Yao, M.H.; Ding, Y.S.; Zhang, J.Y.; Yan, Y.Z.; Liu, J.M.; Zhang, M.; Rui, D.S.; Niu, Q.; Jia, H.; et al. Associations of Cholesteryl Ester Transfer Protein TaqIB Polymorphism with the Composite Ischemic Cardiovascular Disease Risk and HDL-C Concentrations: A Meta-Analysis. Int. J. Env. Res. Public Health 2016, 13, 882. [Google Scholar] [CrossRef]
- Nagano, M.; Yamashita, S.; Hirano, K.; Takano, M.; Maruyama, T.; Ishihara, M.; Sagehashi, Y.; Kujiraoka, T.; Tanaka, K.; Hattori, H.; et al. Molecular mechanisms of cholesterol ester transfer protein deficiency in Japanese. J. Atheroscler. Thromb. 2004, 11, 110–121. [Google Scholar] [CrossRef]
- Kuivenhoven, J.A.; de Knijff, P.; Boer, J.M.; Smalheer, H.A.; Botma, G.J.; Seidell, J.C.; Kastelein, J.J.; Pritchard, P.H. Heterogeneity at the CETP gene locus: Influence on plasma CETP concentrations and HDL cholesterol levels. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulou, K.K.; Kolovou, G.D.; Kostakou, P.M.; Mihas, C.; Hatzigeorgiou, G.; Marvaki, C.; Degiannis, D.; Mikhailidis, D.P.; Cokkinos, D.V. Sex-associated effect of CETP and LPL polymorphisms on postprandial lipids in familial hypercholesterolaemia. Lipids Health Dis. 2009, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Odorvas, J.M.; Cupples, L.A.; Corella, D.; Otvos, J.D.; Osgood, D.; Martinez, A.; Lahoz, C.; Coltell, O.; Wilson, P.W.; Schaefer, E.J. Association of cholesteryl ester transfer protein—TaqI B polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: The Framingham study. Arter. Thromb. Vasc. Biol. 2000, 20, 1323–1329. [Google Scholar] [CrossRef]
- Peasey, A.; Bobak, M.; Kubinova, R.; Malyutina, S.; Pajak, A.; Tamosiunas, A.; Pikhart, H.; Nicholson, A.; Marmot, M. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: Rationale and Design of the HAPIEE study. BMC Public Health 2006, 6, 255–264. [Google Scholar] [CrossRef]
- Sambrook, J.; Russel, D.W. Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc. 2006, 1. [Google Scholar] [CrossRef]
- Gafarov, V.; Gafarova, A. Who programs: “register acute myocardial infarction”, “Monica”—Dynamics acute cardiovascular accident at years 1977–2009 in general population aged 25–64 years in Russia. Rus. J. Cardiol. 2016, 132, 129–134. [Google Scholar] [CrossRef]
- Khera, A.V.; Emdin, C.A.; Drake, I.; Natarajan, P.; Bick, A.G.; Cook, N.R.; Chasman, D.I.; Baber, U.; Mehran, R.; Rader, D.J.; et al. Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. N. Engl. J. Med. 2016. [Google Scholar] [CrossRef]
- Tada, H.; Melander, O.; Louie, J.Z.; Catanese, J.J.; Rowland, C.M.; Devlin, J.J.; Kathiresan, S.; Shiffman, D. Risk prediction by genetic risk scores for coronary heart disease is independent of self-reported family history. Eur. Heart J. 2016, 37, 561–567. [Google Scholar] [CrossRef]
- Mega, J.L.; Stitziel, N.O.; Smith, J.G.; Chasman, D.I.; Caulfield, M.; Devlin, J.J.; Nordio, F.; Hyde, C.; Cannon, C.P.; Sacks, F.; et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: An analysis of primary and secondary prevention trials. Lancet 2015, 385, 2264–2271. [Google Scholar] [CrossRef]
- Brautbar, A.; Pompeii, L.A.; Dehghan, A.; Ngwa, J.S.; Nambi, V.; Virani, S.S.; Rivadeneira, F.; Uitterlinden, A.G.; Hofman, A.; Witteman, J.C.; et al. A genetic risk score based on direct associations with coronary heart disease improves coronary heart disease risk prediction in the Atherosclerosis Risk in Communities (ARIC), but not in the Rotterdam and Framingham Offspring, Studies. Atherosclerosis 2012, 223, 421–426. [Google Scholar] [CrossRef]
- Thanassoulis, G.; Peloso, G.M.; Pencina, M.J.; Hoffmann, U.; Fox, C.S.; Cupples, L.A.; Levy, D.; D’Agostino, R.B.; Hwang, S.J.; O’Donnell, C.J. A genetic risk score is associated with incident cardiovascular disease and coronary artery calcium: The Framingham Heart Study. Circ. Cardiovasc. Genet. 2012, 5, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Ripatti, S.; Tikkanen, E.; Orho-Melander, M.; Havulinna, A.S.; Silander, K.; Sharma, A.; Guiducci, C.; Perola, M.; Jula, A.; Sinisalo, J.; et al. A multilocus genetic risk score for coronary heart disease: Case-control and prospective cohort analyses. Lancet 2010, 376, 1393–1400. [Google Scholar] [CrossRef]
- Stenlund, H.; Lönnberg, G.; Jenkins, P.; Norberg, M.; Persson, M.; Messner, T.; Boman, K.; Pearson, T.; Wall, S.; Nyström, L.; et al. Fewer deaths from cardiovascular disease than expected from the Systematic Coronary Risk Evaluation chart in a Swedish population. Eur. J. Cardiovasc. Prev. Rehabil. 2009. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, D.M.; Wilson, P.W.; Larson, M.G.; Beiser, A.; Leip, E.P.; D’Agostino, R.B.; Lévy, D. Framingham risk score and prediction of lifetime risk for coronary heart disease. Am. J. Cardiol. 2004, 94, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Shakhtshneider, E.V.; Kulikov, I.V.; Maksimov, V.N.; Ragino, Y.I.; Ivanova, M.V.; Voevoda, M.I. CETP Gene Polymorphism in the Caucasian Population of West Siberia and in Groups Contrast by Total Serum Cholesterol Levels. Bull. Exp. Biol. Med. 2014, 157, 364–367. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wu, X.Y.; Xu, J.; Qian, Y.; Zhou, C.W.; Wang, B. ApoA5 -1131T/C, FgB -455G/A, -148C/T and CETP Taq1B gene polymorphisms and coronary artery disease in the Chinese population: A meta-analysis of 15,055 subjects. Mol. Biol. Rep. 2013, 40, 1997–2014. [Google Scholar] [CrossRef]
- Maksimov, V.N.; Orlov, P.S.; Ivanova, A.A.; Lozhkina, N.G.; Kuimov, A.D.; Savchenko, S.V.; Novoselov, V.P.; Voevoda, M.I.; Malyutina, S.K. Complex Evaluation of the Significance of Populational Genetic Markers Associated with Myocardial Infarction and Risk Factors. Russ. J. Cardiol. 2017, 33–41. [Google Scholar] [CrossRef]
- Cai, G.; Shi, G.; Huang, Z. Gender specific effect of CETP rs 708272 polymorphism on lipid and atherogenic index of plasma levels but not on the risk of coronary artery disease: A case-control study. Medicine (Baltimore) 2018, 97, e13514. [Google Scholar] [CrossRef]
- Regitz-Zagrosek, V.; Kararigas, G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol. Rev. 2017, 97, 1–37. [Google Scholar] [CrossRef]
- Mehta, L.S.; Beckie, T.M.; DeVon, H.A.; Grines, C.L.; Krumholz, H.M.; Johnson, M.N.; Lindley, K.J.; Vaccarino, V.; Wang, T.Y.; Watson, K.E.; et al. Acute myocardial infarction in women. A scientific statement from the American Heart Association. Circulation 2016, 133, 916–947. [Google Scholar] [CrossRef]
- Balaian, N.M.; Shebzukhova, M.M.; Grachev, N.S.; Muradianc, A.A.; Shostak, N.A. A comparison of gender differences in clinical and angiographic characteristics in young adults with myocardial infarction. Bull. RSMU 2016, 5, 41–47. [Google Scholar] [CrossRef]
Males | Females | Both Sexes | |
---|---|---|---|
Number of subjects | 1503 | 1628 | 3132 |
Age, years | 56.6 ± 0.2 | 56.5 ± 0.2 | 56.5 ± 0.1 |
TC, mg/dL | 235.5 ± 1.4 | 253.4 ± 1.5 | 244.8 ± 1.1 |
HDL-C, mg/dL | 57.9 ± 0.4 | 60.8 ± 0.5 | 59.4 ± 0.3 |
LDL-C, mg/dL | 115.9 ± 1.2 | 127.6 ± 1.3 | 122 ± 0.9 |
TGs, mg/dL | 136.1 ± 2 | 143.1 ± 2.1 | 139.8 ± 1.5 |
Index of atherogenicity | 2.8 ± 0.03 | 2.9 ± 0.03 | 2.8 ± 0.03 |
Fasting glucose, mmol/L | 5.7 ± 0.06 | 5.7 ± 0.06 | 5.7 ± 0.04 |
Body mass index, kg/m2 | 26.5 ± 0.1 | 29.7 ± 0.1 | 28.1 ± 0.1 |
Waist circumference, cm | 94.8 ± 0.3 | 92.3 ± 0.4 | 93.5 ± 0.2 |
Systolic blood pressure, mmHg | 143.1 ± 0.6 | 143.6 ± 0.6 | 143.4 ± 0.4 |
Diastolic blood pressure, mmHg | 90 ± 0.3 | 89.8 ± 0.3 | 89.9 ± 0.2 |
Heart rate, bpm | 71.5 ± 0.3 | 71.7 ± 0.3 | 71.6 ± 0.2 |
Males | Females | Both Sexes | |
---|---|---|---|
% | % | % | |
Genotypes | |||
AA | 0.22 n = 334 | 0.21 n = 336 | 0.21 n = 670 |
AG | 0.47 n = 707 | 0.50 n = 815 | 0.49 n = 1522 |
GG | 0.31 n = 463 | 0.29 n = 477 | 0.30 n = 940 |
Alleles | |||
A | 0.4571 | 0.4566 | 0.4568 |
G | 0.5428 | 0.5433 | 0.5431 |
Sex | Genotype | TC, mg/dL | HDL-C, mg/dL | LDL-C, mg/dL | TGs, mg/dL | Index of Atherogenicity | Fasting Glucose, mM | BMI, kg/m2 | Systolic BP, mmHg | Diastolic BP, mmHg | Heart Rate, bpm |
---|---|---|---|---|---|---|---|---|---|---|---|
Males | AA | 238.5 ± 3 | 59.6 ± 0.8 | 115.3 ± 2.5 | 140.5 ± 4.7 | 2.72 ± 0.07 | 5.85 ± 0.14 | 26.4 ± 0.2 | 144 ± 1.3 | 90.2 ± 0.8 | 71.8 ± 0.7 |
AG | 236.3 ± 2.1 | 58.2 ± 0.6 | 116.8 ± 1.7 | 135.2 ± 2.8 | 2.78 ± 0.05 | 5.57 ± 0.07 | 26.5 ± 0.2 | 143.5 ± 0.9 | 90.5 ± 0.5 | 71.6 ± 0.5 | |
GG | 232.1 ± 2.4 | 56.2 ± 0.7 | 114.9 ± 2.1 | 134.5 ± 3.7 | 2.86 ± 0.07 | 5.79 ± 0.11 | 26.4 ± 0.2 | 141.8 ± 1.1 | 89.1 ± 0.6 | 71.2 ± 0.6 | |
p | 0.317 | 0.006 * | 0.578 | 0.631 | 0.226 | 0.06 | 0.948 | 0.428 | 0.265 | 0.734 | |
Females | AA | 251.5 ± 3.3 | 65.3 ± 1.7 | 123.7 ± 3.1 | 137.7 ± 4.6 | 2.62 ± 0.07 | 5.69 ± 0.12 | 29.6 ± 0.3 | 144.6 ± 1.4 | 90.3 ± 0.7 | 71.2 ± 0.6 |
AG | 254.9 ± 2.3 | 59.9 ± 0.5 | 128.7 ± 1.9 | 146.3 ± 3.1 | 2.94 ± 0.05 | 5.75 ± 0.09 | 29.8 ± 0.9 | 143 ± 0.9 | 89.5 ± 0.5 | 71.9 ± 0.4 | |
GG | 252.3 ± 2.7 | 59.1 ± 0.6 | 128.3 ± 2.3 | 141.5 ± 3.6 | 2.99 ± 0.07 | 5.59 ± 0.09 | 29.6 ± 0.3 | 144.1 ± 1.1 | 90 ± 0.6 | 71.8 ± 0.5 | |
p | 0.426 | <0.001 * | 0.314 | 0.152 | <0.001 * | 0.452 | 0.838 | 0.354 | 0.461 | 0.532 | |
Both sexes | AA | 245 ± 2.2 | 62.5 ± 1 | 119.5 ± 2 | 139.1 ± 3.3 | 2.67 ± 0.05 | 5.77 ± 0.09 | 28 ± 0.2 | 144.3 ± 1 | 90.3 ± 0.5 | 71.5 ± 0.4 |
AG | 246.2 ± 1.6 | 59.1 ± 0.4 | 123.2 ± 1.3 | 141.1 ± 2.1 | 2.87 ± 0.04 | 5.67 ± 0.06 | 28.3 ± 0.1 | 143.2 ± 0.6 | 90 ± 0.3 | 71.7 ± 0.3 | |
GG | 242.4 ± 1.8 | 57.7 ± 0.5 | 121.7 ± 1.6 | 138 ± 2.6 | 2.93 ± 0.05 | 5.68 ± 0.07 | 28 ± 0.2 | 143 ± 0.8 | 89.6 ± 0.4 | 71.5 ± 0.4 | |
p | 0.426 | <0.001 * | 0.314 | 0.152 | <0.001 * | 0.452 | 0.838 | 0.354 | 0.461 | 0.532 |
Sex | Genotype | Subgroup | Myocardial Infarction Cases | OR (95% CI) | p | ||
---|---|---|---|---|---|---|---|
n | % | n | % | ||||
Males | AA | 323 | 22.5 | 11 | 15.7 | 0.641 (0.333–1.235) | 0.238 |
AG | 680 | 47.4 | 27 | 38.6 | 0.696 (0.426–1.139) | 0.177 | |
GG | 431 | 30.1 | 32 | 45.7 | 1.960 (1.208–3.178) | 0.008 * | |
Females | AA | 323 | 20.7 | 13 | 19.4 | 0.923 (0.497–1.711) | 0.878 |
AG | 781 | 50 | 34 | 50.7 | 1.029 (0.631–1.678) | 1.000 | |
GG | 457 | 29.3 | 20 | 29.9 | 1.028 (0.602–1.754) | 0.892 | |
Both sexes | AA | 646 | 21.6 | 24 | 17.5 | 0.770 (0.491–1.206) | 0.287 |
AG | 1461 | 48.9 | 61 | 44.5 | 0.838 (0.594–1.183) | 0.337 | |
GG | 880 | 29.5 | 52 | 38.0 | 1.465 (1.028–2.087) | 0.036 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semaev, S.; Shakhtshneider, E.; Orlov, P.; Ivanoshchuk, D.; Malyutina, S.; Gafarov, V.; Ragino, Y.; Voevoda, M. Association of RS708272 (CETP Gene Variant) with Lipid Profile Parameters and the Risk of Myocardial Infarction in the White Population of Western Siberia. Biomolecules 2019, 9, 739. https://doi.org/10.3390/biom9110739
Semaev S, Shakhtshneider E, Orlov P, Ivanoshchuk D, Malyutina S, Gafarov V, Ragino Y, Voevoda M. Association of RS708272 (CETP Gene Variant) with Lipid Profile Parameters and the Risk of Myocardial Infarction in the White Population of Western Siberia. Biomolecules. 2019; 9(11):739. https://doi.org/10.3390/biom9110739
Chicago/Turabian StyleSemaev, Sergey, Elena Shakhtshneider, Pavel Orlov, Dinara Ivanoshchuk, Sophia Malyutina, Valery Gafarov, Yuliya Ragino, and Mikhail Voevoda. 2019. "Association of RS708272 (CETP Gene Variant) with Lipid Profile Parameters and the Risk of Myocardial Infarction in the White Population of Western Siberia" Biomolecules 9, no. 11: 739. https://doi.org/10.3390/biom9110739
APA StyleSemaev, S., Shakhtshneider, E., Orlov, P., Ivanoshchuk, D., Malyutina, S., Gafarov, V., Ragino, Y., & Voevoda, M. (2019). Association of RS708272 (CETP Gene Variant) with Lipid Profile Parameters and the Risk of Myocardial Infarction in the White Population of Western Siberia. Biomolecules, 9(11), 739. https://doi.org/10.3390/biom9110739