Natural CLA-Enriched Lamb Meat Fat Modifies Tissue Fatty Acid Profile and Increases n-3 HUFA Score in Obese Zucker Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Animals and Diets
2.3. Tissues and Blood Sampling
2.4. Lipid Analyses
+ DHA + DPAn-3 + DGLA + AA + 22:4n-6 + DPAn-6 + 20:3n-9) × 100
2.5. Statistical Analysis
3. Results
3.1. Tissue FA Profile
3.2. Tissue Endocannabinoids and Congeners
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Parodi, P.W. Conjugated linoleic acid and other anticarcinogenic agents of bovine milk fat. J. Dairy Sci. 1999, 82, 1339–1349. [Google Scholar] [CrossRef]
- Ip, C.; Jiang, C.; Thompson, H.J.; Scimeca, A.J. Retention of conjugated linoleic acid in the mammary gland is associated with tumour inhibition during the post initiation phase of carcinogenesis. Carcinogenesis 1997, 18, 755–759. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Demirel, G.; Wachira, A.; Sinclair, L.; Wilkinson, R.; Wood, J.; Enser, M. Effects of dietary n-3 polyunsaturated fatty acids, breed and dietary vitamin E on the fatty acids of lamb muscle, liver and adipose tissue. Br. J. Nutr. 2004, 91, 551–565. [Google Scholar] [CrossRef] [PubMed]
- Mele, M. Designing milk fat to improve healthfulness and functional properties of dairy products: From feeding strategies to a genetic approach. Ital. J. Anim. Sci. 2009, 8, 365–374. [Google Scholar] [CrossRef]
- Griinari, J.M.; Corl, B.A.; Lacy, S.H.; Chouinard, P.Y.; Nurmela, K.V.V.; Bauman, D.E. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by D desaturase. J. Nutr. 2000, 130, 2285–2291. [Google Scholar] [CrossRef]
- Griinari, J.M.; Bauman, D.E. Biosynthesis of conjugated linoleic acid and its incorporation in meat and milk in ruminants. In Advances in Conjugated Linoleic Acid Research; Yurawecz, M.P., Mossoba, M.M., Kramer, J.K.G., Pariza, M.W., Nelson, J.G., Eds.; AOCS Press: Champain, IL, USA, 1999; Volume 1, pp. 180–200. [Google Scholar]
- Banni, S.; Martin, J.C. Conjugated linoleic acid and metabolites. In Trans Fatty Acids in Human Nutrition; Sebedio, J.L., Christie, W.W., Eds.; The Oily Press: Dundee, UK, 1998; Volume 42, pp. 261–302. [Google Scholar]
- Kim, J.H.; Kim, Y.; Kim, Y.J.; Park, Y. Conjugated linoleic acid-potential health benefits as a functional food ingredient. Annu. Rev. Food Sci. T. 2016, 7, 221–244. [Google Scholar] [CrossRef]
- Banni, S.; Angioni, E.; Casu, V.; Melis, M.P.; Carta, G.; Corongiu, F.P.; Thompson, H.; Ip, C. Decrease in linoleic acid metabolites as a potential mechanism in cancer risk reduction by conjugated linoleic acid. Carcinogenesis 1999, 20, 1019–1024. [Google Scholar] [CrossRef]
- Banni, S.; Petroni, A.; Blasevich, M.; Carta, G.; Cordeddu, L.; Murru, E.; Melis, M.; Mahon, A.; Belury, M. Conjugated linoleic acids (CLA) as precursors of a distinct family of PUFA. Lipids 2004, 39, 1143–1146. [Google Scholar] [CrossRef]
- Nudda, A.; McGuire, M.A.; Battacone, G.; Pulina, G. Seasonal variation in conjugated linoleic acid and vaccenic acid in milk fat of sheep and its transfer to cheese and ricotta. J. Dairy Sci. 2005, 88, 1311–1319. [Google Scholar] [CrossRef]
- Lawson, R.E.; Moss, A.R.; Givens, D.I. The role of dairy products in supplying conjugated linoleic acid to man’s diet: A review. Nutr. Res. Rev. 2001, 14, 153–172. [Google Scholar] [CrossRef] [PubMed]
- Nudda, A.; Palmquist, D.L.; Battacone, G.; Fancellu, S.; Rassu, S.P.G.; Pulina, G. Relationships between the contents of vaccenic acid, CLA and n-3 fatty acids of goat milk and the muscle of their suckling kids. Livest. Sci. 2008, 118, 195–203. [Google Scholar] [CrossRef]
- Boles, J.A.; Kott, R.W.; Hateld, P.G.; Bergman, J.W.; Flynn, C.R. Supplemental safflower oil affects the fatty acid profile including conjugated linoleic acid of lamb. J. Anim. Sci. 2005, 83, 2175–2181. [Google Scholar] [CrossRef] [PubMed]
- Mele, M.; Contarini, G.; Cercaci, L.; Serra, A.; Buccioni, A.; Povolo, M.; Conte, G.; Funaro, A.; Banni, S.; Lercker, G.; et al. Enrichment of Pecorino cheese with conjugated linoleic acid by feeding dairy ewes with extruded linseed: Effect on fatty acid and triglycerides composition and on oxidative stability. Int. Dairy J. 2011, 21, 365–372. [Google Scholar] [CrossRef]
- Banni, S.; Day, B.W.; Evans, R.W.; Corongiu, F.P.; Lombardi, B. Detection of conjugated diene isomers of linoleic acid in liver lipids of rats fed a choline-devoid diet indicates that the diet does not cause lipoperoxidation. J. Nutr. Biochem. 1995, 6, 281–289. [Google Scholar] [CrossRef]
- Moya-Camarena, S.Y.; Vanden Heuvel, J.P.; Blanchard, S.G.; Leesnitzer, L.A.; Belury, M.A. Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARalpha. J. Lipid Res. 1999, 40, 1426–1433. [Google Scholar]
- Rakhshandehroo, M.; Knoch, B.; Muller, M.; Kersten, S. Peroxisome proliferatoractivated receptor alpha _target genes. PPAR Res. 2010, 2010, 612089. [Google Scholar] [CrossRef]
- Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta 2015, 1851, 469–484. [Google Scholar] [CrossRef]
- Flachs, P.; Rossmeisl, M.; Kopecky, J. The effect of n-3 fatty acids on glucose homeostasis and insulin sensitivity. Physiol. Res. 2014, 63, S93–S118. [Google Scholar]
- Burdge, G.C.; Calder, P.C. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev. 2005, 45, 581–597. [Google Scholar] [CrossRef]
- Watkins, B.A.; Li, Y.; Hennig, B.; Toborek, M. Dietary lipids and health. In Bailey’s industrial oil and fat products. Edible oil and fat products: Chemistry, chemical properties, and health effects, 6th ed.; Shahidi, F., Ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Albert, C.M.; Hennekens, C.; O’Donnell, C.J.; Ajani, U.A.; Carey, V.J.; Willett, W.C.; Ruskin, J.N.; Manson, J.E. Fish consumption and risk of sudden cardiac death. JAMA 1998, 279, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Blank, C.; Neumann, M.A.; Makrides, M.; Gibson, R.A. Optimizing DHA levels in by lowering the linoleic acid to a-linolenic acid ratio. J. Lipid Res. 2002, 43, 1537–1543. [Google Scholar] [CrossRef] [PubMed]
- Bowen, R.A.; Wierzbicki, A.A.; Clandinin, M.T. Does increasing dietary linolenic acid content increase the docosahexaenoic acid content of phospholipids in neuronal cells of neonatal rats. Pediatr. Res. 1999, 45, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.; Ward, G.; Salem, N., Jr. Is docosahexaenoic acid necessary in infant formula? Evaluation of high linolenate diets in the neonatal rat. Pediatr. Res. 1996, 40, 687–694. [Google Scholar] [CrossRef]
- Lands, B. A critique of paradoxes in current advice on dietary lipids. Prog. Lipid. Res. 2008, 47, 77–106. [Google Scholar] [CrossRef]
- Lands, W.E.; Morris, A.; Libelt, B. Quantitative effects of dietary polyunsaturated fats on the composition of fatty acids in rat tissues. Lipids 1990, 25, 506–516. [Google Scholar] [CrossRef]
- Stark, K.D. The percentage of n-3 highly unsaturated fatty acids in total HUFA as a biomarker for omega-3 fatty acid status in tissues. Lipids 2008, 43, 45–53. [Google Scholar] [CrossRef]
- Chavali, S.R.; Zhong, W.W.; Utsunomiya, T.; Forse, R.A. Decreased production of interleukin-1-beta, prostaglandin-E2 and thromboxane-B2, and elevated levels of interleukin-6 and -10 are associated with increased survival during endotoxic shock in mice consuming diets enriched with sesame seed oil supplemented with Quil-A saponin. Int. Arch. Allergy Immunol. 1997, 114, 153–160. [Google Scholar] [CrossRef]
- Grimstad, T.; Berge, R.K.; Bohov, P.; Skorve, J.; Goransson, L.; Omdal, R.; Aasprong, O.G.; Haugen, M.; Meltzer, H.M.; Hausken, T. Salmon diet in patients with active ulcerative colitis reduced the simple clinical colitis activity index and increased the anti-inflammatory fatty acid index--a pilot study. Scand. J. Clin. Lab. Invest. 2011, 71, 68–73. [Google Scholar] [CrossRef]
- Utsunomiya, T.; Chavali, S.R.; Zhong, W.W.; Forse, R.A. Effects of sesamin-supplemented dietary fat emulsions on the ex vivo production of lipopolysaccharide-induced prostanoids and tumor necrosis factor a in rats. Am. J. Clin. Nutr. 2000, 72, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Duplus, E.; Glorian, M.; Forest, C. Fatty acid regulation of gene transcription. J. Biol. Chem. 2000, 275, 30749–30752. [Google Scholar] [CrossRef] [PubMed]
- Jump, D.B. Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr. Opin. Lipidol. 2002, 13, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Belury, M.A.; Mahon, A.; Banni, S. The conjugated linoleic acid (CLA) isomer, t10c12-CLA, is inversely associated with changes in body weight and serum leptin in subjects with type 2 diabetes mellitus. J. Nutr. 2003, 133, 257S–260S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murru, E.; Carta, G.; Cordeddu, L.; Melis, M.P.; Desogus, E.; Ansar, H.; Chilliard, Y.; Ferlay, A.; Stanton, C.; Coakley, M.; et al. Dietary Conjugated Linoleic Acid-Enriched Cheeses Influence the Levels of Circulating n-3 Highly Unsaturated Fatty Acids in Humans. Int. J. Mol. Sci. 2018, 19, 1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pintus, S.; Murru, E.; Carta, G.; Cordeddu, L.; Batetta, B.; Accossu, S.; Pistis, D.; Uda, S.; Elena Ghiani, M.; Mele, M.; et al. Sheep cheese naturally enriched in alpha-linolenic, conjugated linoleic and vaccenic acids improves the lipid profile and reduces anandamide in the plasma of hypercholesterolaemic subjects. Br. J. Nutr. 2013, 109, 1453–1462. [Google Scholar] [CrossRef] [Green Version]
- Bray, G.A. The Zucker-fatty rat: A review. Fed. Proc. 1977, 36, 148–153. [Google Scholar]
- Serra, A.; Mele, M.; La Comba, F.; Conte, G.; Buccioni, A.; Secchiari, P. Conjugated Linoleic Acid (CLA) content of meat from three muscles of Massese suckling lambs slaughtered at different weights. Meat Sci. 2009, 81, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Mele, M.; Serra, A.; Pauselli, M.; Luciano, G.; Lanza, M.; Pennisi, P.; Conte, G.; Taticchi, A.; Esposto, S.; Morbidini, L. The use of stoned olive cake and rolled linseed in the diet of intensively reared lambs: Effect on the intramuscular fatty-acid composition. Animal 2014, 8, 152–162. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Banni, S.; Carta, G.; Contini, M.S.; Angioni, E.; Deiana, M.; Dessi, M.A.; Melis, M.P.; Corongiu, F.P. Characterization of conjugated diene fatty acids in milk, dairy products, and lamb tissues. J. Nutr. Biochem. 1996, 7, 150–155. [Google Scholar] [CrossRef]
- Melis, M.P.; Angioni, E.; Carta, G.; Murru, E.; Scanu, P.; Spada, S.; Banni, S. Characterization of conjugated linoleic acid and its metabolites by RP-HPLC with diode array detector. Eur. J. Lipid Sci. Tech. 2001, 103, 617–621. [Google Scholar] [CrossRef]
- Batetta, B.; Griinari, M.; Carta, G.; Murru, E.; Ligresti, A.; Cordeddu, L.; Giordano, E.; Sanna, F.; Bisogno, T.; Uda, S.; et al. Endocannabinoids may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflammatory mediators in obese Zucker rats. J. Nutr. 2009, 139, 1495–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piscitelli, F.; Carta, G.; Bisogno, T.; Murru, E.; Cordeddu, L.; Berge, K.; Tandy, S.; Cohn, J.S.; Griinari, M.; Banni, S.; et al. Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice. Nutr. Metab. (Lond.) 2011, 8, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belury, M.A.; Moya-Camarena, S.Y.; Liu, K.L.; Vanden Heuvel, J.P. Dietary conjugated linoleic acid induces peroxisone-specific enzyme accumulation and ornithine decarboxylase activity in mouse liver. J. Nutr. Biochem. 1997, 8, 579–584. [Google Scholar] [CrossRef]
- Ferdinandusse, S.; Denis, S.; Dacremont, G.; Wanders, R.J. Studies on the metabolic fate of n-3 polyunsaturated fatty acids. J. Lipid Res. 2003, 44, 1992–1997. [Google Scholar] [CrossRef] [Green Version]
- Murru, E.; Banni, S.; Carta, G. Nutritional properties of dietary omega-3-enriched phospholipids. Biomed. Res. Int. 2013, 2013, 965417. [Google Scholar] [CrossRef] [Green Version]
- Burdge, G.C. Metabolism of alpha-linolenic acid in humans. Prostaglandins Leukot. Essent. Fatty Acids 2006, 75, 161–168. [Google Scholar] [CrossRef]
- Gibson, R.A.; Neumann, M.A.; Lien, E.L.; Boyd, K.A.; Tu, W.C. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids. Prostaglandins Leukot. Essent. Fatty Acids 2013, 88, 139–146. [Google Scholar] [CrossRef]
- Attar-Bashi, N.M.; Weisinger, R.S.; Begg, D.P.; Li, D.; Sinclair, A.J. Failure of conjugated linoleic acid supplementation to enhance biosynthesis of docosahexaenoic acid from a-linolenic acid in healthy human volunteers. Prostaglandins Leukot. Essent. Fatty Acids 2007, 76, 121–130. [Google Scholar] [CrossRef]
- Harris, W.S.; Von Schacky, C. The Omega-3 Index: A new risk factor for death from coronary heart disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Melis, M.; Carta, G.; Pistis, M.; Banni, S. Physiological Role of Peroxisome Proliferator-Activated Receptors Type Alpha on Dopamine Systems. Cns Neurol. Disord-Dr 2013, 12, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Thomassen, M.S.; Christiansen, E.N.; Norum, K.R. Characterization of the stimulatory effect of high-fat diets on peroxisomal beta-oxidation in rat liver. Biochem. J. 1982, 206, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Reddy, J.K.; Hashimoto, T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: An adaptive metabolic system. Annu. Rev. Nutr. 2001, 21, 193–230. [Google Scholar] [CrossRef]
- Rapoport, S.I.; Rao, J.S.; Igarashi, M. Brain metabolism of nutritionally essential polyunsaturated fatty acids depends on both the diet and the liver. Prostaglandins Leukot. Essent. Fatty Acids 2007, 77, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Fa, M.; Diana, A.; Carta, G.; Cordeddu, L.; Melis, M.P.; Murru, E.; Sogos, V.; Banni, S. Incorporation and metabolism of c9,t11 and t10,c12 conjugated linoleic acid (CLA) isomers in rat brain. Biochim. Biophys. Acta 2005, 1736, 61–66. [Google Scholar] [CrossRef]
- Gibson, R.A.; Muhlhausler, B.; Makrides, M. Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. Matern. Child Nutr. 2011, 7 (Suppl. 2), 17–26. [Google Scholar] [CrossRef]
- Balistreri, C.R.; Caruso, C.; Candore, G. The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediators Inflamm. 2010, 2010, 802078. [Google Scholar] [CrossRef]
- Ip, C.; Thompson, H.J.; Ganther, H.E. Selenium modulation of cell proliferation and cell cycle biomarkers in normal and premalignant cells of the rat mammary gland. Cancer Epidem. Biomar. 2000, 9, 49–54. [Google Scholar]
FA | A 2 | B 2 | C 2 | D 2 |
---|---|---|---|---|
g/kg diet | ||||
14:0 | 4.3 | 2.6 | 2.4 | 0.3 |
16:0 | 13.1 | 11.6 | 12.6 | 5.9 |
18:0 | 8.6 | 9.5 | 10.8 | 1.4 |
VA | 1.4 | 1.0 | 0.6 | - |
OA | 22.2 | 19.7 | 21.6 | 33.7 |
LA | 0.8 | 2.0 | 2.3 | 13.1 |
ALA | 0.4 | 0.9 | 0.3 | 0.6 |
CLA | 1.30 | 0.61 | 0.41 | 0.03 |
EPA | 0.09 | 0.06 | 0.05 | - |
DHA | 0.13 | 0.05 | 0.05 | - |
SFA | 27.9 | 25.4 | 27.7 | 7.6 |
UFA | 30.8 | 32.9 | 31.2 | 47.3 |
n-6/n-3 | 1.1 | 1.1 | 4.2 | 22.0 |
ALA/CLA | 0.3 | 1.5 | 0.8 | 22.2 |
LA/ALA | 2.2 | 2.2 | 7.0 | 22.0 |
total FA | 58.7 | 58.3 | 58.8 | 54.9 |
Diet Group | Liver (nmol/g) | Heart (nmol/g) | VAT (nmol/g) | SAT (mol/g) | Plasma (nmol/mL) | Hypothalamus (nmol/g) |
---|---|---|---|---|---|---|
ALA | ||||||
A1 | 898.7 ± 128.3 ab | 102.5 ± 11.8 a | 23926.7 ± 1248.4 ab | 24589.5 ± 1560.4 b | 97.7 ± 13.5 a | ND |
B1 | 1190.2 ± 100.1 b | 208.6 ± 18.9 b | 27737.5 ± 978.7 a | 31367.0 ± 1096.6 a | 112.1 ± 17.2 a | ND |
C1 | 969.6 ± 61.6 ab | 126.2 ± 10.1 a | 22779.2 ± 1710.2 b | 26599.3 ± 1326.9 b | 103.1 ± 7.1 a | ND |
D1 | 596.8 ± 163.3 a | 103.7 ± 15.9 a | 20194.1 ± 1017.2 b | 25711.5 ± 1746.5 ab | 80.8 ± 5.2 a | ND |
EPA | ||||||
A1 | 541.0 ± 92.3 a | 59.4 ± 3.3 a | 407.8 ± 35.6 ab | 506.8 ± 22.6 ab | 64.5 ± 2.9 a | ND |
B1 | 555.9 ± 70.6 a | 61.9 ± 2.9 a | 495.9 ± 38.3 a | 605.9 ± 42.1 a | 65.5 ± 7.2 a | ND |
C1 | 377.1 ± 34.0 ab | 42.7 ± 1.0 b | 284.3 ± 17.9 bc | 386.6 ± 20.6 bc | 55.1 ± 3.1 ab | ND |
D1 | 185.1 ± 59.7 b | 22.2 ± 1.1 c | 169.0 ± 21.8 c | 262.1 ± 28.5 c | 32.3 ± 2.0 b | ND |
DHA | ||||||
A1 | 8242.1 ± 407.5 a | 4318.2 ± 161.8 a | 2604.9 ± 372.5 a | 2403.9 ± 111.3 a | 480.6 ± 16.9 a | 11791.5 ± 881.7 ab |
B1 | 8101.5 ± 514.4 a | 3709.7 ± 115.7 b | 2124.2 ± 187.6 a | 2014.8 ± 134.8 ab | 428.3 ± 48.9 a | 11687.5 ± 349.5 ab |
C1 | 7752.8 ± 394.0 a | 3506.4 ± 95.7 bc | 2307.0 ± 189.3 a | 1986.7 ± 106.9 ab | 439.4 ± 26.1 a | 11331.8 ± 369.2 b |
D1 | 6720.0 ± 671.9 a | 3068.7 ± 201.6 c | 1500.0 ± 264.6 a | 1664.0 ± 23.0 b | 410.4 ± 45.2 a | 13612.8 ± 519.5 a |
n-3 HUFA score | ||||||
A1 | 32.0 ± 0.8 a | 34.6 ± 0.3 a | 22.8 ± 2.4 ab | 23.7 ± 1.0 a | 22.8 ± 0.91 a | 49.8 ± 0.7 a |
B1 | 30.3 ± 0.6 a | 31.9 ± 1.1 a | 23.5 ± 0.8 a | 22.2 ± 0.9 a | 21.2 ± 0.72 ab | 48.9 ± 0.1 ab |
C1 | 28.1 ± 0.2 b | 32.0 ± 1.1 a | 19.3 ± 1.0 b | 18.9 ± 0.7 b | 20.2 ± 0.33 b | 48.3 ± 0.2 b |
D1 | 24.4 ± 0.23 c | 25.1 ± 0.7 b | 14.2 ± 1.1 c | 12.8 ± 0.7 c | 16.2 ± 0.02 c | 47.6 ± 0.2 b |
AA | ||||||
A1 | 19396.2 ± 994.3 a | 9694.9 ± 74.9 a | 8253.3 ± 277.1 a | 8558.3 ± 319.4 b | 2058.7 ± 57.1 a | 8670.8 ± 648.7 b |
B1 | 20722.6 ± 1212.4 a | 9762.2 ± 117.0 a | 8138.1 ± 581.0 a | 8820.2 ± 457.9 b | 2089.9 ± 152.1 a | 9066.6 ± 252.8 b |
C1 | 21505.6 ± 1048.2 a | 9638.7 ± 102.4 a | 9364.8 ± 645.9 a | 10015.1 ± 418.8 b | 2237.5 ± 90.7 a | 9036.5 ± 244.4 b |
D1 | 22810.6 ± 2082.8 a | 9885.1 ± 236.5 a | 10188.2 ± 889.6 a | 12291.9 ± 566.0 a | 2575.2 ± 213.2 a | 11128.7 ± 436.4 a |
CLA | ||||||
A1 | 622.6 ± 66.7 a | 84.1 ± 10.4 a | 19892.6 ± 473.5 a | 17208.7 ± 931.2 a | 58.9 ± 7.3 a | 13.4 ± 0.5 a |
B1 | 416.2 ± 27.9 b | 75.8 ± 8.7 a | 12108.4 ± 396.1 b | 11697.7 ± 424.9 b | 35.6 ± 5.3 b | 17.7 ± 1.3 a |
C1 | 280.7 ± 17.4 c | 43.2 ± 2.9 b | 8218.0 ± 577.4 c | 7911.8 ± 251.0 c | 29.1 ± 1.8 bc | 11.7 ± 1.5 a |
D1 | 58.2 ± 11.1 d | 12.7 ± 2.8 c | 1585.7 ± 171.0 d | 1669.5 ± 181.7 d | 10.9 ± 1.8 c | 11.2 ± 4.8 a |
VA | ||||||
A1 | 529.7 ± 109.7 b | 274.1 ± 5.7 b | 14613.7 ± 200.3 b | 12199.2 ± 968.5 b | 76.6 ± 5.79 a | 656.8 ± 152.5 a |
B1 | 1248.4 ± 249.9 a | 389.7 ± 14.1 a | 35216.2 ± 384.0 a | 30441.6 ± 1602.2 a | 122.5 ± 17.93 a | 693.5 ± 54.7 a |
C1 | 732.1 ± 151.1 bc | 219.6 ± 11.1 c | 19793.3 ± 1407.8 bc | 17789.3 ± 1032.3 bc | 96.3 ± 6.52 ab | 707.0 ± 47.3 a |
D1 | 214.7 ± 82.3 bd | 124.8 ± 5.6 d | 2962.6 ± 342.8 d | 2844.9 ± 212.1 d | 47.5 ± 7.87 b | 744.3 ± 14.3 a |
nmol/g Liver | |||
---|---|---|---|
Diet Groups | CLA | CD18:3 | CD20:3 |
A1 | 622.6 ± 66.7 a | 34.1 ± 4.5 a | 59.1 ± 3.1 a |
B1 | 416.2 ± 27.9 b | 28.0 ± 4.4 a | 28.6 ± 1.8 b |
C1 | 280.7 ± 17.4 c | 10.3 ± 1.5 b | 24.2 ± 1.9 b |
D1 | 58.2 ± 11.1 d | 6.7 ± 1.3 b | 7.7 ± 0.6 c |
Anti-Inflammatory Index | |||||
---|---|---|---|---|---|
Diet Groups | Heart | VAT | SAT | Plasma | Hypothalamus |
A1 | 52.8 ± 1.3 a | 78.8 ± 6.7 a | 84.3 ± 5.3 a | 31.3 ± 1.9 a | 139.9 ± 6.2 a |
B1 | 49.1 ± 0.7 b | 70.3 ± 2.2 a b | 77.5 ± 4.8 a | 28 ± 1.7 a | 131.5 ± 0.6 ab |
C1 | 44 ± 0.3 c | 64.8 ± 1.2 b | 62.2 ± 2.0 bc | 26.2 ± 0.7 ab | 127.6 ± 1.2 b |
D1 | 34 ± 0.6 d | 45.4 ± 1.2 c | 46.4 ± 5.7 c | 20.6 ± 0.8 b | 124.1 ± 1.2 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carta, G.; Murru, E.; Manca, C.; Serra, A.; Mele, M.; Banni, S. Natural CLA-Enriched Lamb Meat Fat Modifies Tissue Fatty Acid Profile and Increases n-3 HUFA Score in Obese Zucker Rats. Biomolecules 2019, 9, 751. https://doi.org/10.3390/biom9110751
Carta G, Murru E, Manca C, Serra A, Mele M, Banni S. Natural CLA-Enriched Lamb Meat Fat Modifies Tissue Fatty Acid Profile and Increases n-3 HUFA Score in Obese Zucker Rats. Biomolecules. 2019; 9(11):751. https://doi.org/10.3390/biom9110751
Chicago/Turabian StyleCarta, Gianfranca, Elisabetta Murru, Claudia Manca, Andrea Serra, Marcello Mele, and Sebastiano Banni. 2019. "Natural CLA-Enriched Lamb Meat Fat Modifies Tissue Fatty Acid Profile and Increases n-3 HUFA Score in Obese Zucker Rats" Biomolecules 9, no. 11: 751. https://doi.org/10.3390/biom9110751
APA StyleCarta, G., Murru, E., Manca, C., Serra, A., Mele, M., & Banni, S. (2019). Natural CLA-Enriched Lamb Meat Fat Modifies Tissue Fatty Acid Profile and Increases n-3 HUFA Score in Obese Zucker Rats. Biomolecules, 9(11), 751. https://doi.org/10.3390/biom9110751