Pharmacogenetics of Biological Agents Used in Inflammatory Bowel Disease: A Systematic Review
Abstract
:1. Introduction
2. Methodology
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Extraction of Relevant Data, Quality and Risk of Bias Assesment
3. Results
3.1. Systematic Review
3.2. Polymorphisms of TNF-α and TNFR1/2 Genes
3.3. Polymorphisms on Innate Immunity Related Genes
3.4. Polymorphisms on Apoptosis and Autophagy Genes
3.5. Pharmacogenetics of Anti-IL-12 and Anti-IL-23 Agents
3.6. Pharmacogenetics of Anti-Integrin Agents
4. Discussion and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Kirsner, J.B. Historical Aspects of Inflammatory Bowel Disease. J. Clin. Gastroenterol. 1988, 10, 286–297. [Google Scholar] [CrossRef]
- Kaplan, G.G. The Global Burden of IBD: From 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Molodecky, N.A.; Soon, I.S.; Rabi, D.M.; Ghali, W.A.; Ferris, M.; Chernoff, G.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Barkema, H.W.; et al. Increasing Incidence and Prevalence of the Inflammatory Bowel Diseases with Time, Based on Systematic Review. Gastroenterology 2012, 142, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Matricon, J.; Barnich, N.; Ardid, D. Immunopathogenesis of Inflammatory Bowel Disease. Self. Nonself. 2010, 1, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Xavier, R.J.; Podolsky, D.K. Unravelling the Pathogenesis of Inflammatory Bowel Disease. Nature 2007, 448, 427–434. [Google Scholar] [CrossRef]
- Sun, P.; Zhou, K.; Wang, S.; Li, P.; Chen, S.; Lin, G.; Zhao, Y.; Wang, T. Involvement of MAPK/NF-ΚB Signaling in the Activation of the Cholinergic Anti-Inflammatory Pathway in Experimental Colitis by Chronic Vagus Nerve Stimulation. PLoS ONE 2013, 8, e69424. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.-D.; Zhao, Y.-H. _targeting NF-ΚB Pathway for Treating Ulcerative Colitis: Comprehensive Regulatory Characteristics of Chinese Medicines. Chin. Med. 2020, 15, 15. [Google Scholar] [CrossRef] [Green Version]
- Dideberg, V.; Théâtre, E.; Farnir, F.; Vermeire, S.; Rutgeerts, P.; Vos, M.D.; Belaiche, J.; Franchimont, D.; Gossum, A.V.; Louis, E.; et al. The TNF/ADAM 17 System: Implication of an ADAM 17 Haplotype in the Clinical Response to Infliximab in Crohn’s Disease. Pharm. Genom. 2006, 16, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Lechuga, S.; Ivanov, A.I. Disruption of the Epithelial Barrier during Intestinal Inflammation: Quest for New Molecules and Mechanisms. Biochim. Biophys. Acta. 2017, 1864, 1183–1194. [Google Scholar] [CrossRef] [PubMed]
- Chudy-Onwugaje, K.O.; Christian, K.E.; Farraye, F.A.; Cross, R.K. A State-of-the-Art Review of New and Emerging Therapies for the Treatment of IBD. Inflamm. Bowel. Dis. 2019, 25, 820–830. [Google Scholar] [CrossRef]
- Present, D.H.; Rutgeerts, P.; Targan, S.; Hanauer, S.B.; Mayer, L.; van Hogezand, R.A.; Podolsky, D.K.; Sands, B.E.; Braakman, T.; DeWoody, K.L.; et al. Infliximab for the Treatment of Fistulas in Patients with Crohn’s Disease. Available online: https://www.nejm.org/doi/10.1056/NEJM199905063401804 (accessed on 27 August 2021).
- Rutgeerts, P.; Sandborn, W.J.; Feagan, B.G.; Reinisch, W.; Olson, A.; Johanns, J.; Travers, S.; Rachmilewitz, D.; Hanauer, S.B.; Lichtenstein, G.R.; et al. Infliximab for Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2005, 353, 2462–2476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedger, L.M.; McDermott, M.F. TNF and TNF-Receptors: From Mediators of Cell Death and Inflammation to Therapeutic Giants—Past, Present and Future. Cytokine Growth Factor Rev. 2014, 25, 453–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gareb, B.; Otten, A.T.; Frijlink, H.W.; Dijkstra, G.; Kosterink, J.G.W. Review: Local Tumor Necrosis Factor-α Inhibition in Inflammatory Bowel Disease. Pharmaceutics 2020, 12, 539. [Google Scholar] [CrossRef]
- Slevin, S.M.; Egan, L.J. New Insights into the Mechanisms of Action of Anti–Tumor Necrosis Factor-α Monoclonal Antibodies in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2015, 21, 2909–2920. [Google Scholar] [CrossRef] [PubMed]
- Sands, B.E. Inflammatory Bowel Disease: Past, Present, and Future. J. Gastroenterol. 2007, 42, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, C.B.; Mahsud-Dornan, S.; Patterson, R.N. Inflammatory Bowel Disease in Pregnancy. BMJ 2008, 337, a427. [Google Scholar] [CrossRef]
- Muro, M.; López-Hernández, R.; Mrowiec, A. Immunogenetic Biomarkers in Inflammatory Bowel Diseases: Role of the IBD3 Region. World J. Gastroenterol. 2014, 20, 15037–15048. [Google Scholar] [CrossRef] [PubMed]
- López-Serrano, P.; Pérez-Calle, J.L.; Pérez-Fernández, M.T.; Fernández-Font, J.M.; Boixeda de Miguel, D.; Fernández-Rodríguez, C.M. Environmental Risk Factors in Inflammatory Bowel Diseases. Investigating the Hygiene Hypothesis: A Spanish Case-Control Study. Scand. J. Gastroenterol. 2010, 45, 1464–1471. [Google Scholar] [CrossRef]
- Papadakis, K.A.; Targan, S.R. Tumor Necrosis Factor: Biology and Therapeutic Inhibitors. Gastroenterology 2000, 119, 1148–1157. [Google Scholar] [CrossRef]
- Chen, W.; Xu, H.; Wang, X.; Gu, J.; Xiong, H.; Shi, Y. The Tumor Necrosis Factor Receptor Superfamily Member 1B Polymorphisms Predict Response to Anti-TNF Therapy in Patients with Autoimmune Disease: A Meta-Analysis. Int. Immunopharmacol. 2015, 28, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Ogura, Y.; Inohara, N.; Benito, A.; Chen, F.F.; Yamaoka, S.; Núñez, G. Nod2, a Nod1/Apaf-1 Family Member That Is Restricted to Monocytes and Activates NF-ΚB *. J. Biol. Chem. 2001, 276, 4812–4818. [Google Scholar] [CrossRef] [Green Version]
- Ogura, Y.; Bonen, D.K.; Inohara, N.; Nicolae, D.L.; Chen, F.F.; Ramos, R.; Britton, H.; Moran, T.; Karaliuskas, R.; Duerr, R.H.; et al. A Frameshift Mutation in NOD2 Associated with Susceptibility to Crohn’s Disease. Nature 2001, 411, 603–606. [Google Scholar] [CrossRef]
- Beutler, B. Autoimmunity and Apoptosis: The Crohn’s Connection. Immunity 2001, 15, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Li, X.; Liu, S.; Zhang, Y.; Zhang, D. Toll-like Receptors and Inflammatory Bowel Disease. Front. Immunol. 2018, 9, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchheister, S.; Buettner, M.; Basic, M.; Noack, A.; Breves, G.; Buchen, B.; Keubler, L.M.; Becker, C.; Bleich, A. CD14 Plays a Protective Role in Experimental Inflammatory Bowel Disease by Enhancing Intestinal Barrier Function. Am. J. Pathol. 2017, 187, 1106–1120. [Google Scholar] [CrossRef] [Green Version]
- Dudzińska, E.; Szymona, K.; Gil-Kulik, P.; Chomik, P.; Świstowska, M.; Gryzińska, M.; Kocki, J. Imbalance of Controlled Death in Peripheral Blood Lymphocytes in Crohn’s Disease and Ulcerative Colitis. Medicina 2019, 55, 231. [Google Scholar] [CrossRef] [Green Version]
- Volpe, E.; Sambucci, M.; Battistini, L.; Borsellino, G. Fas–Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis. Front. Immunol. 2016, 7, 382. [Google Scholar] [CrossRef] [Green Version]
- Gammoh, N. The Multifaceted Functions of ATG16L1 in Autophagy and Related Processes. J. Cell Sci. 2020, 133, jcs249227. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.; Ammitzboell, M.; Nys, K.; Seidelin, J.B.; Nielsen, O.H. ATG16L1: A Multifunctional Susceptibility Factor in Crohn Disease. Autophagy 2015, 11, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Sands, B.E.; Sandborn, W.J.; Panaccione, R.; O’Brien, C.D.; Zhang, H.; Johanns, J.; Adedokun, O.J.; Li, K.; Peyrin-Biroulet, L.; Assche, G.V.; et al. Ustekinumab as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2019, 381, 1201–1214. [Google Scholar] [CrossRef]
- Kashani, A.; Schwartz, D.A. The Expanding Role of Anti–IL-12 and/or Anti–IL-23 Antibodies in the Treatment of Inflammatory Bowel Disease. Gastroenterol. Hepatol. (N. Y.) 2019, 15, 255–265. [Google Scholar]
- Park, S.C.; Jeen, Y.T. Anti-Integrin Therapy for Inflammatory Bowel Disease. World J. Gastroenterol. 2018, 24, 1868–1880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scribano, M.L. Vedolizumab for Inflammatory Bowel Disease: From Randomized Controlled Trials to Real-Life Evidence. World J. Gastroenterol. 2018, 24, 2457–2467. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses; Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2014. [Google Scholar]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Bouma, G.; Crusius, J.B.A.; Pool, M.O.; Kolkman, J.J.; Blomberg, B.M.E.V.; Kostense, P.J.; Giphart, M.J.; Schreuder, G.M.T.; Meuwissen, S.G.M.; Peña, A.S. Secretion of Tumour Necrosis Factor α and Lymphotoxin α in Relation to Polymorphisms in the TNF Genes and HLA-DR Alleles. Relevance for Inflammatory Bowel Disease. Scand. J. Immunol. 1996, 43, 456–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroeger, K.M.; Carville, K.S.; Abraham, L.J. The −308 Tumor Necrosis Factor-α Promoter Polymorphism Effects Transcription. Mol. Immunol. 1997, 34, 391–399. [Google Scholar] [CrossRef]
- Balog, A.; Klausz, G.; Gál, J.; Molnár, T.; Nagy, F.; Ocsovszky, I.; Gyulai, Z.; Mándi, Y. Investigation of the Prognostic Value of TNF-Alpha Gene Polymorphism among Patients Treated with Infliximab, and the Effects of Infliximab Therapy on TNF-Alpha Production and Apoptosis. Pathobiology 2004, 71, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Netz, U.; Carter, J.V.; Eichenberger, M.R.; Dryden, G.W.; Pan, J.; Rai, S.N.; Galandiuk, S. Genetic Polymorphisms Predict Response to Anti-Tumor Necrosis Factor Treatment in Crohn’s Disease. World J. Gastroenterol. 2017, 23, 4958–4967. [Google Scholar] [CrossRef]
- López-Hernández, R.; Valdés, M.; Campillo, J.A.; Martínez-Garcia, P.; Salama, H.; Salgado, G.; Boix, F.; Moya-Quiles, M.R.; Minguela, A.; Sánchez-Torres, A.; et al. Genetic Polymorphisms of Tumour Necrosis Factor Alpha (TNF-α) Promoter Gene and Response to TNF-α Inhibitors in Spanish Patients with Inflammatory Bowel Disease. Int. J. Immunogenet. 2014, 41, 63–68. [Google Scholar] [CrossRef]
- Louis, E.; Vermeire, S.; Rutgeerts, P.; De Vos, M.; Van Gossum, A.; Pescatore, P.; Fiasse, R.; Pelckmans, P.; Reynaert, H.; D’Haens, G.; et al. A Positive Response to Infliximab in Crohn Disease: Association with a Higher Systemic Inflammation before Treatment but Not with -308 TNF Gene Polymorphism. Scand. J. Gastroenterol. 2002, 37, 818–824. [Google Scholar] [CrossRef]
- Song, G.G.; Seo, Y.H.; Kim, J.-H.; Choi, S.J.; Ji, J.D.; Lee, Y.H. Association between TNF-α (-308 A/G, -238 A/G, -857 C/T) Polymorphisms and Responsiveness to TNF-α Blockers in Spondyloarthropathy, Psoriasis and Crohn’s Disease: A Meta-Analysis. Pharmacogenomics 2015, 16, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, K.; Hamada, S.; Shimizu, M.; Nanki, K.; Mizuno, S.; Kiyohara, H.; Arai, M.; Sugimoto, S.; Iwao, Y.; Ogata, H.; et al. Factors Predicting the Therapeutic Response to Infliximab during Maintenance Therapy in Japanese Patients with Crohn’s Disease. PLoS ONE 2018, 13, e0204632. [Google Scholar] [CrossRef] [PubMed]
- Lacruz-Guzmán, D.; Torres-Moreno, D.; Pedrero, F.; Romero-Cara, P.; García-Tercero, I.; Trujillo-Santos, J.; Conesa-Zamora, P. Influence of Polymorphisms and TNF and IL1β Serum Concentration on the Infliximab Response in Crohn’s Disease and Ulcerative Colitis. Eur. J. Clin. Pharmacol. 2013, 69, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Papamichael, K.; Gazouli, M.; Karakoidas, C.; Panayotou, I.; Roma-Giannikou, E.; Mantzaris, G.J. Association of TNF and FcγRΙΙΙA Gene Polymorphisms with Differential Response to Infliximab in a Greek Cohort of Crohn’s Disease Patients. Ann. Gastroenterol. 2011, 24, 35–40. [Google Scholar]
- Mascheretti, S.; Hampe, J.; Kühbacher, T.; Herfarth, H.; Krawczak, M.; Fölsch, U.R.; Schreiber, S. Pharmacogenetic Investigation of the TNF/TNF-Receptor System in Patients with Chronic Active Crohn’s Disease Treated with Infliximab. Pharm. J. 2002, 2, 127–136. [Google Scholar] [CrossRef]
- Pierik, M.; Vermeire, S.; Steen, K.V.; Joossens, S.; Claessens, G.; Vlietinck, R.; Rutgeerts, P. Tumour Necrosis Factor-Alpha Receptor 1 and 2 Polymorphisms in Inflammatory Bowel Disease and Their Association with Response to Infliximab. Aliment. Pharmacol. Ther. 2004, 20, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Matsukura, H.; Ikeda, S.; Yoshimura, N.; Takazoe, M.; Muramatsu, M. Genetic Polymorphisms of Tumour Necrosis Factor Receptor Superfamily 1A and 1B Affect Responses to Infliximab in Japanese Patients with Crohn’s Disease. Aliment. Pharmacol. Ther. 2008, 27, 765–770. [Google Scholar] [CrossRef]
- Medrano, L.M.; Taxonera, C.; Márquez, A.; Barreiro-de Acosta, M.; Gómez-García, M.; González-Artacho, C.; Pérez-Calle, J.L.; Bermejo, F.; Lopez-Sanromán, A.; Martín Arranz, M.D.; et al. Role of TNFRSF1B Polymorphisms in the Response of Crohn’s Disease Patients to Infliximab. Hum. Immunol. 2014, 75, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Steenholdt, C.; Enevold, C.; Ainsworth, M.A.; Brynskov, J.; Thomsen, O.Ø.; Bendtzen, K. Genetic Polymorphisms of Tumour Necrosis Factor Receptor Superfamily 1b and Fas Ligand Are Associated with Clinical Efficacy and/or Acute Severe Infusion Reactions to Infliximab in Crohn’s Disease. Aliment. Pharmacol. Ther. 2012, 36, 650–659. [Google Scholar] [CrossRef]
- Hugot, J.-P.; Chamaillard, M.; Zouali, H.; Lesage, S.; Cézard, J.-P.; Belaiche, J.; Almer, S.; Tysk, C.; O’Morain, C.A.; Gassull, M.; et al. Association of NOD2 Leucine-Rich Repeat Variants with Susceptibility to Crohn’s Disease. Nature 2001, 411, 599–603. [Google Scholar] [CrossRef]
- Vermeire, S.; Louis, E.; Rutgeerts, P.; De Vos, M.; Van Gossum, A.; Belaiche, J.; Pescatore, P.; Fiasse, R.; Pelckmans, P.; Vlietinck, R.; et al. NOD2/CARD15 Does Not Influence Response to Infliximab in Crohn’s Disease. Gastroenterology 2002, 123, 106–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreiro-de Acosta, M.; Ouburg, S.; Morré, S.A.; Crusius, J.B.A.; Lorenzo, A.; Potel, J.; Peña, A.S.; Domínguez-Muñoz, J.E. NOD2, CD14 and TLR4 Mutations Do Not Influence Response to Adalimumab in Patients with Crohn’s Disease: A Preliminary Report. Rev. Esp. Enferm. Dig. 2010, 102, 591–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascheretti, S.; Hampe, J.; Croucher, P.J.P.; Nikolaus, S.; Andus, T.; Schubert, S.; Olson, A.; Bao, W.; Fölsch, U.R.; Schreiber, S. Response to Infliximab Treatment in Crohn’s Disease Is Not Associated with Mutations in the CARD15 (NOD2) Gene: An Analysis in 534 Patients from Two Multicenter, Prospective GCP-Level Trials. Pharmacogenetics 2002, 12, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qin, L.; Cao, J.; Zhao, J. Impact of NOD2/CARD15 Polymorphisms on Response to Monoclonal Antibody Therapy in Crohn’s Disease: A Systematic Review and Meta-Analysis. Curr. Med. Res. Opin 2016, 32, 2007–2012. [Google Scholar] [CrossRef]
- Walczak, M.; Lykowska-Szuber, L.; Plucinska, M.; Stawczyk-Eder, K.; Zakerska-Banaszak, O.; Eder, P.; Krela-Kazmierczak, I.; Michalak, M.; Zywicki, M.; Karlowski, W.M.; et al. Is Polymorphism in the Apoptosis and Inflammatory Pathway Genes Associated with a Primary Response to Anti-TNF Therapy in Crohn’s Disease Patients? Front. Pharmacol. 2020, 11, 1207. [Google Scholar] [CrossRef] [PubMed]
- Bank, S.; Julsgaard, M.; Abed, O.K.; Burisch, J.; Broder Brodersen, J.; Pedersen, N.K.; Gouliaev, A.; Ajan, R.; Nytoft Rasmussen, D.; Honore Grauslund, C.; et al. Polymorphisms in the NFkB, TNF-Alpha, IL-1beta, and IL-18 Pathways Are Associated with Response to Anti-TNF Therapy in Danish Patients with Inflammatory Bowel Disease. Aliment. Pharmacol. Ther. 2019, 49, 890–903. [Google Scholar] [CrossRef]
- Bank, S.; Andersen, P.S.; Burisch, J.; Pedersen, N.; Roug, S.; Galsgaard, J.; Turino, S.Y.; Brodersen, J.B.; Rashid, S.; Rasmussen, B.K.; et al. Associations between Functional Polymorphisms in the NFκB Signaling Pathway and Response to Anti-TNF Treatment in Danish Patients with Inflammatory Bowel Disease. Pharm. J. 2014, 14, 526–534. [Google Scholar] [CrossRef] [Green Version]
- Urabe, S.; Isomoto, H.; Ishida, T.; Maeda, K.; Inamine, T.; Kondo, S.; Higuchi, N.; Sato, K.; Uehara, R.; Yajima, H.; et al. Genetic Polymorphisms of IL-17F and TRAF3IP2 Could Be Predictive Factors of the Long-Term Effect of Infliximab against Crohn’s Disease. Biomed. Res. Int. 2015, 2015, 416838. [Google Scholar] [CrossRef] [Green Version]
- Hlavaty, T.; Ferrante, M.; Henckaerts, L.; Pierik, M.; Rutgeerts, P.; Vermeire, S. Predictive Model for the Outcome of Infliximab Therapy in Crohn’s Disease Based on Apoptotic Pharmacogenetic Index and Clinical Predictors. Inflamm. Bowel Dis. 2007, 13, 372–379. [Google Scholar] [CrossRef]
- Hlavaty, T.; Pierik, M.; Henckaerts, L.; Ferrante, M.; Joossens, S.; van Schuerbeek, N.; Noman, M.; Rutgeerts, P.; Vermeire, S. Polymorphisms in Apoptosis Genes Predict Response to Infliximab Therapy in Luminal and Fistulizing Crohn’s Disease. Aliment. Pharmacol. Ther. 2005, 22, 613–626. [Google Scholar] [CrossRef]
- Koder, S.; Repnik, K.; Ferkolj, I.; Pernat, C.; Skok, P.; Weersma, R.K.; Potočnik, U. Genetic Polymorphism in ATG16L1 Gene Influences the Response to Adalimumab in Crohn’s Disease Patients. Pharmacogenomics 2015, 16, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Dubinsky, M.C.; Mei, L.; Friedman, M.; Dhere, T.; Haritunians, T.; Hakonarson, H.; Kim, C.; Glessner, J.; Targan, S.R.; McGovern, D.P.; et al. Genome Wide Association (GWA) Predictors of Anti-TNFalpha Therapeutic Responsiveness in Pediatric Inflammatory Bowel Disease. Inflamm. Bowel. Dis. 2010, 16, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.A.; Boucher, G.; Lees, C.W.; Franke, A.; D’Amato, M.; Taylor, K.D.; Lee, J.C.; Goyette, P.; Imielinski, M.; Latiano, A.; et al. Meta-Analysis Identifies 29 Additional Ulcerative Colitis Risk Loci, Increasing the Number of Confirmed Associations to 47. Nat. Genet. 2011, 43, 246–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bek, S.; Nielsen, J.V.; Bojesen, A.B.; Franke, A.; Bank, S.; Vogel, U.; Andersen, V. Systematic review: Genetic biomarkers associated with anti-TNF treatment response in inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2016, 44, 554–567. [Google Scholar] [CrossRef]
Study | Number of Patients | Polymorphic Locus | Biological Agent | Clinical Effects |
---|---|---|---|---|
Netz et al., 2017 [40] | 121 | TNF-α rs1800629 | Infliximab | The A allele in rs1800629 was associated with a poor response |
López-Hernández et al., 2014 [41] | 82 | TNF-α rs1800629 | Infliximab | The A allele in rs1800629 was associated with a poor response |
Balog et al., 2004 [39] | 14 | TNF-α rs1800629 | Infliximab | The A allele in rs1800629 was associated with a poor response |
Song et al., 2015 [43] | 476 | TNF-α rs1800629 TNF-α rs361525 TNF-α rs1799724 | Infliximab, Adalimumab | The G allele in rs1800629 and in rs361525 and the C allele in rs1799724 were associated with a better response |
Matsuoka et al., 2018 [44] | 121 | TNF-α rs1799724 | Infliximab | The T allele in rs1799724 was associated with a poor response |
Pierik et al., 2004 [48] | 637 | TNFRSF1A rs767455 | Infliximab | The G allele in rs767455 was associated with a poor response |
Matsukura et al., 2008 [49] | 81 | TNFRSF1A rs767455 | Infliximab | The G allele in rs767455 was associated with a poor response |
Medrano et al., 2014 [50] | 297 | TNFRSF1B rs1061624 TNFRSF1B rs3397 | Infliximab | The A allele in rs1061624 is associated with non-response, while the CC genotype in rs3397 is associated with a better response |
Steenholdt et al., 2012 [51] | 124 | TNFRSF1B rs1061624 TNFRSF1B rs976881 | Infliximab | The G allele in the rs1061624 is associated with a better response, while C allele in rs976881 is associated with a poor response |
Study | Number of Patients | Polymorphic Locus | Biological Agent | Clinical Effects |
---|---|---|---|---|
Bank et al. 2019 [58] | 1045 | TLR4 rs5030728 TLR4 rs1554973 IL-6 rs10499563 IL-1RA rs4251961 | Infliximab | The G allele in rs5030728, the T allele in rs1554973 and the C allele in rs10499563 were associated with a better response, while the C allele in rs4251961 was associated with a poor response |
Lacruz-Guzmán et al., 2013 [45] | 47 | IL-1β rs1143634 | Infliximab | The C allele in rs1143634 was associated with a poor response |
Bank et al., 2014 [59] | 738 | IL-1β rs4848306 | Infliximab | The A allele in rs4848306 was associated with a better response |
Urabe et al., 2015 [60] | 103 | IL-17 rs766748 | Infliximab | The G/G genotype in rs766748 was associated with a better response |
Study | Number of Patients | Polymorphic Locus | Biological Agent | Clinical Effect |
---|---|---|---|---|
Hlavaty et al., 2005 [62] | 287 | FasL rs763110 Caspase-9 rs4645983 | Infliximab | The C/C and C/T genotypes in rs763110 and the T/T genotype in rs4645983 were associated with a better response |
Koder et al., 2015 [63] | 102 | ATG16L1 rs10210302 | Adalimumab | The C/T and T/T genotypes in rs10210302 were associated with a better response |
Dubinsky et al., 2010 [64] | 94 | ATG16L1 rs2241880 | Infliximab, Adalimumab | The C/T and T/T genotypes in rs2241880 were associated with a poor response |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauro, R.; Mannino, F.; Irrera, N.; Squadrito, F.; Altavilla, D.; Squadrito, G.; Pallio, G.; Bitto, A. Pharmacogenetics of Biological Agents Used in Inflammatory Bowel Disease: A Systematic Review. Biomedicines 2021, 9, 1748. https://doi.org/10.3390/biomedicines9121748
Lauro R, Mannino F, Irrera N, Squadrito F, Altavilla D, Squadrito G, Pallio G, Bitto A. Pharmacogenetics of Biological Agents Used in Inflammatory Bowel Disease: A Systematic Review. Biomedicines. 2021; 9(12):1748. https://doi.org/10.3390/biomedicines9121748
Chicago/Turabian StyleLauro, Rita, Federica Mannino, Natasha Irrera, Francesco Squadrito, Domenica Altavilla, Giovanni Squadrito, Giovanni Pallio, and Alessandra Bitto. 2021. "Pharmacogenetics of Biological Agents Used in Inflammatory Bowel Disease: A Systematic Review" Biomedicines 9, no. 12: 1748. https://doi.org/10.3390/biomedicines9121748
APA StyleLauro, R., Mannino, F., Irrera, N., Squadrito, F., Altavilla, D., Squadrito, G., Pallio, G., & Bitto, A. (2021). Pharmacogenetics of Biological Agents Used in Inflammatory Bowel Disease: A Systematic Review. Biomedicines, 9(12), 1748. https://doi.org/10.3390/biomedicines9121748