An Optimized Framework for Energy Management of Multi-Microgrid Systems
Abstract
:1. Introduction
- A new energy management model to formulate day-ahead energy management problem for optimal operations of MGs is proposed which allows autonomous operation mode; each MG incorporates DG units (CDG, PV, and WT), a battery ESS (BESS), and its own EMS.
- A two-step optimization problem is proposed. In the first step, each MG-EMS considers maximum local consumption of renewable energy, whereas, in the second step, the central EMS (CEMS) monitors the power mismatch, achieves optimal energy trading among MGs, and reduces load shedding.
- A hierarchical EMS is developed in which the algorithm makes price-based decisions and selects the optimized options from the available resources. A methodology for the assessment of the energy management strategy is illustrated, which enables marking and examining the characteristics of MMGs.
- Different scenarios and cases have been generated by MCS and tested on modified IEEE 33-bus distribution system; the results represent the stability of proposed algorithm and advantages of energy management system.
2. System Model
2.1. Configuration of Proposed MMG System
2.2. Wind Turbine DGs
2.2.1. Wind Speed Modeling
2.2.2. Wind Power Model
2.3. Photovoltaic DGs
2.3.1. Solar Irradiance Modeling
2.3.2. Solar Power Model
3. Optimization Formulation
3.1. Local Optimization
3.2. Global Optimization
4. Case Study
5. Results Analysis
5.1. Proposed Scenarios
5.2. Cases Generated by MCS
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
T | Index of time intervals. |
I | Index of distributed generators. |
K | Index of microgrids. |
Production cost of a dispatchable unit ‘i’. | |
Production cost of a renewable unit ‘i’. | |
Penalty cost for shedding of a sensitive load (l) at time ‘t’. | |
Penalty cost for shedding of a non-sensitive load (l’) at time ‘t’. | |
Power buying price from an MG ‘k’ at time ‘t’. | |
Power selling price to an MG ‘k’ at time ‘t’. | |
Capacity of a central battery energy storage system (CBESS). | |
Minimum generation limit of a dispatchable unit ‘i’ at time ‘t’. | |
Maximum generation limit of a dispatchable unit ‘i’ at time ‘t’. | |
Load of an MG ‘k’ at time ‘t’. | |
Power of an MG ‘k’ bought from the grid. | |
Power of an MG ‘k’ sold to the grid. | |
State-of-charge (SOC) of a BESS at time ‘t’. | |
SOC of a CBESS at time ‘t’. | |
Forecasted output of a photovoltaic (PV) panel/wind turbine (WT). | |
Power buying price from the grid at time ‘t’. | |
Power selling price to the grid at time ‘t’. | |
Capacity of a battery energy storage system (BESS). | |
Efficiency of a BESS/CBESS. | |
Production amount of a dispatchable unit ‘i’. | |
Production amount of a renewable unit ‘i’. | |
Surplus amount of power in an MG ‘k’. | |
Deficient amount of power in an MG ‘k’. | |
Power required to charge a BESS in an MG ‘k’. | |
Power discharged from a BESS in an MG ‘k’. | |
Amount of sensitive loads shed from an MG ‘k’. | |
Amount of non-sensitive loads shed from an MG ‘k’. | |
Power of an MG ‘k’ bought from another MG. | |
Power of an MG ‘k’ sold to another MG. | |
Commitment status of a dispatchable unit ‘i’ of an MG ‘k’. |
References
- Gregoratti, D.; Matamoros, J. Distributed energy trading: The multiple-microgrid case. IEEE Trans. Ind. Electron. 2014, 62, 2551–2559. [Google Scholar] [CrossRef] [Green Version]
- Panteli, M.; Mancarella, P. The grid: Stronger, bigger, smarter?: Presenting a conceptual framework of power system resilience. IEEE Power Energy Mag. 2015, 13, 58–66. [Google Scholar] [CrossRef]
- Hatziargyriou, N.; Asano, H.; Iravani, R.; Marnay, C. Microgrids. IEEE Power Energy Mag. 2007, 5, 78–94. [Google Scholar] [CrossRef]
- Katiraei, F.; Iravani, R.; Hatziargyriou, N.; Dimeas, A. Microgrids management. IEEE Power Energy Mag. 2008, 6, 54–65. [Google Scholar] [CrossRef]
- Kanchev, H.; Lu, D.; Colas, F.; Lazarov, V.; Francois, B. Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications. IEEE Trans. Ind. Electron. 2011, 58, 4583–4592. [Google Scholar] [CrossRef] [Green Version]
- Bui, V.H.; Hussain, A.; Kim, H.M. A multiagent-based hierarchical energy management strategy for multi-microgrids considering adjustable power and demand response. IEEE Trans. Smart Grid 2016, 9, 1323–1333. [Google Scholar] [CrossRef]
- Chowdhury, D.; Hasan, A.S.M.K.; Khan, M.Z.R. Islanded DC Microgrid Architecture with Dual Active Bridge Converter-Based Power Management Units and Time Slot-Based Control Interface. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 863–871. [Google Scholar] [CrossRef]
- Arefifar, S.A.; Ordonez, M.; Mohamed, Y.A.R.I. Energy management in multi-microgrid systems—Development and assessment. IEEE Trans. Power Syst. 2016, 32, 910–922. [Google Scholar] [CrossRef]
- Hossain, M.J.; Mahmud, M.A.; Milano, F.; Bacha, S.; Hably, A. Design of robust distributed control for interconnected microgrids. IEEE Trans. Smart Grid 2015, 7, 2724–2735. [Google Scholar] [CrossRef]
- Che, L.; Zhang, X.; Shahidehpour, M.; Alabdulwahab, A.; Abusorrah, A. Optimal interconnection planning of community microgrids with renewable energy sources. IEEE Trans. Smart Grid 2015, 8, 1054–1063. [Google Scholar] [CrossRef]
- Haddadian, H.; Noroozian, R. Multi-Microgrid-Based Operation of Active Distribution Networks Considering Demand Response Programs. IEEE Trans. Sustain. Energy 2019, 10, 1804–1812. [Google Scholar] [CrossRef]
- Lu, T.; Wang, Z.; Ai, Q.; Lee, W. Interactive Model for Energy Management of Clustered Microgrids. IEEE Trans. Ind. Appl. 2017, 53, 1739–1750. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, X.; Lin, D.; Calvin, M.M.; Morgan, J.C.; Qin, R.; Wang, C. Energy Management of Multiple Microgrids Based on a System of Systems Architecture. IEEE Trans. Power Syst. 2018, 33, 6410–6421. [Google Scholar] [CrossRef]
- Jiang, W.; Yang, K.; Yang, J.; Mao, R.; Xue, N.; Zhuo, Z. A Multiagent-Based Hierarchical Energy Management Strategy for Maximization of Renewable Energy Consumption in Interconnected Multi- Microgrids. IEEE Access 2019, 7, 169931–169945. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Gooi, H.B.; Jian, Y.; Xin, H.; Jiang, X.; Pan, J. Distributed robust energy management of a multimicrogrid system in the real-time energy market. IEEE Trans. Sustain. Energy 2017, 10, 396–406. [Google Scholar] [CrossRef]
- Wang, S.; Gangammanavar, H.; Ekşioğlu, S.D.; Mason, S.J. Stochastic optimization for energy management in power systems with multiple microgrids. IEEE Trans. Smart Grid 2017, 10, 1068–1079. [Google Scholar] [CrossRef]
- Hussain, A.; Bui, V.H.; Kim, H.M. A resilient and privacy-preserving energy management strategy for networked microgrids. IEEE Trans. Smart Grid 2016, 9, 2127–2139. [Google Scholar] [CrossRef]
- Mehmood, K.K.; Kim, C.; Khan, S.U.; Haider, Z.M. Unified Planning of Wind Generators and Switched Capacitor Banks: A Multiagent Clustering-Based Distributed Approach. IEEE Trans. Power Syst. 2018, 33, 6978–6988. [Google Scholar] [CrossRef]
- Hetzer, J.; Yu, D.C.; Bhattarai, K. An Economic Dispatch Model Incorporating Wind Power. IEEE Trans. Energy Convers. 2008, 23, 603–611. [Google Scholar] [CrossRef]
- Atwa, Y.M.; El-Saadany, E.F.; Salama, M.M.A.; Seethapathy, R. Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization. IEEE Trans. Power Syst. 2010, 25, 360–370. [Google Scholar] [CrossRef]
- Selvan, M.P.; Swarup, K.S. Distribution system load flow using object-oriented methodology. In Proceedings of the 2004 International Conference on Power System Technology (PowerCon 2004), Singapore, 21–24 November 2004; Volume 2, pp. 1168–1173. [Google Scholar]
- Draxl, C.; Clifton, A.; Hodge, B.M.; McCaa, J. The Wind Integration National Dataset (WIND) Toolkit. Appl. Energy 2015, 151, 355–366. [Google Scholar] [CrossRef] [Green Version]
- National Solar Radiation Data Base. Available online: http://rredc.nrel.gov/solar/olddata/nsrdb/ (accessed on 23 September 2019).
- LCG Consulting: Energy Online. Available online: http://http://www.energyonline.com/Data/GenericData.aspx?DataId=4 (accessed on 19 February 2020).
- Khawaja, K.; Khan, S.; Lee, S.J.; Haider, Z.; Rafique, M.; Kim, C.H. A real-time optimal coordination scheme for the voltage regulation of a distribution network including an OLTC, capacitor banks, and multiple distributed energy resources. Int. J. Electr. Power Energy Syst. 2018, 94, 1–14. [Google Scholar] [CrossRef]
State of Microgrids | MG1 | MG2 | MG3 | MG4 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cases | MG1 | MG2 | MG3 | >MG4 | PS(kW) | PB(kW) | LS(kW) | C(Rs.) | PS(kW) | PB(kW) | LS(kW) | C(Rs.) | PS(kW) | PB(kW) | LS(kW) | C(Rs.) | PS(kW) | PB(kW) | LS(kW) | C(Rs.) |
Case 01 | 4 | 4 | 4 | 4 | 7749.82 | 0 | 0 | 46,189 | 5743.81 | 0 | 0 | 22,804 | 3965 | 0 | 0 | 11,874 | 374.44 | 408.59 | 0 | 13,511 |
Case 02 | 1 | 1 | 3 | 4 | 0 | 0 | 0 | 51,469 | 0 | 0 | 0 | 25,675 | 340.23 | 0 | 0 | 13,304 | 374.44 | 340.23 | 0 | 13,375 |
Case 03 | 1 | 1 | 3 | 3 | 0 | 0 | 0 | 51,469 | 0 | 0 | 0 | 25,675 | 340.23 | 0 | 0 | 13,304 | 0 | 340.23 | 0 | 13,647 |
Case 04 | 2 | 1 | 3 | 2 | 7749.82 | 0 | 0 | 47,594 | 0 | 0 | 0 | 25,675 | 0 | 0 | 0 | 14,352 | 374.44 | 1533 | 0 | 13,400 |
Case 05 | 4 | 2 | 1 | 4 | 7749.82 | 0 | 0 | 46,189 | 5743.81 | 0 | 0 | 22,804 | 0 | 0 | 55.73 | 14,562 | 374.44 | 408.59 | 0 | 13,511 |
Case 06 | 4 | 4 | 4 | 2 | 7749.82 | 0 | 0 | 47,594 | 5743.81 | 0 | 0 | 22,804 | 3965 | 0 | 0 | 11,874 | 374.44 | 1533 | 0 | 13,400 |
Case 07 | 2 | 4 | 4 | 1 | 7749.82 | 0 | 0 | 47,594 | 5743.81 | 0 | 0 | 22,804 | 3965 | 0 | 0 | 11,874 | 0 | 0 | 1533 | 18,759 |
Case 08 | 2 | 4 | 1 | 4 | 7749.82 | 0 | 0 | 47,594 | 5743.81 | 0 | 0 | 21,396 | 0 | 0 | 55.73 | 14,562 | 374.44 | 408.59 | 0 | 13,511 |
Case 09 | 2 | 4 | 4 | 3 | 7749.82 | 0 | 0 | 47,594 | 5743.81 | 0 | 0 | 21,396 | 3965 | 0 | 0 | 11,874 | 0 | 408.59 | 0 | 13,783 |
Case 10 | 1 | 4 | 2 | 4 | 0 | 0 | 0 | 51,469 | 5743.81 | 0 | 0 | 21,396 | 3965 | 55.73 | 0 | 11,902 | 374.44 | 408.59 | 0 | 13,511 |
Case 11 | 2 | 3 | 4 | 4 | 7749.82 | 0 | 0 | 47,594 | 408.59 | 0 | 0 | 24,064 | 3965 | 0 | 0 | 11,874 | 374.44 | 408.59 | 0 | 13,511 |
Case 12 | 4 | 4 | 1 | 4 | 7749.82 | 0 | 0 | 46,189 | 5743.81 | 0 | 0 | 22,804 | 0 | 0 | 55.73 | 14,562 | 374.44 | 408.59 | 0 | 13,511 |
Case 13 | 2 | 1 | 4 | 2 | 7749.82 | 0 | 0 | 47,594 | 0 | 0 | 0 | 25,676 | 3965 | 0 | 0 | 11,874 | 374.44 | 1533 | 0 | 13,400 |
Case 14 | 4 | 4 | 3 | 2 | 7749.82 | 0 | 0 | 47,594 | 5743.81 | 0 | 0 | 22,804 | 0 | 0 | 0 | 14,352 | 374.44 | 1533 | 0 | 13,400 |
Case 15 | 4 | 3 | 2 | 2 | 7749.82 | 0 | 0 | 47,594 | 0 | 0 | 0 | 25,676 | 3965 | 55.73 | 0 | 11,902 | 374.44 | 1533 | 0 | 13,400 |
Case 16 | 4 | 2 | 4 | 1 | 7749.82 | 0 | 0 | 47,594 | 5743.81 | 0 | 0 | 22,804 | 3965 | 0 | 0 | 11,874 | 0 | 0 | 1533 | 18,759 |
Case 17 | 4 | 3 | 1 | 1 | 7749.82 | 0 | 0 | 47,594 | 0 | 0 | 0 | 25,676 | 0 | 0 | 55.73 | 14,562 | 0 | 0 | 1533 | 18,759 |
Case 18 | 1 | 3 | 2 | 2 | 0 | 0 | 0 | 51,469 | 0 | 0 | 0 | 25,676 | 3965 | 55.73 | 0 | 11,902 | 374.44 | 1533 | 0 | 13,400 |
Case 19 | 3 | 2 | 2 | 3 | 408.59 | 0 | 0 | 49,859 | 5743.81 | 0 | 0 | 22,804 | 3965 | 55.73 | 0 | 11,902 | 0 | 408.59 | 0 | 13,783 |
Case 20 | 4 | 3 | 3 | 3 | 7749.82 | 0 | 0 | 46,189 | 0 | 0 | 0 | 25,676 | 0 | 0 | 0 | 14,352 | 0 | 408.59 | 0 | 13,783 |
Case 21 | 1 | 3 | 3 | 2 | 0 | 0 | 0 | 51,469 | 0 | 0 | 0 | 25,676 | 0 | 0 | 0 | 14,352 | 374.44 | 1533 | 0 | 13,400 |
Case 22 | 2 | 4 | 1 | 1 | 7749.82 | 0 | 0 | 47,594 | 5743.81 | 0 | 0 | 22,804 | 0 | 0 | 55.73 | 14,562 | 0 | 0 | 1533 | 18,759 |
Case 23 | 2 | 4 | 4 | 4 | 7749.82 | 0 | 0 | 47,594 | 5743.81 | 0 | 0 | 21,396 | 3965 | 0 | 0 | 11,874 | 374.44 | 408.59 | 0 | 13,511 |
Case 24 | 2 | 3 | 3 | 2 | 7749.82 | 0 | 0 | 47,594 | 0 | 0 | 0 | 25,676 | 0 | 0 | 0 | 14,352 | 374.44 | 1533 | 0 | 13,400 |
Case 25 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 51,469 | 0 | 0 | 0 | 25,676 | 0 | 0 | 55.73 | 14,352 | 0 | 0 | 1533 | 18,759 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naz, K.; Zainab, F.; Mehmood, K.K.; Bukhari, S.B.A.; Khalid, H.A.; Kim, C.-H. An Optimized Framework for Energy Management of Multi-Microgrid Systems. Energies 2021, 14, 6012. https://doi.org/10.3390/en14196012
Naz K, Zainab F, Mehmood KK, Bukhari SBA, Khalid HA, Kim C-H. An Optimized Framework for Energy Management of Multi-Microgrid Systems. Energies. 2021; 14(19):6012. https://doi.org/10.3390/en14196012
Chicago/Turabian StyleNaz, Komal, Fasiha Zainab, Khawaja Khalid Mehmood, Syed Basit Ali Bukhari, Hassan Abdullah Khalid, and Chul-Hwan Kim. 2021. "An Optimized Framework for Energy Management of Multi-Microgrid Systems" Energies 14, no. 19: 6012. https://doi.org/10.3390/en14196012
APA StyleNaz, K., Zainab, F., Mehmood, K. K., Bukhari, S. B. A., Khalid, H. A., & Kim, C.-H. (2021). An Optimized Framework for Energy Management of Multi-Microgrid Systems. Energies, 14(19), 6012. https://doi.org/10.3390/en14196012