Increasing Ethanol Tolerance and Ethanol Production in an Industrial Fuel Ethanol Saccharomyces cerevisiae Strain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Media, and Growth Conditions
2.2. Molecular Biology Techniques
2.3. Quantitative RT-PCR Analysis
2.4. Analysis of the Ethanol Tolerance of Yeast Strains
2.5. Measurement of Intracellular Oxidation Level and Cell Viability
2.6. Fermentations Mimicking the Brazilian Sugarcane Biorefinery
2.7. Residual Sugars, Glycerol, and Ethanol Determination
3. Results
3.1. Ethanol Tolerance of the Industrial Yeast Strains
3.2. Overexpression of the TRP1, MSN2, or Truncated MSN2 Genes in Strain CAT-1
3.3. Intracellular Oxidation Levels in Yeast Cells Trigged by Exposure to 20% Ethanol
3.4. Fermentations Mimicking the Brazilian Sugarcane Ethanol Production Process
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Goldemberg, J. Ethanol for a sustainable energy future. Science 2007, 315, 808–810. [Google Scholar] [CrossRef]
- Renewable Fuels Association: Annual Fuel Ethanol Production. Available online: https://ethanolrfa.org/markets-and-statistics/annual-ethanol-production (accessed on 1 March 2022).
- Stambuk, B.U. Yeasts: The leading figures on bioethanol production. In Ethanol as a Green Alternative Fuel: Insight and Perspectives, 1st ed.; Treichel, H., Alves-Jr, S.L., Fongaro, G., Müller, C., Eds.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2019; pp. 57–91. [Google Scholar]
- Jacobus, A.P.; Gross, J.; Evans, J.H.; Ceccato-Antonini, S.R.; Gombert, A.K. Saccharomyces cerevisiae strains used industrially for bioethanol production. Essays Biochem. 2021, 65, 147–161. [Google Scholar] [CrossRef]
- Lagunas, R. Energetic irrelevance of aerobiosis for S. cerevisiae growing on sugars. Mol. Cell. Biochem. 1979, 27, 139–146. [Google Scholar] [CrossRef]
- Merico, A.; Sulo, P.; Piskur, J.; Compagno, C. Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J. 2007, 274, 976–989. [Google Scholar] [CrossRef]
- Hagman, A.; Piskur, J. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast. PLoS ONE 2015, 10, e0116942. [Google Scholar] [CrossRef]
- Ding, J.; Huang, X.; Zhang, L.; Zhao, N.; Yang, D.; Zhang, K. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2009, 85, 253–263. [Google Scholar] [CrossRef]
- Stanley, D.; Bandara, A.; Fraser, S.; Chambers, P.J.; Stanley, G.A. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J. Appl. Microbiol. 2010, 109, 13–24. [Google Scholar] [CrossRef]
- Ma, M.; Liu, Z.L. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2010, 87, 829–845. [Google Scholar] [CrossRef]
- Snoek, T.; Verstrepen, K.J.; Voordeckers, K. How do yeast cells become tolerant to high ethanol concentrations? Curr. Genet. 2016, 62, 475–480. [Google Scholar] [CrossRef]
- Vamvakas, S.S.; Kapolos, J. Factors affecting yeast ethanol tolerance and fermentation efficiency. World J. Microbiol. Biotechnol. 2020, 36, 114. [Google Scholar] [CrossRef]
- Doğan, A.; Demirci, S.; Aytekin, A.Ö.; Şahin, F. Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Appl. Biochem. Biotechnol. 2014, 174, 28–42. [Google Scholar] [CrossRef]
- Akinosho, H.; Rydzak, T.; Borole, A.; Ragauskas, A.; Close, D. Toxicological challenges to microbial bioethanol production and strategies for improved tolerance. Ecotoxicology 2015, 24, 2156–2174. [Google Scholar] [CrossRef]
- Estruch, F. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. 2000, 24, 469–486. [Google Scholar] [CrossRef]
- Martínez-Pastor, M.T.; Marchler, G.; Schüller, C.; Marchler-Bauer, A.; Ruis, H.; Estruch, F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 1996, 15, 2227–2235. [Google Scholar] [CrossRef]
- Schmitt, A.P.; McEntee, K. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1996, 93, 5777–5782. [Google Scholar] [CrossRef]
- Görner, W.; Durchschlag, E.; Martinez-Pastor, M.T.; Estruch, F.; Ammerer, G.; Hamilton, B.; Ruis, H.; Schüller, C. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev. 1998, 12, 586–597. [Google Scholar] [CrossRef]
- Boy-Marcotte, E.; Garmendia, C.; Garreau, H.; Lallet, S.; Mallet, L.; Jacquet, M. The transcriptional activation region of Msn2p, in Saccharomyces cerevisiae, is regulated by stress but is insensitive to the cAMP signalling pathway. Mol. Genet. Genomics. 2006, 275, 277–287. [Google Scholar] [CrossRef]
- Sadeh, A.; Baran, D.; Volokh, M.; Aharoni, A. Conserved motifs in the Msn2-activating domain are important for Msn2-mediated yeast stress response. J. Cell. Sci. 2012, 125, 3333–3342. [Google Scholar] [CrossRef]
- Watanabe, M.; Watanabe, D.; Akao, T.; Shimoi, H. Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing. J. Biosci. Bioeng. 2009, 107, 516–518. [Google Scholar] [CrossRef]
- Hong, M.E.; Lee, K.S.; Yu, B.J.; Sung, Y.J.; Park, S.M.; Koo, H.M.; Kweon, D.H.; Park, J.C.; Jin, Y.S. Identification of gene _targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. J. Biotechnol. 2010, 149, 52–59. [Google Scholar] [CrossRef]
- Kubota, S.; Takeo, I.; Kume, K.; Kanai, M.; Shitamukai, A.; Mizunuma, M.; Miyakawa, T.; Shimoi, H.; Iefuji, H.; Hirata, D. Effect of ethanol on cell growth of budding yeast: Genes that are important for cell growth in the presence of ethanol. Biosci. Biotechnol. Biochem. 2004, 68, 968–972. [Google Scholar] [CrossRef]
- Fujita, K.; Matsuyama, A.; Kobayashi, Y.; Iwahashi, H. The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res. 2006, 6, 744–750. [Google Scholar] [CrossRef]
- Hirasawa, T.; Yoshikawa, K.; Nakakura, Y.; Nagahisa, K.; Furusawa, C.; Katakura, Y.; Shimizu, H.; Shioya, S. Identification of _target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J. Biotechnol. 2007, 131, 34–44. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Tanaka, T.; Furusawa, C.; Nagahisa, K.; Hirasawa, T.; Shimizu, H. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res. 2009, 9, 32–44. [Google Scholar] [CrossRef]
- Jaiswal, D.; de Souza, A.P.; Larsen, S.; LeBauer, D.S.; Miguez, F.E.; Sparovek, G.; Bollero, G.; Buckeridge, M.S.; Long, S.P. Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. Nat. Clim. Change 2017, 7, 788–792. [Google Scholar] [CrossRef]
- Amorim, H.V.; Lopes, M.L.; Oliveira, J.V.C.; Buckeridge, M.S.; Goldman, G.H. Scientific challenges of bioethanol production in Brazil. Appl. Microbiol. Biotechnol. 2011, 91, 1267–1275. [Google Scholar] [CrossRef]
- Lopes, M.L.; Paulillo, S.C.; Godoy, A.; Cherubin, R.A.; Lorenzi, M.S.; Giometti, F.H.; Bernardino, C.D.; Amorim Neto, H.B.; Amorim, H.V. Ethanol production in Brazil: A bridge between science and industry. Braz. J. Microbiol. 2016, 47 (Suppl. S1), 64–76. [Google Scholar] [CrossRef]
- Godoy, A.; Amorim, H.V.; Lopes, M.L.; Oliveira, A.J. Continuous and batch fermentation processes: Advantages and disadvantages of these processes in the Brazilian ethanol production. Int. Sugar. J. 2008, 110, 175–181. [Google Scholar]
- Raghavendran, V.; Basso, T.P.; da Silva, J.B.; Basso, L.C.; Gombert, A.K. A simple scaled down system to mimic the industrial production of first generation fuel ethanol in Brazil. Antonie van Leeuwenhoek 2017, 110, 971–983. [Google Scholar] [CrossRef]
- de Souza, R.B.; dos Santos, B.M.; de Fátima Rodrigues de Souza, R.; da Silva, P.K.; Lucena, B.T.; de Morais-Jr, M.A. The consequences of Lactobacillus vini and Dekkera bruxellensis as contaminants of the sugarcane-based ethanol fermentation. J. Ind. Microbiol. Biotechnol. 2012, 39, 1645–1650. [Google Scholar] [CrossRef] [PubMed]
- Costa, O.Y.A.; Souto, B.M.; Tupinambá, D.D.; Bergmann, J.C.; Kyaw, C.M.; Kruger, R.H.; Barreto, C.C.; Quirino, B.F. Microbial diversity in sugarcane ethanol production in a Brazilian distillery using a culture-independent method. J. Ind. Microbiol. Biotechnol. 2015, 42, 73–84. [Google Scholar] [CrossRef] [PubMed]
- de Figueiredo, C.M.; Hock, D.H.; Trichez, D.; Magalhães, M.d.L.B.; Lopes, M.L.; de Amorim, H.V.; Stambuk, B.U. High foam phenotypic diversity and variability in flocculant gene observed for various yeast cell surfaces present as industrial contaminants. Fermentation 2021, 7, 127. [Google Scholar] [CrossRef]
- da Silva-Filho, E.; Santos, S.K.; Resende, A.M.; Morais, J.O.; de Morais-Jr, M.A.; Simões, D.A. Yeast population dynamics of industrial fuel-ethanol fermentation process assessed by PCR-fingerprinting. Antonie van Leeuwenhoeck 2005, 88, 13–23. [Google Scholar] [CrossRef]
- Basso, L.C.; de Amorim, H.V.; de Oliveira, A.J.; Lopes, M.L. Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res. 2008, 8, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Stambuk, B.U.; Dunn, B.; Alves-Jr, S.L.; Duval, E.H.; Sherlock, G. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res. 2009, 19, 2271–2278. [Google Scholar] [CrossRef] [PubMed]
- Babrzadeh, F.; Jalili, R.; Wang, C.; Shokralla, S.; Pierce, S.; Robinson-Mosher, A.; Nyren, P.; Shafer, R.W.; Basso, L.C.; de Amorim, H.V.; et al. Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1. Mol. Genet. Genom. 2012, 287, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Ausubel, F.M.; Brent, R.; Kingston, R.E.; Moore, D.D.; Seidman, J.G.; Smith, J.A.; Struhl, K. Short Protocols in Molecular Biology, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1995. [Google Scholar]
- Petracek, M.E.; Longtine, M.S. PCR-based engineering of yeast genome. Methods Enzymol. 2002, 350, 445–469. [Google Scholar] [CrossRef]
- Gietz, D.; St Jean, A.; Woods, R.A.; Schiestl, R.H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992, 20, 1425. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Fernandez-Ricaud, L.; Kourtchenko, O.; Zackrisson, M.; Warringer, J.; Blomberg, A. PRECOG: A tool for automated extraction and visualization of fitness components in microbial growth phenomics. BMC Bioinform. 2016, 17, 249. [Google Scholar] [CrossRef]
- Sasano, Y.; Watanabe, D.; Ukibe, K.; Inai, T.; Ohtsu, I.; Shimoi, H.; Takagi, H. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J. Biosci. Bioeng. 2012, 113, 451–455. [Google Scholar] [CrossRef]
- Varize, C.S.; Christofoleti-Furlan, R.M.; Raposo, M.S.; Camarozano, C.T.; Lopes, L.D.; Muynarsk, E.S.M.; Basso, T.P.; Basso, L.C. Amino acid supplementation in alcoholic fermentation of molasses must and sugarcane syrup using CAT-1 industrial lineage. J. Biotec. Biodivers. 2019, 7, 265–280. [Google Scholar] [CrossRef]
- Mukherjee, V.; Steensels, J.; Lievens, B.; Van de Voorde, I.; Verplaetse, A.; Aerts, G.; Willems, K.A.; Thevelein, J.M.; Verstrepen, K.J.; Ruyters, S. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production. Appl. Microbiol. Biotechnol. 2014, 98, 9483–9498. [Google Scholar] [CrossRef] [PubMed]
- Bleoanca, I.; Silva, A.R.; Pimentel, C.; Rodrigues-Pousada, C.; Menezes, R.D.A. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains. J. Biosci. Bioeng. 2013, 116, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, N.; Yanata, H.; Ito, N.; Kaneta, E.; Takahashi, K. Oxidative stress tolerance of a spore clone isolated from Shirakami kodama yeast depends on altered regulation of Msn2 leading to enhanced expression of ROS-degrading enzymes. J. Gen. Appl. Microbiol. 2018, 64, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Puligundla, P.; Smogrovicova, D.; Obulam, V.S.; Ko, S. Very high gravity (VHG) ethanolic brewing and fermentation: A research update. J. Ind. Microbiol. Biotechnol. 2011, 38, 1133–1144. [Google Scholar] [CrossRef]
- Gomes, D.; Cruz, M.; de Resende, M.; Ribeiro, E.; Teixeira, J.; Domingues, L. Very high gravity bioethanol revisited: Main challenges and advances. Fermentation 2021, 7, 38. [Google Scholar] [CrossRef]
- Maiorella, B.; Blanch, H.; Wilke, C. Economic evaluation of alternative ethanol fermentation processes. Biotechnol. Bioeng. 2009, 104, 419–443. [Google Scholar] [CrossRef]
- Della-Bianca, B.E.; Gombert, A.K. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry. Antonie van Leeuwenhoek 2013, 104, 1083–1095. [Google Scholar] [CrossRef]
- Della-Bianca, B.E.; Basso, T.O.; Stambuk, B.U.; Basso, L.C.; Gombert, A.K. What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl. Microbiol. Biotechnol. 2013, 97, 979–991. [Google Scholar] [CrossRef]
- Nagamatsu, S.T.; Coutouné, N.; José, J.; Fiamenghi, M.B.; Pereira, G.A.G.; Oliveira, J.V.C.; Carazzolle, M.F. Ethanol production process driving changes on industrial strains. FEMS Yeast Res. 2021, 21, foaa071. [Google Scholar] [CrossRef] [PubMed]
- Ferreras, J.M.; Iglesias, R.; Girbes, T. Effect of the chronic ethanol action on the activity of the general amino-acid permease from Saccharomyces cerevisiae var. ellipsoideus. Biochim. Biophys. Acta 1989, 979, 375–377. [Google Scholar] [CrossRef]
- Swinnen, S.; Goovaerts, A.; Schaerlaekens, K.; Dumortier, F.; Verdyck, P.; Souvereyns, K.; Van Zeebroeck, G.; Foulquié-Moreno, M.R.; Thevelein, J.M. Auxotrophic mutations reduce tolerance of Saccharomyces cerevisiae to very high levels of ethanol stress. Eukaryot. Cell 2015, 14, 884–897. [Google Scholar] [CrossRef] [PubMed]
- Pais, T.M.; Foulquié-Moreno, M.R.; Hubmann, G.; Duitama, J.; Swinnen, S.; Goovaerts, A.; Yang, Y.; Dumortier, F.; Thevelein, J.M. Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast. PLoS Genet. 2013, 9, e1003548. [Google Scholar] [CrossRef] [PubMed]
- Lallet, S.; Garreau, H.; Garmendia-Torres, C.; Szestakowska, D.; Boy-Marcotte, E.; Quevillon-Chéruel, S.; Jacquet, M. Role of Gal11, a component of the RNA polymerase II mediator in stress-induced hyperphosphorylation of Msn2 in Saccharomyces cerevisiae. Mol. Microbiol. 2006, 62, 438–452. [Google Scholar] [CrossRef]
- Galardini, M.; Busby, B.P.; Vieitez, C.; Dunham, A.S.; Typas, A.; Beltrao, P. The impact of the genetic background on gene deletion phenotypes in Saccharomyces cerevisiae. Mol. Syst. Biol. 2019, 15, e8831. [Google Scholar] [CrossRef]
- Yi, X.; Alper, H.S. Considering strain variation and non-type strains for yeast metabolic engineering applications. Life 2022, 12, 510. [Google Scholar] [CrossRef]
- Shiroma, S.; Jayakody, L.N.; Horie, K.; Okamoto, K.; Kitagaki, H. Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function. Appl. Environ. Microbiol. 2014, 80, 1002–1012. [Google Scholar] [CrossRef]
- Eliodório, K.P.; de Gois e Cunha, G.C.; White, B.A.; Patel, D.H.M.; Zhang, F.; Hettema, E.H.; Basso, T.O.; Gombert, A.K.; Raghavendran, V. Blocking mitophagy does not significantly improve fuel ethanol production in bioethanol yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2022, 88, e0206821. [Google Scholar] [CrossRef]
- Zhang, J.; Astorga, M.A.; Gardner, J.M.; Walker, M.E.; Grbin, P.R.; Jiranek, V. Disruption of the cell wall integrity gene ECM33 results in improved fermentation by wine yeast. Metab. Eng. 2018, 45, 255–264. [Google Scholar] [CrossRef]
- Lang, T.A.; Walker, M.E.; Jiranek, V. Disruption of ECM33 in diploid wine yeast EC1118: Cell morphology and aggregation and their influence on fermentation performance. FEMS Yeast Res. 2021, 21, foab044. [Google Scholar] [CrossRef]
- Amorim, H.V.; Basso, L.C.; Lopes, M.L. Sugar cane juice and molasses, beet molasses and sweet sorghum: Composition and usage. In The Alcohol Textbook; Nottingham University Press: Nottingham, UK, 2009; pp. 39–46. [Google Scholar]
- Dias, M.S.; Filho, M.R.; Mantelatto, P.; Cavalett, O.; Rossell, C.; Bonomi, A.; Leal, V. Sugarcane processing for ethanol and sugar in Brazil. Environ. Dev. 2015, 15, 35–51. [Google Scholar] [CrossRef]
- Pradeep, P.; Reddy, O.V. High gravity fermentation of sugarcane molasses to produce ethanol: Effect of nutrients. Indian J. Microbiol. 2010, 50 (Suppl. S1), 82–87. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, B.; Ferraz, P.; Barroca, M.; da Cruz, S.H.; Collins, T.; Lucas, C. Conditions promoting effective very high gravity sugarcane juice fermentation. Biotechnol. Biofuels. 2018, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Lam, F.H.; Ghaderi, A.; Fink, G.R.; Stephanopoulos, G. Biofuels. Engineering alcohol tolerance in yeast. Science 2014, 346, 71–75. [Google Scholar] [CrossRef] [Green Version]
Strains and Primers | Relevant Features, Genotype or Sequence (5′→3′) | Source |
---|---|---|
Yeast strains: | ||
CAT-1 | Industrial strain isolated by Fementec Ltd.a. in 1998/1999 from Usina VO Catanduva, located in the State of São Paulo, Brazil. | [38] |
CAT1-TRP1oe | Isogenic to CAT-1, but KanMX-PADH1::TRP1 | This work |
CAT1-MSN2oe | Isogenic to CAT-1, but KanMX-PADH1::MSN2 | This work |
CAT1-NΔMSN2oe | Isogenic to CAT-1, but KanMX-PADH1::NΔ(1-153)MSN2 | This work |
Primers: | ||
TRP1-Kanr-F | GAGAGGGCCAAGAGGGAGGGCATTGGTGACTATTGAGCACCCAGCTGAAGCTTCGTACGC | This work |
TRP1-PADH1-R | TCACCAATGGACCAGAACTACCTGTGAAATTAATAACAGACATTGTATATGAGATAGTTG | This work |
MSN2-Kanr-F | CGGGAAGATCACAACAGTAGTAGCAAGGTATTTCATACGCCCAGCTGAAGCTTCGTACG | This work |
MSN2-PADH1-R | CATGGTCGACCGTCATTTTAGATCTAGTTCTTCTATGAGCCCAATGGACCAGAACTACCTG | This work |
NΔMSN2-PADH1-R | CAGTGAAGTTTCTTGATTTTGAATGTCATTGAGATCCGCCAATGGACCAGAACTACCTG | This work |
V-kanr-F | CCGGTTGCATTCGATTCC | This work |
VRT-TRP1-R | GTAAGCTTTCGGGGCTCTCT | This work |
VRT-MSN2-R | TGAAGGTACCGGAAAAATGG | This work |
RT-ACT1-F | TGGATTCCGGTGATGGTGTT | This work |
RT-ACT1-R | CGGCCAAATCGATTCTCAA | This work |
RT-TRP1-F | GTTCCTCGGTTTGCCAGTTA | This work |
RT-MSN2-F | CGCGATGCAAGAACTATTGA | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varize, C.S.; Bücker, A.; Lopes, L.D.; Christofoleti-Furlan, R.M.; Raposo, M.S.; Basso, L.C.; Stambuk, B.U. Increasing Ethanol Tolerance and Ethanol Production in an Industrial Fuel Ethanol Saccharomyces cerevisiae Strain. Fermentation 2022, 8, 470. https://doi.org/10.3390/fermentation8100470
Varize CS, Bücker A, Lopes LD, Christofoleti-Furlan RM, Raposo MS, Basso LC, Stambuk BU. Increasing Ethanol Tolerance and Ethanol Production in an Industrial Fuel Ethanol Saccharomyces cerevisiae Strain. Fermentation. 2022; 8(10):470. https://doi.org/10.3390/fermentation8100470
Chicago/Turabian StyleVarize, Camila S., Augusto Bücker, Lucas D. Lopes, Renata M. Christofoleti-Furlan, Mariane S. Raposo, Luiz C. Basso, and Boris U. Stambuk. 2022. "Increasing Ethanol Tolerance and Ethanol Production in an Industrial Fuel Ethanol Saccharomyces cerevisiae Strain" Fermentation 8, no. 10: 470. https://doi.org/10.3390/fermentation8100470
APA StyleVarize, C. S., Bücker, A., Lopes, L. D., Christofoleti-Furlan, R. M., Raposo, M. S., Basso, L. C., & Stambuk, B. U. (2022). Increasing Ethanol Tolerance and Ethanol Production in an Industrial Fuel Ethanol Saccharomyces cerevisiae Strain. Fermentation, 8(10), 470. https://doi.org/10.3390/fermentation8100470