Bioactive Sugarcane Lipids in a Circular Economy Context
Abstract
:1. Introduction
1.1. Sugarcane Production, Residues and Circular Economy
Sugarcane byproducts | Isolation Method | Extract Yield (%) a | Bioactive Lipids | Biological Effect | Reference |
---|---|---|---|---|---|
Rind | Supercritic CO2 | 0.80 % | Long-chain aldehydes and n-policosanols (83%) | Prevention of osteoporosis, cardiovascular diseases such as deficient arterial function and hypercholesterolemia [18,19]. | [18] |
Leaves | 1.60 % | Triterpenoids (16.9 %) | Analgesia and anti-inflammatory potential, anti-cancer anti-bacterial activity. Vascularizing agent [18,20]. | ||
Bagasse | Soxhlet (Acetone) | 0.90 % | Aldehydes (48%) and n-fatty alcohols (23%) | Fatty alcohols can reduce platelet aggregation, LDL in blood and cholesterol synthesis and prevention of atherosclerosis. Aldehydes are intermediates in the biosynthesis of alcohols from fatty acids [21]. Phytosterols act as anti-inflammatory agents on macrophages (increase of phosphatase SHP-1 activity, secretion of anti-inflammatory interleukin IL-10, reducing transcription factor activation and decrease on the release of pro-inflammatory cytokines IL-12 and IL-5) [22,23]. | [21] |
Straw | 1.40 % | Fatty acids (60%), sterols (10%) | |||
Peel | Saponification and further extraction with Diethyl Ether | 0.027 % | Octacosanol (81%) | Increment of HDL levels and decrease of LDL and triglycerides. Reduction of oxidative stress by the increase on superoxide dismutase enzyme levels [18,19]. | [24] |
Filter Mud | Saponification and further extraction with Ethanol | 2.31 % | Octacosanol (47.8 %) | [25] |
1.2. Ethanol Production
2. Sugarcane Lipophilic Molecules
2.1. Classic Methods for Lipid Isolation
2.2. Environmentally Friendly Extraction Methods
2.3. Characterization of Lipophilic Sugarcane Extracts
Analyte | Matrix | Method | Column | Carrier Gas/Mobile Phase | Detector | Reference |
---|---|---|---|---|---|---|
Triterpenoids | Leaf cuticular waxes of Vitis vinifera cultivars | GC–MS/FID HPLC | HP-5MS (30 m × 0.25 mm i.d., film thickness 0.25 μm) Synergy MAX-RP 80A Phenomenex (250 mm × 4.6 mm i.d., 4 μm) | He Acetonitrile | FID, MS UV–Vis (200, 254 nm) | [76] |
Hieracium pilosella L. | GC–MS/FID | RTX-1 (30 m × 0.32 mm i.d., 0.25 μm) | N2 | FID, MS | [78] | |
Tamus edulis | GC–MS/FID | HP-5MS 30 m × 0.25 mm i.d., 0.25 μm) | H2 | FID, MS | [79] | |
Phytosterols, tocopherols | Mango | GC–QTOF–MS | RTX-200MS (30 m × 0.25 mm i.d., 0.25 μm) HP-5MS (30 m × 0.25 mm i.d., 0.25 μm) | He | QTOF | [80] |
Saccharum officinarum L. | GC–MS | Zebron (ZB5 MS) (30 m × 0.25 mm i.d., 0.25 μm) | He | MS | [77] | |
Glycerolipids, steryl glucosides and glucosyl-ceramides | Arabidopsis thaliana | LC–IT–TOF–MS | HILIC (100 mm × 2.1 mm i.d., 3 µm) | A—Methanol:water (95:5, v/v) B—Acetonitrile:methanol:water (95:2:3, v/v/v) | MS IT–TOF | [81] |
Alkanes, fatty acids, fatty alcohols, ester, aldehyde and alcohol | Saccharum officinarum L. | GC–MS | RTX-5MS (30 m × 0.25 mm i.d., 0.1 µm) | He | MS | [82] |
GC–MS | DB5HT (30 m × 0.25 mm i.d., 0.25 μm) | He | M | [18] | ||
GC–FID GC–MS | DB5HT (5 m × 0.25 mm i.d., 0.1 μm) DB5HT (15 m × 0.25 mm i.d., 0.1 μm) | He | FID MS IT–TOF | [21] | ||
GC–MS | Equity-5 (30 m × 0.25 mm i.d. × 0.5 μm) | He | MS | [24] | ||
GC–MS/FID | CP Sil 5 CB (25 m × 0.25 mm i.d., 0.25 μm) | He | FID, MS | [66] | ||
HPLC GC–MS/FID | Luna (250 mm × 4.6 mm i.d., 5 μm) DB-5 (30 m, 0.25 mm i.d., film thickness 0.25 µm), | A—Hexane B—Methyl tert-butyl ether containing 0.2% acetic acid. He | ELSD FID, MS | [67] | ||
Soybean | HPLC | Inertsil Si. (150 mm × 2.1 mm i.d., 5 μm) | A—Isooctane:ethyl acetate (99.8:0.2, v/v) B—Acetone:ethyl acetate (2:1, v/v) C—Isopropanol:water (85:15, v/v) D—Ethyl acetate | ELSD and Corona CAD LTQ-Orbitrap with ESI, APCI/APPI ion source | [83] | |
Rice bran | GC–MS | Equity-5 (30 m × 0.25 mm i.d. × 0.5 μm) | He | GC–MS | [75,84] |
3. Sugarcane Lipids as Bioactive Agents
3.1. Hypocholesterolemic, Antioxidant and Anti-Hyperglycemic Properties
3.2. Anti-Inflammatory Properties
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Rifkin, J. The Third Industrial Revolution: How Lateral Power Is Transforming Energy, the Economy, and the World/Jeremy Rifkin; Palgrave MacMillan: New York, NY, USA, 2011; ISBN 0230115217. [Google Scholar]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Gallego-Schmid, A.; Chen, H.M.; Sharmina, M.; Mendoza, J.M.F. Links between circular economy and climate change mitigation in the built environment. J. Clean. Prod. 2020, 260, 121115. [Google Scholar] [CrossRef]
- Rossati, A. Global warming and its health impact. Int. J. Occup. Environ. Med. 2017, 8, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Wimbadi, R.W.; Djalante, R. From decarbonization to low carbon development and transition: A systematic literature review of the conceptualization of moving toward net-zero carbon dioxide emission (1995–2019). J. Clean. Prod. 2020, 256, 120307. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Leipold, S.; Petit-boix, A. The circular economy and the bio-based sector—Perspectives of European. J. Clean. Prod. 2018, 201, 1125–1137. [Google Scholar] [CrossRef]
- Witjes, S.; Lozano, R. Towards a more Circular Economy: Proposing a framework linking sustainable public procurement and sustainable business models. Resour. Conserv. Recycl. 2016, 112, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Scheiterle, L.; Ulmer, A.; Birner, R.; Pyka, A. From commodity-based value chains to biomass-based value webs: The case of sugarcane in Brazil’s bioeconomy. J. Clean. Prod. 2018, 172, 3851–3863. [Google Scholar] [CrossRef]
- FAOSTAT Statistical Database. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 7 April 2020).
- Dotaniya, M.L.; Datta, S.C.; Biswas, D.R.; Dotaniya, C.K.; Meena, B.L.; Rajendiran, S.; Regar, K.L.; Lata, M. Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. Int. J. Recycl. Org. Waste Agric. 2016, 5, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Meghana, M.; Shastri, Y. Sustainable valorization of sugar industry waste: Status, opportunities, and challenges. Bioresour. Technol. 2020, 303, 122929. [Google Scholar] [CrossRef] [PubMed]
- Casas, L.; Hernández, Y.; Mantell, C.; Casdelo, N.; Ossa, E.M. De Filter cake oil-wax as raw material for the production of biodiesel: Analysis of the extraction process and the transesterification reaction. J. Chem. 2015, 2015. [Google Scholar] [CrossRef]
- Loh, Y.R.; Sujan, D.; Rahman, M.E.; Das, C.A. Review Sugarcane bagasse—The future composite material: A literature review. Resour. Conserv. Recycl. 2013, 75, 14–22. [Google Scholar] [CrossRef]
- Rabelo, S.C.; da Costa, A.C.; Vaz Rossel, C.E. Industrial waste recovery. In Sugarcane: Agricultural Production, Bioenergy and Ethanol; 2015; pp. 365–381. ISBN 9780128022399. Available online: https://www.sciencedirect.com/science/article/pii/B9780128022399000177?via%3Dihub (accessed on 20 March 2021). [CrossRef]
- Attard, T.M.; McElroy, C.R.; Rezende, C.A.; Polikarpov, I.; Clark, J.H.; Hunt, A.J. Sugarcane waste as a valuable source of lipophilic molecules. Ind. Crops Prod. 2015, 76, 95–103. [Google Scholar] [CrossRef]
- Lee, S.; Scott, S.D.; Pekas, E.J.; Lee, J.; Park, S. Improvement of Lipids and Reduction of Oxidative Stress with Octacosanol after Taekwondo Training. Int. J. Sports Physiol. Perform. 2019, 19, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Borzym-kluczyk, J.N.M. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem. Rev. 2015, 675–690. [Google Scholar] [CrossRef] [Green Version]
- Del Río, J.C.; Marques, G.; Lino, A.G.; Lima, C.F.; Colodette, J.L.; Gutiérrez, A. Lipophilic phytochemicals from sugarcane bagasse and straw. Ind. Crops Prod. 2015, 77, 992–1000. [Google Scholar] [CrossRef] [Green Version]
- Valerio, M.; Awad, A.B. β-Sitosterol down-regulates some pro-in flammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP-1 in J774A.1 murine macrophages. Int. Immunopharmacol. 2011, 11, 1012–1017. [Google Scholar] [CrossRef]
- Micallef, M.A.; Garg, M.L. Anti-inflammatory and cardioprotective effects of n-3 polyunsaturated fatty acids and plant sterols in hyperlipidemic individuals. Atherosclerosis 2009, 204, 476–482. [Google Scholar] [CrossRef]
- Irmak, S.; Dunford, N.T.; Milligan, J. Policosanol contents of beeswax, sugar cane and wheat extracts. Food Chem. 2006, 95, 312–318. [Google Scholar] [CrossRef]
- Ou, S.; Zhao, J.; Wang, Y.; Tian, Y.; Wang, J. Preparation of octacosanol from filter mud produced after sugarcane juice clarification. LWT-Food Sci. Technol. 2012. [Google Scholar] [CrossRef]
- RFA Annual Ethanol Production. Available online: https://ethanolrfa.org/statistics/annual-ethanol-production/ (accessed on 12 May 2020).
- OECD-FAO. Agricultural Outlook 2015–2024; OECD Publishing: Paris, France, 2015; p. 38. [Google Scholar]
- OECD Biofuels. OECD-FAO Agricultural Outlook 2016–2025; OECD Publishing: Paris, France, 2016; pp. 116–132. [Google Scholar]
- Nigam, P.S.; Singh, A. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Naik, S.N.; Goud, V.V.; Rout, P.K.; Dalai, A.K. Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev. 2010, 14, 578–597. [Google Scholar] [CrossRef]
- Tapia Carpio, L.G.; Simone de Souza, F. Competition between Second-Generation Ethanol and Bioelectricity using the Residual Biomass of Sugarcane: Effects of Uncertainty on the Production Mix. Molecules 2019, 24, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roukas, T.; Kotzekidou, P. Rotary biofilm reactor: A new tool for long-term bioethanol production from non-sterilized beet molasses by Saccharomyces cerevisiae in repeated-batch fermentation. J. Clean. Prod. 2020, 257. [Google Scholar] [CrossRef]
- Bušić, A.; Mardetko, N.; Kundas, S.; Morzak, G.; Belskaya, H.; Šantek, M.I.; Komes, D.; Novak, S.; Šantek, B. Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technol. Biotechnol. 2018, 56, 289–311. [Google Scholar] [CrossRef] [PubMed]
- Zabed, H.; Sahu, J.N.; Suely, A.; Boyce, A.N.; Faruq, G. Bioethanol production from renewable sources: Current perspectives and technological progress. Renew. Sustain. Energy Rev. 2017, 71, 475–501. [Google Scholar] [CrossRef]
- Araujo Guilherme, A.; Dantas, P.V.F.; de A. Padilha, C.E.; dos Santos, E.S.; de Macedo, G.R. Ethanol production from sugarcane bagasse: Use of different fermentation strategies to enhance an environmental-friendly process. J. Environ. Manag. 2019, 234, 44–51. [Google Scholar] [CrossRef]
- Padella, M.; Connell, A.O.; Prussi, M. What is still limiting the deployment of cellulosic ethanol? Analysis of the current status of the sector. Appl. Sci. 2019, 9, 4523. [Google Scholar] [CrossRef] [Green Version]
- Parajuli, S.; Kannan, B.; Karan, R.; Sanahuja, G.; Liu, H.; Garcia-Ruiz, E.; Kumar, D.; Singh, V.; Zhao, H.; Long, S.; et al. Towards oilcane: Engineering hyperaccumulation of triacylglycerol into sugarcane stems. GCB Bioenergy 2020, 12, 476–490. [Google Scholar] [CrossRef] [Green Version]
- Arora, A.; Singh, V. Biodiesel production from engineered sugarcane lipids under uncertain feedstock compositions: Process design and techno-economic analysis. Appl. Energy 2020, 280. [Google Scholar] [CrossRef]
- Huang, H.; Long, S.; Singh, V. Techno-economic analysis of biodiesel and ethanol co-production from lipid-producing sugarcane. Biofuels, Bioprod. Biorefining 2016, 10, 299–315. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Lal, U.R.; Mukhtar, H.M.; Singh, P.S.; Shah, G.; Dhawan, R.K. Phytochemical profile of sugarcane and its potential health aspects. Pharmacogn. Rev. 2015, 9, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knothe, G.; Razon, L.F. Biodiesel fuels. Prog. Energy Combust. Sci. 2017, 58, 36–59. [Google Scholar]
- Holmatov, B.; Hoekstra, A.Y.; Krol, M.S. Land, water and carbon footprints of circular bioenergy production systems. Renew. Sustain. Energy Rev. 2019, 111, 224–235. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Hydrology and Earth System Sciences The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid classification, structures and tools. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2011, 1811, 637–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christie, W.W.; Han, X. Lipid Analysis Isolation, Separation, Identification and Lipidomic Analysis, 4th ed.; Woodhead Publishing: Dundee, Scotland; Washington, DC, USA, 2010; ISBN 978-0-9552512-4-5. [Google Scholar]
- Domínguez, E.; Heredia-Guerrero, J.A.; Heredia, A. The plant cuticle: Old challenges, new perspectives. J. Exp. Bot. 2017, 68, 5251–5255. [Google Scholar] [CrossRef]
- Aragón, W.; Reina-Pinto, J.J.; Serrano, M. The intimate talk between plants and microorganisms at the leaf surface. J. Exp. Bot. 2017, 68, 5339–5350. [Google Scholar] [CrossRef]
- Heredia-guerrero, J.A.; Benítez, J.J.; Domínguez, E.; Bayer, I.S. Infrared spectroscopy as a tool to study plant cuticles. Spectrosc. Eur. 2016, 28, 10–13. [Google Scholar]
- Yeats, T.H.; Rose, J.K.C. Cuticle Synthesis and Function the Formation and Function of Plant Cuticles. Plant Physiol. 2013, 163, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Fich, E.A.; Segerson, N.A.; Rose, J.K.C. The Plant Polyester Cutin: Biosynthesis, Structure, and Biological Roles. Annu. Rev. Plant Biol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Philippe, G.; Sørensen, I.; Jiao, C.; Sun, X.; Fei, Z.; Domozych, D.S.; Rose, J.K.C. ScienceDirect Cutin and suberin: Assembly and origins of specialized lipidic cell wall scaffolds. Curr. Opin. Plant Biol. 2020, 11–20. [Google Scholar] [CrossRef] [PubMed]
- FOLCH, J.; LEES, M.; SLOANE STANLEY, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Eggers, L.F.; Schwudke, D. Encyclopedia of Lipidomics; Wenk, M.R., Ed.; Springer: Dordrecht, The Netherlands, 2016; Volume 3, ISBN 978-94-007-7864-1. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Hara, A.; Radin, N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Matyash, V.; Liebisch, G.; Kurzchalia, T.V.; Shevchenko, A.; Schwudke, D. Lipid extraction by methyl-terf-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008, 49, 1137–1146. [Google Scholar] [CrossRef] [Green Version]
- Sostare, J.; Di Guida, R.; Kirwan, J.; Chalal, K.; Palmer, E.; Dunn, W.B.; Viant, M.R. Comparison of modified Matyash method to conventional solvent systems for polar metabolite and lipid extractions. Anal. Chim. Acta 2018, 1037, 301–315. [Google Scholar] [CrossRef]
- Pati, S.; Nie, B.; Arnold, R.D.; Cummings, B.S. Extraction, chromatographic and mass spectrometric methods for lipid analysis. Biomed. Chromatogr. 2016, 30, 695–709. [Google Scholar] [CrossRef]
- De Kroon, A.I.P.M. Lipidomics in research on yeast membrane lipid homeostasis. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2017, 1862, 797–799. [Google Scholar] [CrossRef]
- Reis, A.; Rudnitskaya, A.; Blackburn, G.J.; Mohd Fauzi, N.; Pitt, A.R.; Spickett, C.M. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J. Lipid Res. 2013, 54, 1812–1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarafian, M.H.; Gaudin, M.; Lewis, M.R.; Martin, F.P.; Holmes, E.; Nicholson, J.K.; Dumas, M.E. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput un_targeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Anal. Chem. 2014, 86, 5766–5774. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, L.; Fontes, A.L.; Salsinha, S.; Machado, M.; Correia, I.; Gomes, A.M.; Pintado, M.; Rodríguez-Alcalá, L.M. Suitable simple and fast methods for selective isolation of phospholipids as a tool for their analysis. Electrophoresis 2018, 39, 1835–1845. [Google Scholar] [CrossRef] [PubMed]
- Traversier, M.; Gaslondes, T.; Milesi, S.; Michel, S.; Delannay, E. Polar lipids in cosmetics: Recent trends in extraction, separation, analysis and main applications. Phytochem. Rev. 2018, 17, 1179–1210. [Google Scholar] [CrossRef]
- Lake, A. Recovery of Sugar Cane Wax. U.S. Patent 3,931,258, 6 January 1976. [Google Scholar]
- Attard, T.M. Supercritical CO2 Extraction of Waxes as Part of a Holistic Biorefinery. Ph.D. Thesis, University of York, New York, NY, USA, 2015. [Google Scholar]
- Nuissier, G.; Bourgeois, P.; Grignon-Dubois, M.; Pardon, P.; Lescure, M.H. Composition of sugarcane waxes in rum factory wastes. Phytochemistry 2002, 61, 721–726. [Google Scholar] [CrossRef]
- Asikin, Y.; Takahashi, M.; Hirose, N.; Hou, D.X.; Takara, K.; Wada, K. Wax, policosanol, and long-chain aldehydes of different sugarcane (Saccharum officinarum L.) cultivars. Eur. J. Lipid Sci. Technol. 2012, 114, 583–591. [Google Scholar] [CrossRef]
- Holser, R.A.; Akin, D.E. Extraction of lipids from flax processing waste using hot ethanol. Ind. Crops Prod. 2008, 27, 236–240. [Google Scholar] [CrossRef]
- Granja, A.L.; Hernandez, J.M.; Quintana, D.C.; Valmana, L.A.; Ferreiro, R.M.; Mesa, M.G. Mixture of Higher Primary Aliphatic Alcohols, Its Obtention from Sugar Cane Wax and Its Pharmaceutical Uses. U.S. Patent 5,856,316, 5 January 1999. [Google Scholar]
- Che Yunus, M.A.; Zhari, S.; Haron, S.; Arsad, N.H.; Idham, Z.; Ruslan, M.S.H. Extraction and Identification of Vitamin E from Pithecellobium Jiringan Seeds Using Supercritical Carbon Dioxide. J. Teknol. 2015, 74, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Owat, N.; Skolpap, W. Pinch analysis of a sugarcane wax extraction and purification process. Sci. Technol. Asia 2019, 24, 30–40. [Google Scholar] [CrossRef]
- Canizares, D.; Angers, P.; Ratti, C. Selective wax recovery from fl ax and wheat straw. Ind. Crop. Prod. 2019, 141, 111700. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Han, X. Tutorial on lipidomics. Anal. Chim. Acta 2019, 1061, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Li, S. Computational Methods and Data Analysis for Metabolomics; Methods in Molecular Biology; Springer: New York, NY, USA, 2020; Volume 2104. [Google Scholar]
- Ishaka, A.; Imam, M.U.; Mahamud, R.; Zuki, A.B.Z.; Maznah, I. Characterization of rice bran wax policosanol and its nanoemulsion formulation. Int. J. Nanomed. 2014, 9, 2261–2269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pensec, F.; Szakiel, A.; Pączkowski, C.; Woźniak, A.; Grabarczyk, M.; Bertsch, C.; Fischer, M.J.C.; Chong, J. Characterization of triterpenoid profiles and triterpene synthase expression in the leaves of eight Vitis vinifera cultivars grown in the Upper Rhine Valley. J. Plant Res. 2016, 129, 499–512. [Google Scholar] [CrossRef]
- Georges, P.; Sylvestre, M.; Ruegger, H.; Bourgeois, P. Ketosteroids and hydroxyketosteroids, minor metabolites of sugarcane wax. Steroids 2006, 71, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Gawrońska-Grzywacz, M.; Krzaczek, T. Identification and determination of triterpenoids in Hieracium pilosella L. J. Sep. Sci. 2007, 30, 746–750. [Google Scholar] [CrossRef]
- Rogowska, A.; Styczyński, M.; Pączkowski, C.; Szakiel, A.; Pinheiro de Carvalho, M.Â.A. GC-MS analysis of steroids and triterpenoids occurring in leaves and tubers of Tamus edulis Lowe. Phytochem. Lett. 2019, 30, 231–234. [Google Scholar] [CrossRef]
- López-Cobo, A.; Martín-García, B.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Gómez-Caravaca, A.M. Comparison of two stationary phases for the determination of phytosterols and tocopherols in mango and its by-products by GC-QTOF-MS. Int. J. Mol. Sci. 2017, 18, 1594. [Google Scholar] [CrossRef]
- Okazaki, Y.; Kamide, Y.; Hirai, M.Y.; Saito, K. Plant lipidomics based on hydrophilic interaction chromatography coupled to ion trap time-of-flight mass spectrometry. Metabolomics 2013, 9, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Inarkar, M.B.; Lele, S.S. Extraction and Characterization of Sugarcane Peel Wax. ISRN Agron. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Abreu, S.; Solgadi, A.; Chaminade, P. Optimization of normal phase chromatographic conditions for lipid analysis and comparison of associated detection techniques. J. Chromatogr. A 2017, 1514, 54–71. [Google Scholar] [CrossRef] [PubMed]
- Dunford, N.T.; Irmak, S.; Jonnala, R. Pressurised solvent extraction of policosanol from wheat straw, germ and bran. Food Chem. 2010, 119, 1246–1249. [Google Scholar] [CrossRef]
- Dominguez, E.; Heredia-Guerrero, J.A.; Heredia, A. The biophysical design of plant cuticles: An overview. New Phytol. 2011, 189, 938–949. [Google Scholar] [CrossRef]
- Ritter, B.; Schulte, J.; Schulte, E.; Thier, H.P. Detection of coating waxes on apples by differential scanning calorimetry. Eur. Food Res. Technol. 2001, 212, 603–607. [Google Scholar] [CrossRef]
- Espada, J.J.; Coutinho, J.A.P.; Peña, J.L. Evaluation of methods for the extraction and characterization of waxes from crude oils. Energy Fuels 2010, 24, 1837–1843. [Google Scholar] [CrossRef]
- Peltzer, M.; Jiménez, A. Determination of oxidation parameters by DSC for polypropylene stabilized with hydroxytyrosol (3,4-dihydroxy-phenylethanol). J. Therm. Anal. Calorim. 2009, 96, 243–248. [Google Scholar] [CrossRef]
- Cerqueira, N.M.F.S.A.; Oliveira, E.F.; Gesto, D.S.; Santos-martins, D.; Moorthy, H.N.; Ramos, M.J.; Fernandes, P.A. Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry 2016. [Google Scholar] [CrossRef]
- Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H.; Murphy, R.C.; Raetz, C.R.H.; Russell, D.W.; Seyama, Y.; Shaw, W.; et al. A comprehensive classification system for lipids. Eur. J. Lipid Sci. Technol. 2005, 46, 839–862. [Google Scholar] [CrossRef] [Green Version]
- Ouassou, H.; Zahidi, T.; Bouknana, S.; Bouhrim, M.; Mekhfi, H.; Ziyyat, A.; Legssyer, A.; Aziz, M.; Bnouham, M. Inhibition of α -Glucosidase, Intestinal Glucose Absorption, and Antidiabetic Properties by Caralluma europaea. Evid.-Based Complement. Altern. Med. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zheng, R.; Su, S.; Zhou, H.; Yan, H.; Ye, J.; Zhao, Z.; You, L.; Fu, X. Antioxidant/antihyperglycemic activity of phenolics from sugarcane (Saccharum officinarum L.) bagasse and identification by UHPLC-HR-TOFMS. Ind. Crops Prod. 2017, 101, 104–114. [Google Scholar] [CrossRef]
- Szakiel, A.; Pączkowski, C.; Pensec, F.; Bertsch, C. Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochem. Rev. 2012, 11, 263–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.H.; Ha, Y.J.; Shim, E.K.; Choi, S.Y.; Jin, J.L.; Yun-Choi, H.S.; Lee, J.R. Insulin-mimetic and insulin-sensitizing activities of a pentacyclic triterpenoid insulin receptor activator. Biochem. J. 2007, 250, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Matsuzaka, T.; Kaushik, M.K.; Sugasawa, T.; Ohno, H.; Wang, Y.; Motomura, K.; Shimura, T.; Okajima, Y.; Mizunoe, Y.; et al. Octacosanol and policosanol prevent high-fat diet-induced obesity and metabolic disorders by activating brown adipose tissue and improving liver metabolism. Sci. Rep. 2019, 1–7. [Google Scholar] [CrossRef]
- Ferguson, J.J.A.; Stojanovski, E.; MacDonald-Wicks, L.; Garg, M.L. Fat type in phytosterol products in fl uence their cholesterol-lowering potential: A systematic review and meta-analysis of RCTs. Prog. Lipid Res. 2016, 64, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Su, S.; Li, J.; Zhao, Z.; Wei, J.; Fu, X.; Liu, R.H. Recovery of phenolics from the ethanolic extract of sugarcane (Saccharum officinarum L.) baggase and evaluation of the antioxidant and antiproliferative activities. Ind. Crops Prod. 2017, 107, 360–369. [Google Scholar] [CrossRef]
- Meerod, K.; Weerawatanakorn, M.; Pansak, W. Effect of Liming Process on Physicochemical Properties and Phytochemical Components of Non-Centrifugal Sugar from Different Sugarcane Cultivars. Agric. Res. 2020, 9, 35–45. [Google Scholar] [CrossRef]
- Cai, H.; Steward, W.P.; Gescher, A.J. Determination of the putative cancer chemopreventive flavone tricin in plasma and tissues of mice by HPLC with UV-visible detection. Biomed. Chromatogr. 2005, 19, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Piper, K.; Garelnabi, M. Eicosanoids: Atherosclerosis and cardiometabolic health. J. Clin. Transl. Endocrinol. 2020, 19, 100216. [Google Scholar] [CrossRef] [PubMed]
- Cox, M.M.; Nelson, D.L.L. Principles of Biochemistry; W.H. Freeman & Co.: New York, NY, USA, 2008. [Google Scholar]
- Chiurchiù, V.; Leuti, A.; Maccarrone, M. Bioactive lipids and chronic inflammation: Managing the fire within. Front. Immunol. 2018, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Burstein, S.H. Eicosanoid mediation of cannabinoid actions. Bioorg. Med. Chem. 2019, 27, 2718–2728. [Google Scholar] [CrossRef]
- Norris, P.C.; Dennis, E.A. A lipidomic perspective on inflammatory macrophage eicosanoid signaling. Adv. Biol. Regul. 2014, 54, 99–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhall, S.; Wijesinghe, D.S.; Karim, Z.A.; Castro, A.; Vemana, H.P.; Khasawneh, F.T.; Chalfant, C.E.; Martins-Green, M. Arachidonic acid-derived signaling lipids and functions in impaired healing. Wound Repair Regen. 2015, 23, 644–656. [Google Scholar] [CrossRef] [PubMed]
- Balsinde, J.; Winstead, M.V.; Dennis, E.A. Phospholipase A2 regulation of arachidonic acid mobilization. FEBS Lett. 2002, 531, 2–6. [Google Scholar] [CrossRef]
- Serhan, C.N.; Chiang, N.; Dalli, J.; Levy, B.D. Lipid mediators in the resolution of inflammation. Cold Spring Harb. Perspect. Biol. 2015, 7, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledón, N.; Casacó, A.; Remirez, D.; González, A.; Cruz, J.; González, R.; Capote, A.; Tolón, Z.; Rojas, E.; Rodríguez, V.J.; et al. Effects of a mixture of fatty acids from sugar cane (Saccharum officinarum L.) wax oil in two models of inflammation: Zymosan-induced arthritis and mice tail test of psoriasis. Phytomedicine 2007, 14, 690–695. [Google Scholar] [CrossRef]
- Guo, T.; Lin, Q.; Li, X.; Nie, Y.; Wang, L.; Shi, L.; Xu, W.; Hu, T.; Guo, T.; Luo, F. Octacosanol Attenuates Inflammation in Both RAW264.7 Macrophages and a Mouse Model of Colitis. J. Agric. Food Chem. 2017, 65, 3647–3658. [Google Scholar] [CrossRef]
- Cajka, T.; Fiehn, O. Increasing lipidomic coverage by selecting optimal mobile-phase modifiers in LC-MS of blood plasma. Metabolomics 2016, 12, 34. [Google Scholar] [CrossRef]
- Lin, J.-H.; Liu, L.-Y.; Yang, M.-H.; Lee, M.-H. Ethyl Acetate/Ethyl Alcohol Mixtures as an Alternative to Folch Reagent for Extracting Animal Lipids. J. Agric. Food Chem. 2004, 52, 4984–4986. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, F.S.; Vidigal, S.S.M.P.; Pimentel, L.L.; Costa, P.T.; Pintado, M.E.; Rodríguez-Alcalá, L.M. Bioactive Sugarcane Lipids in a Circular Economy Context. Foods 2021, 10, 1125. https://doi.org/10.3390/foods10051125
Teixeira FS, Vidigal SSMP, Pimentel LL, Costa PT, Pintado ME, Rodríguez-Alcalá LM. Bioactive Sugarcane Lipids in a Circular Economy Context. Foods. 2021; 10(5):1125. https://doi.org/10.3390/foods10051125
Chicago/Turabian StyleTeixeira, Francisca S., Susana S. M. P. Vidigal, Lígia L. Pimentel, Paula T. Costa, Manuela E. Pintado, and Luís M. Rodríguez-Alcalá. 2021. "Bioactive Sugarcane Lipids in a Circular Economy Context" Foods 10, no. 5: 1125. https://doi.org/10.3390/foods10051125
APA StyleTeixeira, F. S., Vidigal, S. S. M. P., Pimentel, L. L., Costa, P. T., Pintado, M. E., & Rodríguez-Alcalá, L. M. (2021). Bioactive Sugarcane Lipids in a Circular Economy Context. Foods, 10(5), 1125. https://doi.org/10.3390/foods10051125