Carbon Footprint Reduction by Transitioning to a Diet Consistent with the Danish Climate-Friendly Dietary Guidelines: A Comparison of Different Carbon Footprint Databases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Current Dietary Intake Data
2.2. The Danish Adapted Plant-Rich Diet
2.3. The Carbon Footprint of Food from AU-DTU Database
2.3.1. Primary Production and Processing
2.3.2. Packaging
2.3.3. Transportation
2.3.4. Cooking
2.3.5. Storage
2.3.6. Food Losses
2.4. Carbon Footprints of Food from the Big Climate Database (BCD)
2.5. Estimation of CF from the Diets and Statistics
3. Results
3.1. The CF of the Current Diet
3.2. CF Reduction on Transition from Current to Plant-Rich Diet
3.3. CF Contribution from Food Groups
4. Discussion
4.1. The Current Diet
4.2. Gender Differences
4.3. CF Reduction by Transitioning to a Plant-Rich Diet
4.4. Food Group Contributions to CF Reduction
4.5. Strengths and Limitations of the Present Study
4.6. Data Uncertainties
4.7. LCA Methodology
4.8. Future Perspective
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Leip, A.; Billen, G.; Garnier, J.; Grizzetti, B.; Lassaletta, L.; Reis, S.; Simpson, D.; Sutton, M.A.; De Vries, W.; Weiss, F.; et al. Impacts of European livestock production: Nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 2015, 10, 115004. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skeg, J.; Buendia, E.C.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, S.; et al. (Eds.) Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC, 2019; In press; Available online: https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf (accessed on 22 January 2022).
- Rosenzweig, C.; Mbow, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.T.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Climate change responses benefit from a global food system approach. Nat. Food 2020, 1, 94–97. [Google Scholar] [CrossRef]
- UNFCCC. Adoption of the Paris Agreement. Available online: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 28 February 2022).
- Danish Ministry of Climate, Energy and Utilities. Climate Act, Act no 965 af 26/06/2020; LBK no 2580 af 13/12/2021. Available online: https://www.retsinformation.dk/eli/lta/2021/2580 (accessed on 15 February 2022).
- Danish Veterinary and Food Administration. The Official Dietary Guidelines—Good for Health and Climate. Available online: https://altomkost.dk/english/ (accessed on 5 October 2021).
- Lassen, A.D.; Christensen, L.M.; Trolle, E. Development of a danish adapted healthy plant-based diet based on the EAT-lancet reference diet. Nutrients 2020, 12, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordic Council of Ministers. Nordic Nutrition Recommendations 2012—Integrating Nutrition and Physical Activity; Nordic Council of Ministers: Copenhagen, Denmark, 2014. [Google Scholar]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.M.; Smith, P.; Haines, A. The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: A systematic review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallström, E.; Carlsson-Kanyama, A.; Börjesson, P. Environmental impact of dietary change: A systematic review. J. Clean. Prod. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Lassen, A.D.; Nordman, M.; Christensen, L.M.; Trolle, E. Scenario analysis of a municipality’s food purchase to simultaneously improve nutritional quality and lower carbon emission for child-care centers. Sustainability 2021, 13, 5551. [Google Scholar] [CrossRef]
- Lassen, A.D.; Nordman, M.; Christensen, L.M.; Beck, A.M.; Trolle, E. Guidance for healthy and more climate-friendly diets in nursing homes—scenario analysis based on a municipality’s food procurement. Nutrients 2021, 13, 4525. [Google Scholar] [CrossRef]
- van der Werf, H.M.G.; Knudsen, M.T.; Cederberg, C. Towards better representation of organic agriculture in life cycle assessment. Nat. Sustain. 2020, 3, 419–425. [Google Scholar] [CrossRef]
- Schaubroeck, T.; Schaubroeck, S.; Heijungs, R.; Zamagni, A.; Brandão, M.; Benetto, E. Attributional & consequential life cycle assessment: Definitions, conceptual characteristics and modelling restrictions. Sustainability 2021, 13, 7386. [Google Scholar] [CrossRef]
- European Commission. PEFCR Guidance Document—Guidance for the Development of Product Environmental Footprint Category Rules (PEFCRs). Version 6. 2017. Available online: https://ec.europa.eu/environment/eussd/smgp/pdf/PEFCR_guidance_v6.3.pdf (accessed on 15 February 2022).
- Schmidt, J.; Merciai, S.; Muñoz, I.; De Rosa, M.; Astudillo, M.F.; LCA Consultants. The Big Climate Database Vers 1. Methodology Report; CONCITO: Copenhagen, Denmark, 2021. [Google Scholar]
- Sala, S.; Benini, L.; Beylot, A.; Castellani, V.; Cerutti, A.; Corrado, S.; Crenna, E.; Diaconu, E.; Sanyé-Mengual, E.; Secchi, M. Consumption and Consumer Footprint: Methodology and Results; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-79-97255-3. [Google Scholar]
- Sugimoto, M.; Murakami, K.; Asakura, K.; Masayasu, S.; Sasaki, S. Diet-related greenhouse gas emissions and major food contributors among Japanese adults: Comparison of different calculation methods. Public Health Nutr. 2021, 24, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-García, S.; Esteve-Llorens, X.; Moreira, M.T.; Feijoo, G. Carbon footprint and nutritional quality of different human dietary choices. Sci. Total Environ. 2018, 644, 77–94. [Google Scholar] [CrossRef] [PubMed]
- CONCITO. The Big Climate Database Version 1. Available online: https://denstoreklimadatabase.dk/ (accessed on 4 June 2021).
- Pedersen, A.N.; Christensen, T.; Matthiessen, J.; Knudsen, V.K.; Sørensen, M.R.; Biltoft-Jensen, A.P.; Hinsch, H.-J.; Ygil, K.H.; Kørup, K.; Saxholt, E.; et al. Danskernes Kostvaner 2011–2013—Hovedresultater [Dietary Habits in Denmark 2011–2013—Main Results]; DTU Fødevareinstituttet: Søborg, Denmark, 2015. [Google Scholar]
- National Food Institute Danish Food Composition Database. Available online: https://frida.fooddata.dk/ (accessed on 31 March 2018).
- Tetens, I.; Andersen, L.B.; Astrup, A.; Gondolf, U.H.; Hermansen, K.; Jakobsen, M.U.; Knudsen, V.K.; Mejborn, H.; Schwarz, P.; Tjønneland, A.; et al. The Evidence Base for the Danish Dietary Guidelines for Diet and Physical Activity; DTU Fødevareinstituttet: Søborg, Denmark, 2013; ISBN 9788792763969. (In Danish) [Google Scholar]
- Hallström, E.; Bergman, K.; Mifflin, K.; Parker, R.; Tyedmers, P.; Troell, M.; Ziegler, F. Combined climate and nutritional performance of seafoods. J. Clean. Prod. 2019, 230, 402–411. [Google Scholar] [CrossRef]
- Nguyen, T.L.T.; Hermansen, J.E.; Mogensen, L. Environmental Assessment of Danish Pork; Aarhus University, Department of Agroecology: Tjele, Denmark, 2011; ISBN 978-87-91949-5-48. [Google Scholar]
- Jeswani, H.K.; Burkinshaw, R.; Azapagic, A. Environmental sustainability issues in the food-energy-water nexus: Breakfast cereals and snacks. Sustain. Prod. Consum. 2015, 2, 17–28. [Google Scholar] [CrossRef]
- Tynelius, G. Climate Impact from Lantmännen Unibake´s Danish Pastry Vanilla Crown; Lantmännen: Stockholm, Sweden, 2009. [Google Scholar]
- Flysjö, A. Greenhouse Gas Emissions in Milk and Dairy Product Chains. Improving the Carbon Footprint of Dairy Products. Ph.D. Thesis, Aarhus University, Tjele, Denmark, 2012. [Google Scholar]
- Cerutti, A.K.; Contu, S.; Ardente, F.; Donno, D.; Beccaro, G.L. Carbon footprint in green public procurement: Policy evaluation from a case study in the food sector. Food Policy 2016, 58, 82–93. [Google Scholar] [CrossRef]
- Cederberg, C.; Wivstad, M.; Bergkvist, P.; Mattsson, B.; Ivarsson, K. Hållbart växtskydd. Analys av Olika Strategier för att Minska Riskerna med Kemiska Växtskyddsmedel; Sveriges Lantbruksuniversitet: Uppsala, Sweden, 2005. [Google Scholar]
- González, A.D.; Frostell, B.; Carlsson-Kanyama, A. Protein efficiency per unit energy and per unit greenhouse gas emissions: Potential contribution of diet choices to climate change mitigation. Food Policy 2011, 36, 562–570. [Google Scholar] [CrossRef]
- Davis, J.; Wallman, M.; Sund, V.; Emanuelsson, A.; Cederberg, C.; Sonesson, U. Emissions of Greenhouse Gases from Production of Horticultural Products Analysis of 17 Products Cultivated in Sweden; The Swedish Institute for Food and Biotechnology (SIK): Gothenburg, Sweden, 2011; ISBN 9789172903012. [Google Scholar]
- Canals, L.M.I.; Muñoz, I.; Hospido, A.; Plassmann, K.; McLaren, S. Life Cycle Assessment (LCA) of Domestic vs. Imported Vegetables. Case Studies on Broccoli, Salad Crops and Green Beans; Centre for Environment and Sustainability, University of Surrey: Guildford, UK, 2008. [Google Scholar]
- Stoessel, F.; Juraske, R.; Pfister, S.; Hellweg, S. Life cycle inventory and carbon and water foodprint of fruits and vegetables: Application to a swiss retailer. Environ. Sci. Technol. 2012, 46, 3253–3262. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Oliver-Solà, J.; Antón, A.; Montero, J.I.; Rieradevall, J. Environmental assessment of urban horticulture structures: Implementing Rooftop Greenhouses in Mediterranean cities. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector, San Francisco, CA, USA, 8–10 October 2014; pp. 1169–1178. [Google Scholar]
- Moberg, E.; Walker Andersson, M.; Säll, S.; Hansson, P.A.; Röös, E. Determining the climate impact of food for use in a climate tax—design of a consistent and transparent model. Int. J. Life Cycle Assess. 2019, 24, 1715–1728. [Google Scholar] [CrossRef] [Green Version]
- Torrellas, M.; Antón, A.; López, J.C.; Baeza, E.J.; Parra, J.P.; Muñoz, P.; Montero, J.I. LCA of a tomato crop in a multi-Tunnel greenhouse in Almeria. Int. J. Life Cycle Assess. 2012, 17, 863–875. [Google Scholar] [CrossRef]
- Torrellas, M.; Antón, A.; Ruijs, M.; García Victoria, N.; Stanghellini, C.; Montero, J.I. Environmental and economic assessment of protected crops in four European scenarios. J. Clean. Prod. 2012, 28, 45–55. [Google Scholar] [CrossRef]
- Halberg, N.; Dalgaard, R.; Rasmussen, M.D. Miljøvurdering af Konventionel og Økologisk avl af Grøntsager—Livscyklusvurdering af Produktion i Væksthuse og på Friland: Tomater, Agurker, Løg, Gulerødder; Arbejdsraport fra Miljøstyrelsen nr 5; Ministry of the Environment: Copenhagen, Denmark, 2006.
- Landquist, B.; Woodhouse, A. Klimatavtryck av Rotfrukter, Grönsaker och Kryddor Analys av tio Produkter Odlade i Sverige; The Swedish Institute for Food and Biotechnology (SIK): Gothenburg, Sweden, 2015; ISBN 9789172903470. [Google Scholar]
- Maraseni, T.N.; Cockfield, G.; Maroulis, J.; Chen, G. An assessment of greenhouse gas emissions from the Australian vegetables industry. J. Environ. Sci. Health B 2010, 45, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.M.; Stokes-Draut, J.R.; Horvath, A. Environmental evaluation of high-value agricultural produce with diverse water sources: Case study from Southern California. Environ. Res. Lett. 2018, 13, 25007. [Google Scholar] [CrossRef]
- Mogensen, L.; Knudsen, M.T.; Dorca-Preda, T.; Nielsen, N.I.; Kristense, I.S.; Kristensen, T. Baeredygtighedsparametre for Konventionelle Fodermidler Til Kvaeg–Metode Og Tabelvaerdier; DCA—Nationalt Center for Fødevarer og Jordbrug, Aarhus University: Tjele, Denmark, 2018. [Google Scholar]
- Hospido, A.; Milà I Canals, L.; McLaren, S.; Truninger, M.; Edwards-Jones, G.; Clift, R. The role of seasonality in lettuce consumption: A case study of environmental and social aspects. Int. J. Life Cycle Assess. 2009, 14, 381–391. [Google Scholar] [CrossRef]
- Tamburini, E.; Pedrini, P.; Marchetti, M.G.; Fano, E.A.; Castaldelli, G. Life cycle based evaluation of environmental and economic impacts of agricultural productions in the Mediterranean area. Sustainability 2015, 7, 2915–2935. [Google Scholar] [CrossRef] [Green Version]
- Audsley, E.; Brander, M.; Chatterton, J.; Murphy-Bokern, D.; Webster, C.; Williams, A. How Low Can We Go? An Assessment of Greenhouse Gas Emissions from the UK Food System and the Scope for Reduction by 2050; W WF-UK; Cranfield University: Bedford, UK, 2009. [Google Scholar]
- Mogensen, L.; Hermansen, J.E.; Trolle, E. The Climate and Nutritional Impact of Beef in Different Dietary Patterns in Denmark. Foods 2020, 9, 1176. [Google Scholar] [CrossRef]
- Cellura, M.; Ardente, F.; Longo, S. From the LCA of food products to the environmental assessment of protected crops districts: A case-study in the south of Italy. J. Environ. Manage. 2012, 93, 194–208. [Google Scholar] [CrossRef]
- Landquist, B. Jämförelse av Klimatpåverkan för Ekologiskt resp. IP-Odlade Gröna Ärter; The Swedish Institute for Food and Biotechnology (SIK): Gothenburg, Sweden, 2012. [Google Scholar]
- Sonesson, U.; Cederberg, C.; Wivstad, M.; Florén, B. Minskade Risker med Bekämpningsmedel och Minskad Miljöpåverkan, Samtidigt?—En Fallstudie på Findus Konservärtsodling 1980–2005; The Swedish Institute for Food and Biotechnology (SIK): Gothenburg, Sweden, 2007. [Google Scholar]
- Potter, H.K.; Lundmark, L.; Röös, E. Environmental Impact of Plant-Based Foods -Data Collection for the Development of a Consumer Guide for Plant-Based Foods; Report 112; Swedish University of Agricultural Sciences, NL Faculty/Department of Energy and Technology: Uppsala, Sweden, 2020; ISBN 978-91-576-9789-9. [Google Scholar]
- Meul, M.; Ginneberge, C.; Van Middelaar, C.E.; de Boer, I.J.M.; Fremaut, D.; Haesaert, G. Carbon footprint of five pig diets using three land use change accounting methods. Livest. Sci. 2012, 149, 215–223. [Google Scholar] [CrossRef]
- Torres, C.M.; Antón, A.; Castellas, F. Moving toward scientific LCA for farmers. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014), San Francisco, CA, USA, 8–10 October 2014. [Google Scholar]
- Blonk, H.; Kool, A.; Luske, B.; Ponsioen, T.; Scholten, J. Methodology for Assessing Carbon Footprints of Horticultural Products Horticultural Products; Blonk Milieu Advies: CA Gouda, The Netherlands, 2010. [Google Scholar]
- Borzęcka, M.; Żyłowska, K.; Russo, G.; Pisanelli, A.; Freire, F. Life Cycle Assessment of olive cultivation in Italy: Comparison of three management systems. In Proceedings of the 167th EAAE Seminar "European Agriculture and Transition to Bio-Economy", Puławy, Poland, 24–25 September 2018; pp. 1–7. [Google Scholar]
- De Gennaro, B.; Notarnicola, B.; Roselli, L.; Tassielli, G. Innovative olive-growing models: An environmental and economic assessment. J. Clean. Prod. 2012, 28, 70–80. [Google Scholar] [CrossRef]
- Aguilera, E.; Guzmán, G.; Alonso, A. Greenhouse gas emissions from conventional and organic cropping systems in Spain. II. Fruit tree orchards. Agron. Sustain. Dev. 2015, 35, 725–737. [Google Scholar] [CrossRef] [Green Version]
- Mogensen, L.; Nguyen, T.L.T.; Madsen, N.T.; Pontoppidan, O.; Preda, T.; Hermansen, J.E. Environmental impact of beef sourced from different production systems - focus on the slaughtering stage: Input and output. J. Clean. Prod. 2016, 133, 284–293. [Google Scholar] [CrossRef]
- Romero-Gámez, M.; Suárez-Rey, E.M.; Antón, A.; Castilla, N.; Soriano, T. Environmental impact of screenhouse and open-field cultivation using a life cycle analysis: The case study of green bean production. J. Clean. Prod. 2012, 28, 63–69. [Google Scholar] [CrossRef]
- Jungbluth, N.; Keller, R.; König, A. ONE TWO WE—life cycle management in canteens together with suppliers, customers and guests. Int. J. Life Cycle Assess. 2016, 21, 646–653. [Google Scholar] [CrossRef]
- Schäfer, F.; Blanke, M. Farming and marketing system affects carbon and water footprint—A case study using Hokaido pumpkin. J. Clean. Prod. 2012, 28, 113–119. [Google Scholar] [CrossRef]
- Robinson, B.; Winans, K.; Kendall, A.; Dlott, J.; Dlott, F. A life cycle assessment of Agaricus bisporus mushroom production in the USA. Int. J. Life Cycle Assess. 2019, 24, 456–467. [Google Scholar] [CrossRef] [Green Version]
- Leiva, F.J.; Saenz-Díez, J.C.; Martínez, E.; Jiménez, E.; Blanco, J. Environmental impact of Agaricus bisporus cultivation process. Eur. J. Agron. 2015, 71, 141–148. [Google Scholar] [CrossRef]
- Gunady, M.G.A.; Biswas, W.; Solah, V.A.; James, A.P. Evaluating the global warming potential of the fresh produce supply chain for strawberries, romaine/cos lettuces (Lactuca sativa), and button mushrooms (Agaricus bisporus) in Western Australia using life cycle assessment (LCA). J. Clean. Prod. 2012, 28, 81–87. [Google Scholar] [CrossRef]
- Saunders, C.; Barber, A.; Taylor, G. Food Miles-Comparative Energy/Emissions Performance of New Zealand’s Agriculture Industry; The Agribusiness and Economics Research Unit (AERU), Lincoln University: Lincoln, New Zealand, 2006. [Google Scholar]
- Venkat, K. Comparison of Twelve Organic and Conventional Farming Systems: A Life Cycle Greenhouse Gas Emissions Perspective. J. Sustain. Agric. 2012, 36, 620–649. [Google Scholar] [CrossRef]
- Figueiredo, F.; Castanheira, É.G.; Feliciano, M.; Rodrigues, M.Â.; Peres, A.; Maia, F.; Ramos, A.; Carneiro, J.; Coroama, V.C.; Freire, F.; et al. Carbon footprint of apple and pear: Orchards, storage and distribution. In Proceedings of the Energy for Sustainability 2013 Sustainable Cities: Designing for People and the Planet, Coimbra, Portugal, 8–10 September 2013. [Google Scholar]
- Yan, M.; Cheng, K.; Yue, Q.; Yan, Y.; Rees, R.M.; Pan, G. Farm and product carbon footprints of China’s fruit production—life cycle inventory of representative orchards of five major fruits. Environ. Sci. Pollut. Res. 2016, 23, 4681–4691. [Google Scholar] [CrossRef]
- Vinyes, E.; Gasol, C.M.; Asin, L.; Alegre, S.; Muñoz, P. Life Cycle Assessment of multiyear peach production. J. Clean. Prod. 2015, 104, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Clune, S.; Crossin, E.; Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 2017, 140, 766–783. [Google Scholar] [CrossRef] [Green Version]
- Basset-Mens, C.; Vanniere, H.; Grasselly, D.; Heitz, H.; Braun, A.R.; Payen, S.; Koch, P. Environmental Impacts of Imported Versus Locally-Grown Fruits for the French Market as Part of the AGRIBALYSE® Program. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014), San Francisco, CA, USA, 8–10 October 2014; pp. 78–87. [Google Scholar]
- Renz, B.; Pavlenko, N.; Acharya, A.; Jemison, C.; Lizas, D.; Kollar, T. Estimating energy and greenhouse gas emission savings through food waste source reduction. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014), San Francisco, CA, USA, 8–10 October 2014; pp. 8–10. [Google Scholar]
- Pergola, M.; D’Amico, M.; Celano, G.; Palese, A.M.; Scuderi, A.; Di Vita, G.; Pappalardo, G.; Inglese, P. Sustainability evaluation of Sicily’s lemon and orange production: Anenergy, economic and environmental analysis. J. Environ. Manage. 2013, 128, 674–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knudsen, M.T.; Fonseca de Almeida, G.; Langer, V.; Santiago de Abreu, L.; Halberg, N. Environmental assessment of organic juice imported to Denmark: A case study on oranges (Citrus sinensis) from Brazil. Org. Agric. 2011, 1, 167–185. [Google Scholar] [CrossRef]
- Doublet, G.; Jungbluth, N.; Schori, M.; Salome, S. Life cycle assessment of orange juice. In Harmonized Environmental Sustainability in the European Food and Drink Chain; Project no 288974, EC Funded, Deliverable D2.1; ESU-Services Ltd.: Zürich, Switzerland, 2013; pp. 1–38. [Google Scholar]
- Beccali, M.; Cellura, M.; Iudicello, M.; Mistretta, M. Resource consumption and environmental impacts of the agrofood sector: Life cycle assessment of italian citrus-based products. Environ. Manage. 2009, 43, 707–724. [Google Scholar] [CrossRef]
- Ribal, J.; Ramírez-Sanz, C.; Estruch, V.; Clemente, G.; Sanjuán, N. Organic versus conventional citrus. Impact assessment and variability analysis in the Comunitat Valenciana (Spain). Int. J. Life Cycle Assess. 2017, 22, 571–586. [Google Scholar] [CrossRef]
- Cichelli, A.; Pattara, C.; Petrella, A. Sustainability in Mountain Viticulture. The Case of the Valle Peligna. Agric. Agric. Sci. Procedia 2016, 8, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Bartocci, P.; Fantozzi, P.; Fantozzi, F. Environmental impact of Sagrantino and Grechetto grapes cultivation for wine and vinegar production in central Italy. J. Clean. Prod. 2017, 140, 569–580. [Google Scholar] [CrossRef]
- Falcone, G.; De Luca, A.I.; Stillitano, T.; Strano, A.; Romeo, G.; Gulisano, G. Assessment of environmental and economic impacts of vine-growing combining life cycle assessment, life cycle costing and multicriterial analysis. Sustainability 2016, 8, 793. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, P.; Nielsen, A.; Weidema, B.; Dalgaard, R.; Halberg, N. LCA Food Database. Available online: www.lcafood.dk (accessed on 1 September 2021).
- Moberg, E.; Potter, H.K.; Wood, A.; Hansson, P.-A.A.; Röös, E. Benchmarking the Swedish diet relative to global and national environmental _targets-Identification of indicator limitations and data gaps. Sustainability 2020, 12, 1407. [Google Scholar] [CrossRef] [Green Version]
- De Ramos, R.M.Q.; Taboada, E.B. Cradle-to-gate life cycle assessment of fresh and processed pineapple in the Philippines. Nat. Environ. Pollut. Technol. 2018, 17, 783–790. [Google Scholar]
- Ingwersen, W.W. Life cycle assessment of fresh pineapple from Costa Rica. J. Clean. Prod. 2012, 35, 152–163. [Google Scholar] [CrossRef]
- Usubharatana, P.; Phungrassami, H. Evaluation of Opportunities to Reduce the Carbon Footprint of Fresh and Canned Pineapple Processing in Central Thailand. Pol. J. Environ. Stud. 2017, 26, 1725–1735. [Google Scholar] [CrossRef]
- Müller, K.; Holmes, A.; Deurer, M.; Clothier, B.E. Eco-efficiency as a sustainability measure for kiwifruit production in New Zealand. J. Clean. Prod. 2015, 106, 333–342. [Google Scholar] [CrossRef]
- McLaren, S.J.; Hume, A.; Mitraratne, N. Carbon Management for the Primary Agricultural Sector in New Zealand: Case Studies for the Pipfruit and Kiwifruit Industries. In Proceedings of the VII International Conference on Food LCA, Bary, Italy, 22–24 September 2010; Volume 1, pp. 293–298. [Google Scholar]
- Mithraratne, N.; Barber, A.; McLaren, S.J. Carbon Footprinting for the Kiwifruit Supply Chain—Report on Methodology and Scoping Study Final Report; New Zealand LifeCycle Management Centre, Massey University: Palmerston North, New Zealand, 2010. [Google Scholar]
- Pergola, M.; Persiani, A.; Pastore, V.; Palese, A.M.; Arous, A.; Celano, G. A comprehensive Life Cycle Assessment (LCA) of three apricot orchard systems located in Metapontino area (Southern Italy). J. Clean. Prod. 2017, 142, 4059–4071. [Google Scholar] [CrossRef]
- Tassielli, G.; Notarnicola, B.; Renzulli, P.A.; Arcese, G. Environmental life cycle assessment of fresh and processed sweet cherries in southern Italy. J. Clean. Prod. 2018, 171, 184–197. [Google Scholar] [CrossRef]
- Bravo, G.; López, D.; Vásquez, M.; Iriarte, A. Carbon Footprint Assessment of Sweet Cherry Production: Hotspots and Improvement Options. Pol. J. Environ. Stud 2017, 26, 559–566. [Google Scholar] [CrossRef]
- Jensen, J.K.; Arlbjørn, J.S. Product carbon footprint of rye bread. J. Clean. Prod. 2014, 82, 45–57. [Google Scholar] [CrossRef]
- Webb, J.; Williams, A.G.; Hope, E.; Evans, D.; Moorhouse, E. Do foods imported into the UK have a greater environmental impact than the same foods produced within the UK? Int. J. Life Cycle Assess. 2013, 18, 1325–1343. [Google Scholar] [CrossRef]
- Williams, A.; Pell, E.; Webb, J.; Moorhouse, E.; Audsley, E. Strawberry and tomato production for the UK compared between the UK and Spain. In Proceedings of the 6th International Conference on LCA in the Agri-Food Sector, Zürich, Switzerland, 12–14 November 2008; pp. 254–414. [Google Scholar]
- Girgenti, V.; Peano, C.; Bounous, M.; Baudino, C. A life cycle assessment of non-renewable energy use and greenhouse gas emissions associated with blueberry and raspberry production in northern Italy. Sci. Total Environ. 2013, 458–460, 414–418. [Google Scholar] [CrossRef] [Green Version]
- Peano, C.; Baudino, C.; Tecco, N.; Girgenti, V. Green marketing tools for fruit growers associated groups: Application of the Life Cycle Assessment (LCA) for strawberries and berry fruits ecobranding in northern Italy. J. Clean. Prod. 2015, 104, 59–67. [Google Scholar] [CrossRef]
- Cordes, H.; Iriarte, A.; Villalobos, P. Evaluating the carbon footprint of Chilean organic blueberry production. Int. J. Life Cycle Assess. 2016, 21, 281–292. [Google Scholar] [CrossRef]
- Abeliotis, K.; Detsis, V.; Pappia, C. Life cycle assessment of bean production in the Prespa National Park, Greece. J. Clean. Prod. 2013, 41, 89–96. [Google Scholar] [CrossRef]
- Mejia, M.; Fresán, U.; Harwatt, H.; Oda, K.; Uriegas-Mejia, G.; Sabaté, J. Life Cycle Assessment of the Production of a Large Variety of Meat Analogs by Three Diverse Factories. J. Hunger Environ. Nutr. 2020, 15, 699–711. [Google Scholar] [CrossRef]
- Blonk, H.; Kool, A.; Luske, B. Milieueffecten van Nederlandse Consumptie van Eiwitrijke Producten Gevolgen van Vervanging van Dierlijke Eiwitten anno 2008; Blonk Milieu Advies: CA Gouda, The Netherlands, 2008. [Google Scholar]
- Blonk, H.; Kool, A.; Luske, B.; Waart, S. De Environmental Effects of Protein-Rich Food Products in the Netherlands Consequences of Animal Protein Substitutes; Blonk Milieu Advies: CA Gouda, The Netherlands, 2008; pp. 1–19. [Google Scholar]
- Nemecek, T.; Weiler, K.; Plassmann, K.; Schnetzer, J.; Gaillard, G.; Jefferies, D.; García-Suárez, T.; King, H.; Milà I Canals, L. Estimation of the variability in global warming potential of worldwide crop production using a modular extrapolation approach. J. Clean. Prod. 2012, 31, 106–117. [Google Scholar] [CrossRef]
- Heusala, H.; Sinkko, T.; Mogensen, L.; Knudsen, M.T. Carbon footprint and land use of food products containing oat protein concentrate. J. Clean. Prod. 2020, 276, 122938. [Google Scholar] [CrossRef]
- Volpe, R.; Messineo, S.; Volpe, M.; Messineo, A. Carbon footprint of tree nuts based consumer products. Sustainability 2015, 7, 14917–14934. [Google Scholar] [CrossRef] [Green Version]
- Bartzas, G.; Vamvuka, D.; Komnitsas, K. Comparative life cycle assessment of pistachio, almond and apple production. Inf. Process. Agric. 2017, 4, 188–198. [Google Scholar] [CrossRef]
- Buchspies, B.; Tölle, S.; Jungbluthy, N. Life Cycle Assessment of High-Sea Fish and Salmon Aquaculture; ESU-Services Ltd.: Uster, Switzerland, 2011. [Google Scholar]
- Parker, R.W.R.; Vázquez-Rowe, I.; Tyedmers, P.H. Fuel performance and carbon footprint of the global purse seine tuna fleet. J. Clean. Prod. 2015, 103, 517–524. [Google Scholar] [CrossRef]
- Ziegler, F.; Winther, U.; Hognes, E.S.; Emanuelsson, A.; Sund, V.; Ellingsen, H. The Carbon Footprint of Norwegian Seafood Products on the Global Seafood Market. J. Ind. Ecol. 2013, 17, 103–116. [Google Scholar] [CrossRef]
- Winther, U.; Hognes, E.S.; Jafarzadeh, S.; Ziegler, F. Greenhouse Gas Emissions of Norwegian Seafood Products in 2017; SINTEF Ocean AS: Trondheim, Norway, 2020; ISBN 9788214062465. [Google Scholar]
- Ziegler, F.; Valentinsson, D. Environmental life cycle assessment of Norway lobster (Nephrops norvegicus) caught along the Swedish west coast by creels and conventional trawls—LCA methodology with case study. Int. J. Life Cycle Assess. 2008, 13, 487–497. [Google Scholar] [CrossRef]
- Wallén, A.; Brandt, N.; Wennersten, R. Does the Swedish consumer’s choice of food influence greenhouse gas emissions? Environ. Sci. Policy 2004, 7, 525–535. [Google Scholar] [CrossRef]
- Röös, E. Mat-Klimat-Listan Version 1.1; Swedish University of Agricutural Sciences: Uppsala, Sweden, 2014. [Google Scholar]
- Heller, M.C.; Willits-Smith, A.; Meyer, R.; Keoleian, G.A.; Rose, D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ. Res. Lett. 2018, 13, 44004. [Google Scholar] [CrossRef] [PubMed]
- Kasmaprapruet, S.; Paengjuntuek, W.; Saikhwan, P.; Phungrassami, H. Life cycle assessment of milled rice production: Case study in Thailand. Eur. J. Sci. Res. 2009, 30, 195–203. [Google Scholar]
- World Resources Institute. Cool Food Pledge Calculator—Version 8 April 2020. Available online: https://www.wri.org/research/tracking-progress-toward-cool-food-pledge (accessed on 15 October 2021).
- Kendall, A.; Yuan, J.; Brodt, S.B. Carbon footprint and air emissions inventories for US honey production: Case studies. Int. J. Life Cycle Assess. 2013, 18, 392–400. [Google Scholar] [CrossRef]
- Nilsson, K.; Sund, V.; Floren, B. The Environmental Impact of the Consumption of Sweets, Crisps and Soft Drinks; TemaNord 2011:509; Nordic Council of Ministers: Copenhagen, Denmark, 2011; ISBN 9789289321976. [Google Scholar]
- Bryggeriforeningen Faktaark. Klimaaftryk. Available online: https://bryggeriforeningen.dk/wp-content/uploads/2020/03/Faktaark-samlet.pdf (accessed on 20 February 2021).
- Hallström, E.; Håkansson, N.; Åkesson, A.; Wolk, A.; Sonesson, U. Climate impact of alcohol consumption in Sweden. J. Clean. Prod. 2018, 201, 287–294. [Google Scholar] [CrossRef]
- Frankowska, A.; Jeswani, H.K.; Azapagic, A. Environmental impacts of vegetables consumption in the UK. Sci. Total Environ. 2019, 682, 80–105. [Google Scholar] [CrossRef]
- Hartikainen, H.; Pulkkinen, H. Summary of the Chosen Methodologies and Practices to Produce GHGE-Estimates for an Average European Diet; Natural Resources Institute Finland: Helsinki, Finland, 2016; ISBN 9789523263130. [Google Scholar]
- McCance and Widdowson’s Composition of Foods Integrated Dataset; Public Health England: London, UK, 2021.
- Manfredi, M.; Vignali, G. Life cycle assessment of a packaged tomato puree: A comparison of environmental impacts produced by different life cycle phases. J. Clean. Prod. 2014, 73, 275–284. [Google Scholar] [CrossRef]
- Wallman, M.; Nilsson, K. Klimatpåverkan Och Energianvändning Från Livsmedelsförpackningar; Livsmedelsverket: Uppsala, Sweden, 2011.
- Comparative Life Cycle Assessment of Sterilised Food Packagning Systems on the European Market; Institut für Energi- und Unweltforschung (IFEU): Heidelberg, Germany, 2013.
- Heller, M.C.; Selke, S.E.M.; Keoleian, G.A. Mapping the Influence of Food Waste in Food Packaging Environmental Performance Assessments. J. Ind. Ecol. 2019, 23, 480–495. [Google Scholar] [CrossRef] [Green Version]
- Maga, D.; Hiebel, M.; Aryan, V. A comparative life cycle assessment of meat trays made of various packaging materials. Sustainability 2019, 11, 5324. [Google Scholar] [CrossRef] [Green Version]
- WRAP. Methodology for Assessing the Climate Change Impacts of Packaging Optimisation under the Courtauld Commitment 3; The Waste and Resources Action Programme (WRAP): Banbury, UK, 2014. [Google Scholar]
- Markwardt, S.; Wellenreuther, F. Key Findings of LCA Study on Tetra Recart 2017; Institute for Energy and Environmental Research: Heidelberg, Germany, 2017. [Google Scholar]
- Del Borghi, A.; Gallo, M.; Strazza, C.; Del Borghi, M. An evaluation of environmental sustainability in the food industry through Life Cycle Assessment: The case study of tomato products supply chain. J. Clean. Prod. 2014, 78, 121–130. [Google Scholar] [CrossRef]
- Energistyrelsen. Data, Tabeller, Statistikker og Kort Energistatistik 2019; Energistyrelsen: Copenhagen, Denmark, 2020.
- Q&A. The Big Climate Database. Available online: https://denstoreklimadatabase.dk/en/qa (accessed on 23 February 2022).
- Minter, M.; CONCITO (The Green Think Tank). Personal Communication, 2021.
- Mertens, E.; Kuijsten, A.; van Zanten, H.H.; Kaptijn, G.; Dofková, M.; Mistura, L.; D’Addezio, L.; Turrini, A.; Dubuisson, C.; Havard, S.; et al. Dietary choices and environmental impact in four European countries. J. Clean. Prod. 2019, 237. [Google Scholar] [CrossRef]
- Hallström, E.; Bajzelj, B.; Håkansson, N.; Sjons, J.; Åkesson, A.; Wolk, A.; Sonesson, U. Dietary climate impact: Contribution of foods and dietary patterns by gender and age in a Swedish population. J. Clean. Prod. 2021, 306, 127189. [Google Scholar] [CrossRef]
- Vieux, F.; Darmon, N.; Touazi, D.; Soler, L.G. Greenhouse gas emissions of self-selected individual diets in France: Changing the diet structure or consuming less? Ecol. Econ. 2012, 75, 91–101. [Google Scholar] [CrossRef]
- Van Dooren, C.; Keuchenius, C.; de Vries, J.H.M.; de Boer, J.; Aiking, H. Unsustainable dietary habits of specific subgroups require dedicated transition strategies: Evidence from the Netherlands. Food Policy 2018, 79, 44–57. [Google Scholar] [CrossRef]
- Perignon, M.; Masset, G.; Ferrari, G.; Barré, T.; Vieux, F.; Maillot, M.; Amiot, M.J.; Darmon, N. How low can dietary greenhouse gas emissions be reduced without impairing nutritional adequacy, affordability and acceptability of the diet? A modelling study to guide sustainable food choices. Public Health Nutr. 2016, 19, 2662–2674. [Google Scholar] [CrossRef] [Green Version]
- Hyland, J.J.; McCarthy, M.B.; Henchion, M.; McCarthy, S.N. Dietary emissions patterns and their effect on the overall climatic impact of food consumption. Int. J. Food Sci. Technol. 2017, 52, 2505–2512. [Google Scholar] [CrossRef]
- Sjörs, C.; Hedenus, F.; Sjölander, A.; Tillander, A.; Bälter, K. Adherence to dietary recommendations for Swedish adults across categories of greenhouse gas emissions from food. Public Health Nutr. 2017, 20, 3381–3393. [Google Scholar] [CrossRef] [Green Version]
- Hjorth, T.; Huseinovic, E.; Hallström, E.; Strid, A.; Johansson, I.; Lindahl, B.; Sonesson, U.; Winkvist, A. Changes in dietary carbon footprint over ten years relative to individual characteristics and food intake in the Västerbotten Intervention Programme. Sci. Rep. 2020, 10, 20. [Google Scholar] [CrossRef]
- Kovacs, B.; Miller, L.; Heller, M.C.; Rose, D. The carbon footprint of dietary guidelines around the world: A seven country modeling study. Nutr. J. 2021, 20, 15. [Google Scholar] [CrossRef] [PubMed]
- Springmann, M.; Spajic, L.; Clark, M.A.; Poore, J.; Herforth, A.; Webb, P.; Rayner, M.; Scarborough, P. The healthiness and sustainability of national and global food based dietary guidelines: Modelling study. BMJ 2020, 370, m2322. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Brandão, M. Evaluating the environmental consequences of Swedish food consumption and dietary choices. Sustainability 2017, 9, 2227. [Google Scholar] [CrossRef] [Green Version]
- Carbon Trust The Eatwell Guide: A More Sustainable Diet Methodology and Results Summary; Carbon Trust: London, UK, 2016.
- Green, R.; Milner, J.; Dangour, A.D.; Haines, A.; Chalabi, Z.; Markandya, A.; Spadaro, J.; Wilkinson, P. The potential to reduce greenhouse gas emissions in the UK through healthy and realistic dietary change. Clim. Change 2015, 129, 253–265. [Google Scholar] [CrossRef]
- van de Kamp, M.E.; van Dooren, C.; Hollander, A.; Geurts, M.; Brink, E.J.; van Rossum, C.; Biesbroek, S.; de Valk, E.; Toxopeus, I.B.; Temme, E.H.M. Healthy diets with reduced environmental impact?—The greenhouse gas emissions of various diets adhering to the Dutch food based dietary guidelines. Food Res. Int. 2018, 104, 14–24. [Google Scholar] [CrossRef]
- EFSA. Guidance on the EU Menu methodology. EFSA J. 2014, 12, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Hall, K.D.; Sacks, G.; Chandramohan, D.; Chow, C.C.; Wang, Y.C.; Gortmaker, S.L.; Swinburn, B.A. Quantification of the effect of energy imbalance on bodyweight. Lancet 2011, 378, 826–837. [Google Scholar] [CrossRef] [Green Version]
- Tubiello, F.N.; Karl, K.; Flammini, A.; Conchedda, G.; Pan, X.; Qi, S.Y.; Wanner, N.; Quadrelli, R.; Souza, L.R.; Benoit, P.; et al. Pre- and post-production processes along supply chains increasingly dominate GHG emissions from agri-food systems globally and in most countries. Earth Syst. Sci. Data 2021, 1–24, Unpublished Work. [Google Scholar] [CrossRef]
- Seferidi, P.; Scrinis, G.; Huybrechts, I.; Woods, J.; Vineis, P.; Millett, C. The neglected environmental impacts of ultra-processed foods. Lancet Planet. Health 2020, 4, e437–e438. [Google Scholar] [CrossRef]
- FAO. Food-Based Dietary Guidelines. Available online: https://www.fao.org/nutrition/education/food-based-dietary-guidelines (accessed on 15 February 2022).
- FAO; WHO. Sustainable Healthy Diets—Guiding Principles; FAO: Rome, Italy, 2019; ISBN 978-92-5-131875-1. [Google Scholar]
- García-Oliveira, P.; Fraga-Corral, M.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Solutions for the sustainability of the food production and consumption system. Crit. Rev. Food Sci. Nutr. 2022, 62, 1765–1781. [Google Scholar] [CrossRef]
- Hebinck, A.; Zurek, M.; Achterbosch, T.; Forkman, B.; Kuijsten, A.; Kuiper, M.; Nørrung, B.; van’t Veer, P.; Leip, A. A Sustainability Compass for policy navigation to sustainable food systems. Glob. Food Sec. 2021, 29, 100546. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Chai, L.; Yan, X.; Liang, Y. Drivers of the growing water, carbon and ecological footprints of the chinese diet from 1961 to 2017. Int. J. Environ. Res. Public Health 2020, 17, 1803. [Google Scholar] [CrossRef] [Green Version]
- Barisan, L.; Lucchetta, M.; Bolzonella, C.; Boatto, V. How does carbon footprint create shared values in the wine industry? Empirical evidence from prosecco superiore PDO’s wine district. Sustainability 2019, 11, 3037. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 15 February 2022).
- Beylot, A.; Secchi, M.; Cerutti, A.; Merciai, S.; Schmidt, J.; Sala, S. Assessing the environmental impacts of EU consumption at macro-scale. J. Clean. Prod. 2019, 216, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Brandão, M.; Clift, R.; Cowie, A.; Greenhalgh, S. The Use of Life Cycle Assessment in the Support of Robust (Climate) Policy Making: Comment on “Using Attributional Life Cycle Assessment to Estimate Climate-Change Mitigation”. J. Ind. Ecol. 2014, 18, 461–463. [Google Scholar] [CrossRef]
CF, AU-DTU Data | CF, BCD Excl. iLUC | CF, BCD Incl. iLUC | |||||||
---|---|---|---|---|---|---|---|---|---|
Average | Men | Women | Average | Men | Women | Average | Men | Women | |
N = 2492 | N = 1202 | N = 1290 | N = 2492 | N = 1202 | N = 1209 | N = 2492 | N = 1202 | N = 1290 | |
CF kg CO2-eq/pers/day | |||||||||
Mean | 4.23 a | 4.85 | 3.65 *** | 4.63 b | 5.47 | 3.86 *** | 5.28 c | 6.26 | 4.38 *** |
(SD) | (1.40) | (1.43) | (1.10) | (2.06) | (2.19) | (1.57) | (2.43) | (2.59) | (1.86) |
Median | 4.03 | 4.72 | 3.54 | 4.23 | 5.07 | 3.58 | 4.80 | 5.78 | 4.05 |
(P10;P90) | (2.70; 6.02) | (3.24; 6.59) | (2.45; 4.90) | (2.50; 7.31) | (3.12; 8.29) | (2.25; 5.67) | (2.78; 8.43) | (3.49; 9.55) | (2.50; 6.49) |
CF kg CO2-eq/10 MJ | |||||||||
Mean | 4.37 a | 4.38 | 4.37 | 4.79 b | 4.97 | 4.63 *** | 5.46 c | 5.69 | 5.25 *** |
(SD) | (0.86) | (0.82) | (0.90) | (1.76) | (1.76) | (1.76) | (2.12) | (2.11) | (2.11) |
Median | 4.24 | 4.26 | 4.22 | 4.45 | 4.61 | 4.27 | 5.05 | 5.26 | 4.82 |
(P10:P90) | (3.42; 5.50) | (3.45; 5.40) | (3.38; 5.56) | (3.06; 6.92) | (3.17; 7.23) | (2.98; 6.61) | (3.40; 7.99) | (3.54; 8.44) | (3.30; 7.65) |
CF, AU-DTU Data | CF, BCD Excl. iLUC | CF, BCD Incl. iLUC | |||||||
---|---|---|---|---|---|---|---|---|---|
Average | Men | Women | Average | Men | Women | Average | Men | Women | |
N = 2492 | N = 1202 | N = 1290 | N = 2492 | N = 1202 | N = 1209 | N = 2492 | N = 1202 | N = 1209 | |
CF change kg CO2-eq/10MJ | |||||||||
Mean | −1.36 a | −1.37 | −1.36 | −2.07 b | −2.25 | −1.90 *** | −2.43 c | −2.65 | −2.22 *** |
(SD) | (0.86) | (0.82) | (0.90) | (1.76) | (1.76) | (1.76) | (2.12) | (2.11) | (2.11) |
Median | −1.23 | −1.25 | −1.21 | −1.72 | −1.89 | −1.55 | −2.01 | −2.22 | −1.78 |
Mean change | −31% | −31% | −31% | −43% | −45% | −41% | −44% | −47% | −42% |
Food Group | Current Diet per 10 MJ | Plant-Rich Diet per 10 MJ | ||||||
---|---|---|---|---|---|---|---|---|
CF AU-DTU | CF BCD, Excl. iLUC | CF BCD, Incl. iLUC | CF AU-DTU | CF BCD, Excl. iLUC | CF BCD, Incl. iLUC | |||
g/10MJ | kg CO2-eq | kg CO2-eq | kg CO2-eq | g/10MJ | kg CO2-eq | kg CO2-eq | kg CO2-eq | |
Bread and cereals | 195 | 0.25 | 0.16 | 0.17 | 306 | 0.38 | 0.24 | 0.25 |
Potatoes | 85 | 0.05 | 0.06 | 0.06 | 100 | 0.06 | 0.07 | 0.07 |
Vegetables, all | 226 | 0.24 | 0.17 | 0.18 | 307 | 0.33 | 0.24 | 0.25 |
Fruit and berries, all | 243 | 0.29 | 0.28 | 0.28 | 303 | 0.35 | 0.34 | 0.35 |
Milk and dairy products | 315 | 0.40 | 0.19 | 0.21 | 250 | 0.32 | 0.15 | 0.16 |
Milk | 280 | 0.31 | 0.14 | 0.15 | 222 | 0.24 | 0.11 | 0.12 |
Other dairy | 35 | 0.09 | 0.05 | 0.05 | 28 | 0.07 | 0.04 | 0.04 |
Cheese | 45 | 0.42 | 0.29 | 0.31 | 20 | 0.19 | 0.13 | 0.14 |
Meat, total | 168 | 1.40 | 2.51 | 3.00 | 56 | 0.40 | 0.51 | 0.62 |
Beef and lamb | 52 | 0.76 | 2.12 | 2.55 | 9 | 0.14 | 0.38 | 0.46 |
Pork | 87 | 0.48 | 0.32 | 0.36 | 9 | 0.05 | 0.03 | 0.04 |
Poultry | 29 | 0.16 | 0.07 | 0.09 | 38 | 0.21 | 0.10 | 0.12 |
Egg | 22 | 0.06 | 0.02 | 0.02 | 15 | 0.04 | 0.01 | 0.02 |
Fish | 36 | 0.26 | 0.28 | 0.32 | 63 | 0.30 | 0.46 | 0.52 |
Legumes, dry weight | 1 | 0.00 | 0.00 | 0.00 | 40 | 0.03 | 0.06 | 0.08 |
Nuts and seeds | 6 | 0.02 | 0.02 | 0.02 | 38 | 0.10 | 0.09 | 0.12 |
Vegetable fats | 23 | 0.06 | 0.06 | 0.07 | 25 | 0.07 | 0.07 | 0.08 |
Animal fats | 12 | 0.11 | 0.04 | 0.05 | 4 | 0.03 | 0.01 | 0.02 |
Discretionary foods and beverages | 518 | 0.57 | 0.58 | 0.61 | 157 | 0.18 | 0.18 | 0.19 |
Coffee, tea, cocoa and water | 1987 | 0.24 | 0.15 | 0.18 | 1946 | 0.24 | 0.15 | 0.17 |
Other foods * | 4 | 0.01 | 0.01 | 0.01 | 3 | 0.01 | 0.01 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trolle, E.; Nordman, M.; Lassen, A.D.; Colley, T.A.; Mogensen, L. Carbon Footprint Reduction by Transitioning to a Diet Consistent with the Danish Climate-Friendly Dietary Guidelines: A Comparison of Different Carbon Footprint Databases. Foods 2022, 11, 1119. https://doi.org/10.3390/foods11081119
Trolle E, Nordman M, Lassen AD, Colley TA, Mogensen L. Carbon Footprint Reduction by Transitioning to a Diet Consistent with the Danish Climate-Friendly Dietary Guidelines: A Comparison of Different Carbon Footprint Databases. Foods. 2022; 11(8):1119. https://doi.org/10.3390/foods11081119
Chicago/Turabian StyleTrolle, Ellen, Matilda Nordman, Anne Dahl Lassen, Tracey A. Colley, and Lisbeth Mogensen. 2022. "Carbon Footprint Reduction by Transitioning to a Diet Consistent with the Danish Climate-Friendly Dietary Guidelines: A Comparison of Different Carbon Footprint Databases" Foods 11, no. 8: 1119. https://doi.org/10.3390/foods11081119
APA StyleTrolle, E., Nordman, M., Lassen, A. D., Colley, T. A., & Mogensen, L. (2022). Carbon Footprint Reduction by Transitioning to a Diet Consistent with the Danish Climate-Friendly Dietary Guidelines: A Comparison of Different Carbon Footprint Databases. Foods, 11(8), 1119. https://doi.org/10.3390/foods11081119