Technological and Functional Characteristics of Lactic Acid Bacteria from Traditional Serbian Cheeses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Growth at Different Temperatures and NaCl Concentrations
2.3. Acidifying Activity
2.4. Proteolytic and Lipolytic Activity
2.5. Diacetyl and Exopolysaccharide (EPS) Production
2.6. Functional Properties
2.6.1. Acidic Resistance and Bile Salt Tolerance
2.6.2. Safety Assessment: Hemolytic Activity and Gelatinase Production
2.6.3. Antagonistic Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Growth at Different Temperatures and NaCl Concentrations
3.2. Acidifying Activity
3.3. Proteolytic and Lipolytic Activity
3.4. EPS and Diacetyl Production
3.5. Functional Properties
3.5.1. Safety Evaluation: Hemolytic Activity and Gelatinase Production
3.5.2. Acidic Resistance and Bile Salt Tolerance
3.5.3. Antimicrobial Activity
3.6. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Terzić-Vidojević, A.; Veljović, K.; Tolinački, M.; Živković, M.; Lukić, J.; Lozo, J.; Golić, N. Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan countries: Technological and probiotic properties. Food Res. Int. 2020, 136, 109494. [Google Scholar] [CrossRef] [PubMed]
- Radulović, Z.; Miočinović, J.; Pudja, P.; Barać, M.; Miloradović, Z.; Paunović, D.; Obradović, D. The application of autochthonous lactic acid bacteria in white brined cheese production. Mljekarstvo 2011, 61, 15–25. [Google Scholar]
- The Intellectual Property Office of the Republic of Serbia. Study for the Protection of Geographical Indication “Homolje Cheese”. 1996. Available online: https://www.zis.gov.rs/wp-content/uploads/G-14-Homoljski-kravlji-sir-NOV.pdf (accessed on 11 November 2024).
- The Intellectual Property Office of the Republic of Serbia. Study for the Protection of Geographical Indication “Sjenica Cheese”. 2014. Available online: https://www.zis.gov.rs/wp-content/uploads/G-65-Sjenicki-kravlji-sir.pdf (accessed on 11 November 2024).
- The Intellectual Property Office of the Republic of Serbia. Study for the Protection of Geographical Indication “Zlatar Cheese”. 2012. Available online: https://www.zis.gov.rs/wp-content/uploads/G-64-Zlatarski-sir.pdf (accessed on 11 November 2024).
- Montel, M.C.; Buchin, S.; Mallet, A.; Delbes-Paus, C.; Vuitton, D.A.; Desmasures, N.; Berthier, F. Traditional cheeses: Rich and diverse microbiota with associated benefits. Int. J. Food Microbiol. 2014, 177, 136–154. [Google Scholar] [CrossRef]
- Franciosi, E.; Settanni, L.; Cavazza, A.; Poznanski, E. Biodiversity and technological potential of wild lactic acid bacteria from raw cows’ milk. Int. Dairy J. 2009, 19, 3–11. [Google Scholar] [CrossRef]
- Morandi, S.; Brasca, M.; Lodi, R. Technological, phenotypic, and genotypic characterisation of wild lactic acid bacteria involved in the production of Bitto PDO Italian cheese. Dairy Sci. Technol. 2011, 91, 341–359. [Google Scholar] [CrossRef]
- González, L.; Sacristán, N.; Arenas, R.; Fresno, J.M.; Tornadijo, M.E. Enzymatic activity of lactic acid bacteria (with antimicrobial properties) isolated from a traditional Spanish cheese. Food Microbiol. 2010, 27, 592–597. [Google Scholar] [CrossRef]
- Terzić-Vidojević, A.; Vukasinovic, M.; Veljović, K.; Ostojic, M.; Topisirovic, L. Characterization of microflora in homemade semi-hard white Zlatar cheese. Int. J. Food Microbiol. 2007, 114, 36–42. [Google Scholar] [CrossRef]
- Begovic, J.; Brandsma, J.B.; Jovcic, B.; Tolinacki, M.; Veljovic, K.; Meijer, W.C.; Topisirovic, L. Analysis of dominant lactic acid bacteria from artisanal raw milk cheeses produced on the mountain Stara Planina, Serbia. Arch. Biol. Sci. 2011, 63, 11–20. [Google Scholar] [CrossRef]
- Joković, N.; Vukasinović, M.; Veljović, K.; Tolinački, M.; Topisirović, L. Characterization of non-starter lactic acid bacteria in traditionally produced home-made Radan cheese during ripening. Arch. Biol. Sci. 2011, 63, 1–10. [Google Scholar] [CrossRef]
- Golić, N.; Cadež, N.; Terzić-Vidojević, A.; Suranská, H.; Beganović, J.; Lozo, J.; Kos, B.; Sušković, J.; Raspor, P.; Topisirović, L. Evaluation of lactic acid bacteria and yeast diversity in traditional white pickled and fresh soft cheeses from the mountain regions of Serbia and lowland regions of Croatia. Int. J. Food Microbiol. 2013, 166, 294–300. [Google Scholar] [CrossRef]
- Terzić-Vidojević, A.; Tolinacki, M.; Nikolic, M.; Veljovic, K.; Jovanovic, S.; Macej, O.; Topisirovic, L. Vlasina raw goat’s milk cheese: Evaluation and selection of autochthonous lactic acid bacteria as starter cultures. Food Technol. Biotechnol. 2013, 51, 253–264. [Google Scholar]
- OECD/FAO. OECD-FAO Agricultural Outlook 2023–2032; OECD Publishing: Paris, France, 2023; Available online: https://doi.org/10.1787/08801ab7-en (accessed on 11 November 2024).
- Transparency Market Research. White Cheese Market—Global Industry Analysis, Size, Share, Growth, Trend, and Forecast 2017–2025. Transparency Market Research. 2017. Available online: https://www.feedsfloor.com/food/white-cheese-market-review-and-outlook-global-market-including-long-term-forecasts-2017-%E2%80%93-2025 (accessed on 12 September 2024).
- Solieri, L.; Bianchi, A.; Mottolese, G.; Lemmetti, F.; Giudici, P. Tailoring the probiotic potential of non-starter Lactobacillus strains from ripened Parmigiano Reggiano cheese by in vitro screening and principal component analysis. Food Microbiol. 2014, 38, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Mantzourani, I.; Chondrou, P.; Bontsidis, C.; Karolidou, K.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Galanis, A.; Plessas, S. Assessment of the Probiotic Potential of Lactic Acid Bacteria Isolated from Kefir Grains: Evaluation of Adhesion and Antiproliferative Properties in in vitro Experimental Systems. Ann. Microbiol. 2019, 69, 751–763. [Google Scholar] [CrossRef]
- Bergamini, C.; Hynes, E.; Meinardi, C.; Suárez, V.; Quiberoni, A.; Zalazar, C. Pategrás Cheese as a Suitable Carrier for Six Probiotic Cultures. J. Dairy Res. 2010, 77, 265–272. [Google Scholar] [CrossRef]
- Oberg, C.J.; Moyes, L.V.; Domek, M.J.; Brothersen, C.; McMahon, D.J. Survival of Probiotic Adjunct Cultures in Cheese and Challenges in Their Enumeration Using Selective Media. J. Dairy Sci. 2011, 94, 2220–2230. [Google Scholar] [CrossRef]
- Binda, S.; Hill, C.; Johansen, E.; Obis, D.; Pot, B.; Sanders, M.E.; Tremblay, A.; Ouwehand, A.C. Criteria to Qualify Microorganisms as “Probiotic” in Foods and Dietary Supplements. Front. Microbiol. 2020, 11, 1662. [Google Scholar] [CrossRef]
- Veljović, K.; Popović, N.; Miljković, M.; Tolinački, M.; Terzić-Vidojević, A.; Kojić, M. Novel Aggregation Promoting Factor AggE Contributes to the Probiotic Properties of Enterococcus faecium BGGO9-28. Front. Microbiol. 2017, 8, 1843. [Google Scholar] [CrossRef]
- Nikolic, M.; López, P.; Strahinic, I.; Suárez, A.; Kojic, M.; Fernández-García, M.; Topisirovic, L.; Golic, N.; Ruas-Madiedo, P. Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS-producing derivative strains as potential probiotics. Int. J. Food Microbiol. 2012, 158, 155–162. [Google Scholar] [CrossRef]
- Popović, N.; Djokić, J.; Brdarić, E.; Dinić, M.; Terzić-Vidojević, A.; Golić, N.; Veljović, K. The influence of heat-killed Enterococcus faecium BGPAS1-3 on the tight junction protein expression and immune function in differentiated Caco-2 cells infected with Listeria monocytogenes ATCC 19111. Front. Microbiol. 2019, 10, 412. [Google Scholar] [CrossRef]
- Sokovic Bajic, S.; Djokic, J.; Dinic, M.; Veljovic, K.; Golic, N.; Mihajlovic, S.; Tolinacki, M. GABA-Producing Natural Dairy Isolate From Artisanal Zlatar Cheese Attenuates Gut Inflammation and Strengthens Gut Epithelial Barrier In Vitro. Front. Microbiol. 2019, 10, 527. [Google Scholar] [CrossRef]
- Ledina, T.; Golob, M.; Djordjević, J.; Magas, V.; Colović, S.; Bulajić, S. MALDI-TOF mass spectrometry for the identification of Serbian artisanal cheeses microbiota. J. Consum. Prot. Food Saf. 2018, 13, 309–314. [Google Scholar] [CrossRef]
- Ledina, T.; Mohar-Lorbeg, P.; Golob, M.; Djordjevic, J.; Bogović-Matijašić, B.; Bulajić, S. Tetracycline resistance in lactobacilli isolated from Serbian traditional raw milk cheeses. J. Food Sci. Technol. 2018, 55, 1426–1434. [Google Scholar] [CrossRef] [PubMed]
- Versalovic, J.; Schneider, M.; de Bruijn, F.J.; Lupski, J.R. Genomic Fingerprint of Bacteria Using Repetitive Sequence-Based Polymerase Chain Reaction. Methods Mol. Cell. Biol. 1994, 5, 25–40. [Google Scholar]
- Ribeiro, S.C.; Coelho, M.C.; Todorov, S.D.; Franco, B.D.; Dapkevicius, M.L.; Silva, C.C. Technological properties of bacteriocin-producing lactic acid bacteria isolated from Pico cheese, an artisanal cow’s milk cheese. J. Appl. Microbiol. 2014, 116, 573–585. [Google Scholar] [CrossRef]
- Hantsis-Zacharov, E.; Halpern, M. Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Appl. Environ. Microbiol. 2007, 73, 7162–7168. [Google Scholar] [CrossRef]
- King, N. Modification of the Voges-Proskauer test for rapid colorimetric determination of acetylmethyl carbinol plus diacetyl in butter cultures. Dairy Ind. 1948, 13, 860–866. [Google Scholar]
- Smitinont, T.; Tansakul, C.; Tanasupawat, S.; Keeratipibul, S.; Navarini, L.; Bosco, M.; Cescutti, P. Exopolysaccharide-producing lactic acid bacteria strains from traditional Thai fermented foods: Isolation, identification and exopolysaccharide characterization. Int. J. Food Microbiol. 1999, 51, 105–111. [Google Scholar] [CrossRef]
- Succi, M.; Tremonte, P.; Reale, A.; Sorrentino, E.; Grazia, L.; Pacifico, S.; Coppola, R. Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol. Lett. 2005, 244, 129–137. [Google Scholar] [CrossRef]
- Ferrari, I.S.; de Souza, J.V.; Ramos, C.L.; da Costa, M.M.; Schwan, R.F.; Dias, F.S. Selection of autochthonous lactic acid bacteria from goat dairies and their addition to evaluate the inhibition of Salmonella typhi in artisanal cheese. Food Microbiol. 2016, 60, 29–38. [Google Scholar] [CrossRef]
- Leite, A.M.; Miguel, M.A.L.; Peixoto, R.S.; Ruas-Madiedo, P.; Paschoalin, V.M.F.; Mayo, B.; Delgado, S. Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains. J. Dairy Sci. 2015, 98, 3622–3632. [Google Scholar] [CrossRef]
- Terzić-Vidojević, A.; Veljović, K.; Tolinački, M.; Nikolić, M.; Ostojić, M.; Topisirović, L. Characterization of lactic acid bacteria isolated from artisanal Zlatar cheeses produced at two different geographical locations. Genetika 2009, 41, 117–136. [Google Scholar] [CrossRef]
- Tagg, J.R.; McGiven, A.R. Assay system for bacteriocins. Appl. Microbiol. 1971, 21, 943. [Google Scholar] [CrossRef] [PubMed]
- Nicosia, F.D.; Pino, A.; Maciel, G.L.R.; Sanfilippo, R.R.; Caggia, C.; de Carvalho, A.F.; Randazzo, C.L. Technological characterization of lactic acid bacteria strains for potential use in cheese manufacture. Foods 2023, 12, 1154. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Mancini, L.; Fox, P. Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening. Trends Food Sci. Technol. 2015, 45, 167–178. [Google Scholar] [CrossRef]
- Reale, A.; Di Renzo, T.; Rossi, F.; Zotta, T.; Iacumin, L.; Preziuso, M.; Parente, E.; Sorrentino, E.; Coppola, R. Tolerance of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus strains to stress factors encountered in food processing and in the gastrointestinal tract. LWT Food Sci. Technol. 2015, 60, 721–728. [Google Scholar] [CrossRef]
- Câmara, S.P.; Dapkevicius, A.; Riquelme, C.; Elias, R.B.; Silva, C.; Malcata, F.X.; Dapkevicius, M. Potential of lactic acid bacteria from Pico cheese for starter culture development. Food Sci. Technol. Int. 2019, 25, 303–317. [Google Scholar] [CrossRef]
- Herreros, M.A.; Fresno, J.M.; González Prieto, M.J.; Tornadijo, M.E. Technological characterization of lactic acid bacteria isolated from Armada cheese (a Spanish goats’ milk cheese). Int. Dairy J. 2003, 13, 469–479. [Google Scholar] [CrossRef]
- Bozoudi, D.; Kotzamanidis, C.; Hatzikamari, M.; Tzanetakis, N.; Menexes, G.; Litopoulou-Tzanetaki, E. A comparison for acid production, proteolysis, autolysis, and inhibitory properties of lactic acid bacteria from fresh and mature Feta PDO Greek cheese, made at three different mountainous areas. Int. J. Food Microbiol. 2015, 200, 87–96. [Google Scholar] [CrossRef]
- Abarquero, D.; Renes, E.; Combarros-Fuertes, P.; Fresno, J.M.; Tornadijo, M.E. Evaluation of technological properties and selection of wild lactic acid bacteria for starter culture development. LWT 2022, 171, 114121. [Google Scholar] [CrossRef]
- Carafa, I.; Nardin, T.; Larcher, R.; Viola, R.; Tuohy, K.; Franciosi, E. Identification and characterization of wild lactobacilli and pediococci from spontaneously fermented mountain cheese. Food Microbiol. 2015, 48, 123–132. [Google Scholar] [CrossRef]
- Scatassa, M.L.; Gaglio, R.; Macaluso, G.; Francesca, N.; Randazzo, W.; Cardamone, C.; Di Grigoli, A.; Moschetti, G.; Settanni, L. Transfer, composition, and technological characterization of the lactic acid bacterial populations of the wooden vats used to produce traditional stretched cheeses. Food Microbiol. 2015, 52, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Kask, S.; Adamberg, K.; Orłowski, A.; Vogensen, F.K.; Møller, P.L.; Ardö, Y.; Paalme, T. Physiological properties of Lactobacillus paracasei, L. danicus, and L. curvatus strains isolated from Estonian semi-hard cheese. Food Res. Int. 2003, 36, 1037–1046. [Google Scholar] [CrossRef]
- Klaenhammer, T.R.; Barrangou, R.; Buck, B.L.; Azcarate-Peril, M.A.; Altermann, E. Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol. Rev. 2005, 29, 393–409. [Google Scholar] [CrossRef] [PubMed]
- Kojic, M.; Fira, D.; Bojovic, B.; Banina, A.; Topisirovic, L. Comparative study on cell envelope associated proteinases in natural isolates of mesophilic lactobacilli. J. Appl. Bacteriol. 1995, 79, 61–68. [Google Scholar] [CrossRef]
- Strahinic, I.; Kojic, M.; Tolinacki, M.; Fira, D.; Topisirovic, L. The presence of prtP proteinase gene in natural isolate Lactobacillus plantarum BGSJ3-18. Lett. Appl. Microbiol. 2010, 50, 43–49. [Google Scholar] [CrossRef]
- García-Cano, I.; Rocha-Mendoza, D.; Ortega-Anaya, J.; Wang, K.; Kosmerl, E.; Jiménez-Flores, R. Lactic acid bacteria isolated from dairy products as potential producers of lipolytic, proteolytic, and antibacterial proteins. Appl. Microbiol. Biotechnol. 2019, 103, 5243–5257. [Google Scholar] [CrossRef]
- Tsigkrimani, M.; Panagiotarea, K.; Paramithiotis, S.; Bosnea, L.; Pappa, E.; Drosinos, E.H.; Skandamis, P.N.; Mataragas, M. Microbial Ecology of Sheep Milk, Artisanal Feta, and Kefalograviera Cheeses. Part II: Technological, Safety, and Probiotic Attributes of Lactic Acid Bacteria Isolates. Foods 2022, 11, 459. [Google Scholar] [CrossRef]
- Nieto-Arribas, P.; Poveda, J.; Seseña, S.; Palop, L.; Cabezas, L. Technological characterization of Lactobacillus isolates from traditional Manchego cheese for potential use as adjunct starter cultures. Food Control 2009, 20, 1092–1098. [Google Scholar] [CrossRef]
- Domingos-Lopes, M.F.P.; Stanton, C.; Ross, P.R.; Dapkevicius, M.L.E.; Silva, C.C.G. Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal Pico cheese. Food Microbiol. 2017, 63, 178–190. [Google Scholar] [CrossRef]
- Margalho, L.P.; Feliciano, M.D.; Silva, C.E.; Abreu, J.S.; Piran, M.V.F.; Sant’Ana, A.S. Brazilian artisanal cheeses are rich and diverse sources of nonstarter lactic acid bacteria regarding technological, biopreservative, and safety properties: Insights through multivariate analysis. J. Dairy Sci. 2020, 103, 7908–7926. [Google Scholar] [CrossRef]
- Agostini, C.; Eckert, C.; Vincenzi, A.; Machado, B.L.; Jordon, B.C.; Kipper, J.P.; Dullius, A.; Dullius, C.H.; Lehn, D.N.; Sperotto, R.A.; et al. Characterization of technological and probiotic properties of indigenous Lactobacillus spp. from South Brazil. 3 Biotech 2018, 8, 451. [Google Scholar] [CrossRef] [PubMed]
- Rincon-Delgadillo, M.I.; Lopez-Hernandez, A.; Wijaya, I.; Rankin, S.A. Diacetyl levels and volatile profiles of commercial starter distillates and selected dairy foods. J. Dairy Sci. 2012, 95, 1128–1139. [Google Scholar] [CrossRef] [PubMed]
- Thierry, A.; Valence, F.; Deutsch, S.-M.; Even, S.; Falentin, H.; Le Loir, Y.; Jan, G.; Gagnaire, V. Strain-to-strain differences within lactic and propionic acid bacteria species strongly impact the properties of cheese—A review. Dairy Sci. Technol. 2015, 95, 895–918. [Google Scholar] [CrossRef]
- McSweeney, P.; Sousa, M. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Le Lait 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Popović, N.; Dinić, M.; Tolinački, M.; Mihajlović, S.; Terzić-Vidojević, A.; Bojić, S.; Djokić, J.; Golić, N.; Veljović, K. New insight into biofilm formation ability, the presence of virulence genes and probiotic potential of Enterococcus sp. dairy isolates. Front. Microbiol. 2018, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- de Almeida Júnior, W.L.G.; da Silva Ferrari, Í.; de Souza, J.V.; da Silva, C.D.A.; da Costa, M.M.; Dias, F.S. Characterization and evaluation of lactic acid bacteria isolated from goat milk. Food Control 2015, 53, 96–103. [Google Scholar] [CrossRef]
- Monteagudo-Mera, A.; Rodríguez-Aparicio, L.; Rúa, J.; Martínez-Blanco, H.; Navasa, N.; García-Armesto, M.R.; Ferrero, M.Á. In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin. J. Funct. Foods 2012, 4, 531–541. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Corbo, M.R.; Sinigaglia, M. Selection of yeasts as starter cultures for table olives: A step-by-step procedure. Front. Microbiol. 2012, 3, 194. [Google Scholar] [CrossRef]
- Angmo, K.; Kumari, A.; Bhalla, T.C. Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT-Food Sci. Technol. 2016, 66, 428–435. [Google Scholar] [CrossRef]
- Kumari, A.; Angmo, K.; Monika; Bhalla, T.C. Probiotic attributes of indigenous Lactobacillus spp. isolated from traditional fermented foods and beverages of north-western Himalayas using in vitro screening and principal component analysis. J. Food Sci. Technol. 2016, 53, 2463–2475. [Google Scholar] [CrossRef]
Qualitative Code | Growth at 45, 15, and 5 °C | Growth with 6 and 10% NaCl | Proteolytic Activity | Lipolytic Activity | Diacetyl Production | EPS Production |
---|---|---|---|---|---|---|
0 | <0.1 | <0.1 | Negative | Negative | Negative | Negative |
1 | 0.1–0.5 | 0.1–0.5 | Positive | Positive | Positive | Positive |
2 | >0.5 | >0.5 | - | - | - | - |
No. | Isolate | Δ pH | Temperature | NaCl | D.P. | P.A. | L.A. | EPS P. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 h | 16 h | 24 h | 45 °C | 15 °C | 5 °C | 6% | 10% | ||||||
L. plantarum (n = 25) | |||||||||||||
1 | L. plantarum 32 | 0.10 | 0.76 | 0.99 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | + | - | - |
2 | L. plantarum 73 | 0.10 | 0.53 | 0.85 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | + | - | - |
3 | L. plantarum 111 | 0.23 | 0.85 | 1.09 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
4 | L. plantarum 114 | 0.39 | 0.90 | 0.92 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | >0.5 | + | - | - | - |
5 | L. plantarum 144 | 0.33 | 0.88 | 1.17 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
6 | L. plantarum 157 | 0.20 | 0.86 | 1.09 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | + | - | + |
7 | L. plantarum 177 | 0.09 | 0.34 | 0.77 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | - | - | + |
8 | L. plantarum 185 | 0.19 | 0.93 | 1.13 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | + | - | - |
9 | L. plantarum 207 | 0.17 | 0.95 | 1.30 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | + |
10 | L. plantarum 208 | 0.51 | 1.00 | 1.12 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | + |
11 | L. plantarum 210 | 0.22 | 0.77 | 1.01 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | + | - | - |
12 | L. plantarum 217 | 0.38 | 1.34 | 1.73 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | + |
13 | L. plantarum 219 | 0.24 | 2.03 | 2.6 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | + |
14 | L. plantarum 223 | 0.33 | 0.88 | 0.88 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | >0.5 | + | + | - | - |
15 | L. plantarum 260 | 0.26 | 0.87 | 1.03 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | + | - | + |
16 | L. plantarum 268 | 0.30 | 1.29 | 1.31 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | - | - | - |
17 | L. plantarum 273 | 0.54 | 1.87 | 2.12 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | + |
18 | L. plantarum 283 | 0.26 | 1.00 | 1.11 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
19 | L. plantarum 503 | 0.34 | 0.93 | 0.94 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | >0.5 | + | - | - | + |
20 | L. plantarum 504 | 0.23 | 0.90 | 1.09 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | >0.5 | + | - | - | + |
21 | L. plantarum 527 | 0.19 | 0.77 | 0.95 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | - | - | - |
22 | L. plantarum 536 | 0.27 | 0.84 | 0.97 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | - | - | + |
23 | L. plantarum 548 | 0.29 | 1.25 | 1.84 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
24 | L. plantarum 554 | 0.26 | 0.97 | 1.06 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | + | - | - |
25 | L. plantarum 561 | 0.28 | 0.83 | 0.78 | 0.1–0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | + | - | + |
L. paracasei (n = 24) | |||||||||||||
26 | L. paracasei 116 | 0.22 | 1.26 | 2.22 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | - | - | - |
27 | L. paracasei 155 | 0.26 | 1.30 | 2.34 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
28 | L. paracasei 180 | 0.14 | 0.36 | 0.54 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
29 | L. paracasei 195 | 0.24 | 0.55 | 1.96 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | - | - | + |
30 | L. paracasei 224 | 0.20 | 0.86 | 1.54 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | - | - | - |
31 | L. paracasei 293 | 0.24 | 1.29 | 2.39 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
32 | L. paracasei 304 | 0.25 | 1.33 | 2.39 | >0.5 | 0.1–0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
33 | L. paracasei 306 | 0.25 | 0.83 | 1.84 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | + | - | - |
34 | L. paracasei 307 | 0.23 | 0.59 | 1.37 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
35 | L. paracasei 403 | 0.22 | 1.02 | 2.15 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | <0.1 | + | - | - | + |
36 | L. paracasei 404 | 0.23 | 1.22 | 2.26 | 0.1–0.5 | >0.5 | <0.1 | >0.5 | 0.1–0.5 | + | - | - | - |
37 | L. paracasei 409 | 0.24 | 1.05 | 2.35 | >0.5 | 0.1–0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | + | - | - |
38 | L. paracasei 412 | 0.22 | 0.7 | 1.05 | >0.5 | 0.1–0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | + | - | - |
39 | L. paracasei 413 | 0.19 | 0.74 | 1.62 | >0.5 | 0.1–0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | - | - | - |
40 | L. paracasei 434 | 0.16 | 0.63 | 1.21 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | + | - | + |
41 | L. paracasei 441 | 0.19 | 0.69 | 1.10 | >0.5 | 0.1–0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | + |
42 | L. paracasei 444 | 0.22 | 0.73 | 1.28 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | >0.5 | <0.1 | + | + | - | - |
43 | L. paracasei 446 | 0.19 | 0.84 | 1.85 | >0.5 | 0.1–0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
44 | L. paracasei 448 | 0.23 | 1.09 | 2.26 | >0.5 | 0.1–0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
45 | L. paracasei 449 | 0.22 | 0.73 | 1.60 | >0.5 | 0.1–0.5 | 0.1–0.5 | >0.5 | <0.1 | + | + | - | - |
46 | L. paracasei 452 | 0.20 | 0.67 | 1.10 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
47 | L. paracasei 519 | 0.28 | 1.47 | 2.34 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | - | - | + |
48 | L. paracasei 521 | 0.19 | 0.81 | 1.31 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | - | - | - |
49 | L. paracasei 522 | 0.21 | 1.37 | 2.34 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | - | - | - |
L. brevis (n = 10) | |||||||||||||
50 | L. brevis 112 | 0.15 | 1.35 | 0.94 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
51 | L. brevis 113 | 0.18 | 0.94 | 1.03 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | + | - | - |
52 | L. brevis 121 | 0.15 | 1.41 | 1.02 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | - | - | - |
53 | L. brevis 228 | 0.14 | 1.21 | 0.93 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | + | - | - |
54 | L. brevis 406 | 0.16 | 0.72 | 0.92 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | + | + | - |
55 | L. brevis 411 | 0.16 | 0.86 | 1.11 | >0.5 | >0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | + | - | - | - |
56 | L. brevis 455 | 0.19 | 0.89 | 1.01 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | + |
57 | L. brevis 510 | 0.15 | 0.85 | 1.00 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
58 | L. brevis 556 | 0.13 | 1.23 | 0.97 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
59 | L. brevis 558 | 0.24 | 1.34 | 1.10 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
L. mesenteroides (n = 9) | |||||||||||||
60 | L. mesenteroides 54 | 0.44 | 1.83 | 3.01 | >0.5 | >0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | - | - | - | - |
61 | L. mesenteroides 59 | 0.44 | 2.93 | 3.32 | >0.5 | >0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | + | - | - | - |
62 | L. mesenteroides 102 | 0.25 | 1.69 | 1.66 | >0.5 | >0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | - | - | - | - |
63 | L. mesenteroides 105 | 0.42 | 2.00 | 2.42 | >0.5 | >0.5 | <0.1 | >0.5 | 0.1–0.5 | - | - | - | - |
64 | L. mesenteroides 171 | 0.70 | 2.91 | 3.35 | >0.5 | >0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | - | - | - | - |
65 | L. mesenteroides 179 | 0.52 | 3.27 | 3.54 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | - | - | - |
66 | L. mesenteroides 241 | 0.35 | 1.77 | 1.83 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
67 | L. mesenteroides 255 | 0.65 | 2.81 | 3.36 | >0.5 | >0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | - | - | - | - |
68 | L. mesenteroides 285 | 0.38 | 1.95 | 2.93 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
L. lactis (n = 3) | |||||||||||||
69 | L. lactis 27 | 0.62 | 1.86 | 3.39 | >0.5 | >0.5 | 0.1–0.5 | 0.1–0.5 | <0.1 | - | + | + | - |
70 | L. lactis 95 | 0.45 | 1.68 | 1.94 | 0.1–0.5 | >0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | - | - | - | - |
71 | L. lactis 238 | 0.42 | 1.69 | 1.92 | >0.5 | >0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | + | - | - | - |
L. curvatus (n = 3) | |||||||||||||
72 | L. curvatus 125 | 0.27 | 1.37 | 1.11 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | - | - | - |
73 | L. curvatus 242 | 0.08 | 0.61 | 0.97 | >0.5 | >0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | + | - | - | + |
74 | L. curvatus 243 | 0.37 | 0.87 | 1.17 | >0.5 | >0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | + | - | - | - |
75 | L. buchneri 76 | 0.46 | 1.27 | 1.05 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | - | - | - | - |
76 | L. buchneri 405 | 0.03 | 1.09 | 1.12 | >0.5 | >0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | + | - | - | - |
77 | P. pentosaceus 267 | 0.06 | 1.12 | 0.95 | >0.5 | >0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | - | - | - | - |
78 | P. pentosaceus 270 | 0.17 | 0.47 | 0.64 | 0.1–0.5 | >0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | + | - | - | + |
79 | L. kefiri 147 | 0.14 | 0.91 | 0.85 | 0.1–0.5 | >0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | - | - | - | - |
80 | L. diolivorans 509 | 0.38 | 2.00 | 2.48 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
81 | L. coryniformis 417 | 0.25 | 1.64 | 1.72 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | 0.1–0.5 | + | - | - | - |
82 | L. garviae 44 | 0.69 | 2.18 | 2.69 | >0.5 | >0.5 | 0.1–0.5 | 0.1–0.5 | 0.1–0.5 | - | - | - | - |
83 | L. pseudomesenteroides 309 | 0.24 | 1.04 | 1.00 | >0.5 | >0.5 | 0.1–0.5 | >0.5 | <0.1 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledina, T.; Đorđević, J.; Glišić, M.; Čobanović, N.; Kovandžić, M.; Bulajić, S. Technological and Functional Characteristics of Lactic Acid Bacteria from Traditional Serbian Cheeses. Foods 2025, 14, 38. https://doi.org/10.3390/foods14010038
Ledina T, Đorđević J, Glišić M, Čobanović N, Kovandžić M, Bulajić S. Technological and Functional Characteristics of Lactic Acid Bacteria from Traditional Serbian Cheeses. Foods. 2025; 14(1):38. https://doi.org/10.3390/foods14010038
Chicago/Turabian StyleLedina, Tijana, Jasna Đorđević, Milica Glišić, Nikola Čobanović, Marija Kovandžić, and Snežana Bulajić. 2025. "Technological and Functional Characteristics of Lactic Acid Bacteria from Traditional Serbian Cheeses" Foods 14, no. 1: 38. https://doi.org/10.3390/foods14010038
APA StyleLedina, T., Đorđević, J., Glišić, M., Čobanović, N., Kovandžić, M., & Bulajić, S. (2025). Technological and Functional Characteristics of Lactic Acid Bacteria from Traditional Serbian Cheeses. Foods, 14(1), 38. https://doi.org/10.3390/foods14010038