Metagenomic Reveals the Role of Autochthonous Debaryomyces hansenii in the Fermentation and Flavor Formation of Dry Sausage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Starter Culture Preparation
2.2. Dry Sausage Preparation
2.3. Analysis of Physical Properties and Microbial Counts
2.4. Volatile Compound Analysis
2.5. Metagenomic Analysis
2.5.1. DNA Extraction and Metagenomic Sequencing
2.5.2. Bioinformatic Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physical Properties and Microbial Counts
3.2. Volatile Compounds
3.3. Microbial Community Diversity
3.4. Functional Gene Distribution
3.5. Biosynthetic Potential of the Microbiota for Producing Volatile Compounds
3.5.1. Carbohydrate Metabolic Pathways
3.5.2. Amino Acid Metabolic Pathways
3.5.3. Lipid Metabolic Pathways
3.5.4. Ester Biosynthetic Pathways
3.6. Metabolic Pathway Networks of Volatile Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Control | Dh-SH4 | |
---|---|---|
Moisture content (%) | 22.83 ± 0.24 b | 26.32 ± 0.29 a |
aw | 0.752 ± 0.006 b | 0.776 ± 0.005 a |
pH | 5.29 ± 0.05 b | 5.53 ± 0.06 a |
Yeast count (log CFU/g) | 5.62 ± 0.06 b | 7.78 ± 0.08 a |
LAB count (log CFU/g) | 7.36 ± 0.08 b | 7.85 ± 0.07 a |
Volatile Compound | CAS | Control | Dh-SH4 | Odor Description |
---|---|---|---|---|
Aldehydes | ||||
3-Methylbutanal | 590-86-3 | 1.36 ± 0.14 | 1.49 ± 0.12 | chocolate, nutty, cocoa |
Hexanal | 66-25-1 | 21.18 ± 0.92 a | 16.85 ± 0.89 b | fatty, fresh, green |
Nonanal | 124-19-6 | 17.05 ± 0.39 a | 10.87 ± 0.22 b | waxy, aldehydic, rose |
Benzaldehyde | 100-52-7 | 23.51 ± 0.96 a | 11.74 ± 0.35 b | strong, sharp, sweet |
Phenylacetaldehyde | 122-78-1 | 2.70 ± 0.15 b | 16.91 ± 0.68 a | green, sweet, floral |
Cinnamaldehyde | 104-55-2 | 5.28 ± 0.36 | 5.37 ± 0.25 | sweet, spicy, aldehydic |
Ketones | ||||
3-Hydroxy-2-butanone | 513-86-0 | 50.02 ± 1.86 a | 37.51 ± 0.94 b | sweet, buttery, creamy |
2-Heptanone | 107-87-9 | n.d. | n.d. | sweet, fruity, ethereal |
2-Nonanone | 821-55-6 | 4.67 ± 0.25 a | 2.66 ± 0.32 b | fresh, sweet, green |
2,3-Octanedione | 585-25-1 | n.d. | n.d. | dill, asparagus, cilantro |
Acetophenone | 98-86-2 | n.d. | 2.03 ± 0.17 | sweet, pungent, hawthorn |
Fenchone | 1195-79-5 | 35.18 ± 1.05 | 37.21 ± 1.39 | camphoreous |
Acids | ||||
Acetic acid | 64-19-7 | 87.01 ± 2.13 a | 79.67 ± 2.94 b | sharp, pungent, sour |
Butanoic acid | 107-92-6 | 30.32 ± 1.05 a | 15.72 ± 0.56 b | sharp, cheese, butter |
3-Methylbutanoic acid | 503-74-2 | 5.29 ± 0.42 a | 2.37 ± 0.12 b | sour, stinky, cheese |
Hexanoic acid | 142-62-1 | 87.72 ± 2.45 | 92.54 ± 2.42 | sour, fatty, sweat |
Heptanoic acid | 111-14-8 | 7.94 ± 0.15 a | 6.40 ± 0.22 b | rancid, sour, cheesy |
Octanoic acid | 124-07-2 | 17.23 ± 0.31 a | 2.31 ± 0.26 b | fatty, waxy, rancid |
Nonanoic acid | 112-05-0 | 14.46 ± 0.61 a | 6.59 ± 0.23 b | waxy, dirty, cheese |
Decanoic acid | 334-48-5 | 18.81 ± 0.34 a | 6.72 ± 0.29 b | unpleasant, rancid, sour |
Alcohols | ||||
Ethanol | 64-17-5 | 656.18 ± 5.28 b | 938.18 ± 5.86 a | alcoholic, strong, ethereal |
2,3-Butanediol | 513-85-9 | 33.01 ± 1.55 | 36.61 ± 1.61 | creamy, fruity, buttery |
Pentanol | 71-41-0 | n.d. | n.d. | fusel, balsam, fermented |
3-Methyl-1-butanol | 78-83-1 | 0.64 ± 0.13 | 0.79 ± 0.04 | ethereal, winey, cortex |
Hexanol | 111-27-3 | 12.06 ± 0.54 a | 10.24 ± 0.43 b | herbal, ethereal, fruity |
Heptanol | 111-70-6 | 8.22 ± 0.74 a | 6.39 ± 0.65 b | green, musty, leafy |
2-Heptanol | 543-49-7 | 2.58 ± 0.14 b | 3.49 ± 0.17 a | fresh, lemon, grass |
6-Methyl-5-hepten-2-ol | 1569-60-4 | 2.13 ± 0.12 a | 1.67 ± 0.05 b | sweet, green, coriander |
Octanol | 111-87-5 | 9.05 ± 0.73 | 8.76 ± 0.57 | waxy, green, orange |
2-Ethylhexanol | 104-76-7 | 6.69 ± 0.13 | 7.58 ± 0.65 | citrus, fresh, floral |
1-Octen-3-ol | 3391-86-4 | 9.51 ± 0.86 a | 6.73 ± 0.64 b | mushroom, earthy, green |
trans-2-Octen-1-ol | 18409-17-1 | 16.74 ± 0.43 a | 7.38 ± 0.41 b | fatty, green, citrus |
2-Nonanol | 628-99-9 | 7.19 ± 0.38 | n.d. | waxy, green, creamy |
Benzyl alcohol | 100-51-6 | n.d. | 9.57 ± 0.63 | floral, rose, phenolic |
Phenethyl alcohol | 60-12-8 | 3.09 ± 0.25 b | 14.64 ± 0.97 a | floral, rose, dried |
Cineole | 470-82-6 | 250.37 ± 3.38 | 244.41 ± 2.63 | herbal, eucalyptus, camphor |
Linalool | 78-70-6 | 231.47 ± 3.02 | 238.92 ± 3.35 | citrus, floral, sweet |
α-Terpineol | 98-55-5 | 20.04 ± 0.49 | 21.43 ± 0.27 | terpenic, pine, lilac |
Terpinen-4-ol | 562-74-3 | 66.87 ± 1.77 | 74.72 ± 2.83 | pepper, woody, musty |
Nerolidol | 40716-66-3 | 20.50 ± 0.92 | 21.59 ± 0.58 | floral, green, citrus |
Esters | ||||
Ethyl acetate | 141-78-6 | 105.16 ± 2.13 b | 150.33 ± 2.41 a | ethereal, fruity, sweet |
Ethyl lactate | 97-64-3 | 50.25 ± 2.64 b | 62.49 ± 2.76 a | fruity, sharp, tart |
Methyl butyrate | 623-42-7 | 10.51 ± 0.59 b | 13.10 ± 0.88 a | fruity, apple, sweet |
Ethyl butyrate | 105-54-4 | 125.02 ± 3.09 b | 150.70 ± 2.18 a | fruity, pineapple, cognac |
Ethyl 2-methylbutyrate | 7452-79-1 | n.d. | 5.43 ± 0.13 | fruity, apple berry |
Ethyl valerate | 539-82-2 | 15.16 ± 0.46 b | 26.05 ± 1.24 a | fruity, sweet, apple |
Ethyl isovalerate | 108-64-5 | 11.00 ± 0.21 b | 18.70 ± 0.98 a | fruity, sweet, apple |
Isoamyl acetate | 123-92-2 | n.d. | 3.24 ± 0.19 | sweet, fruity, banana |
Methyl hexanoate | 106-70-7 | 121.06 ± 2.53 b | 194.78 ± 2.72 a | fruity, pineapple, ether |
Ethyl hexanoate | 123-66-0 | 685.73 ± 7.94 b | 791.54 ± 7.47 a | fruity, sweet, pineapple |
Ethyl heptanoate | 106-30-9 | 15.57 ± 0.43 b | 21.34 ± 0.18 a | fruity, pineapple, cognac |
Ethyl caprylate | 106-32-1 | 18.28 ± 0.81 b | 25.58 ± 1.73 a | fruity, wine, waxy |
Ethyl caprate | 110-38-3 | n.d. | 16.77 ± 0.26 | waxy, sweet, fruity |
Benzyl acetate | 140-11-4 | n.d. | 1.27 ± 0.09 | floral, jasmin, fresh |
Phenethyl acetate | 103-45-7 | n.d. | 7.24 ± 0.48 | floral, rose, honey |
Ethyl 3-hydroxybutyrate | 5405-41-4 | n.d. | 2.33 ± 0.17 | fruity, green, grape |
Ethyl 3-hydroxyhexanoate | 2305-25-1 | n.d. | n.d. | fruity, grape, cranberry |
Ethyl 3-phenylpropionate | 2021-28-5 | n.d. | 12.19 ± 0.31 | hyacinth, rose, honey |
Bornyl acetate | 76-49-3 | 21.54 ± 0.37 | 22.10 ± 1.03 | balsamic, woody, pine |
Geranyl acetate | 105-87-3 | 18.46 ± 0.41 | 17.85 ± 0.28 | floral, rose, lavender |
Linalyl acetate | 115-95-7 | 5.51 ± 0.17 | 6.40 ± 0.38 | herbal, sweet, green |
Ethyl laurate | 106-33-2 | n.d. | 13.53 ± 0.85 | waxy, floral, soapy |
Methyl salicylate | 119-36-8 | n.d. | 17.32 ± 0.53 | wintergreen, mint, sweet |
Alkenes | ||||
Sabinene | 3387-41-5 | 44.55 ± 1.26 | 41.20 ± 1.39 | woody, terpenic, citrus |
Myrcene | 123-35-3 | 41.91 ± 1.07 | 38.57 ± 1.59 | spicy, peppery, terpene |
Dipentene | 5989-27-5 | 782.18 ± 4.20 | 779.29 ± 5.09 | citrus, orange, fresh |
γ-Terpinene | 99-85-4 | 111.56 ± 3.29 | 111.75 ± 2.25 | terpenic, oily, woody |
α-Copaene | 3856-25-5 | 10.89 ± 0.76 | 11.28 ± 0.47 | woody, spicy, honey |
α-Curcumene | 644-30-4 | 15.68 ± 0.86 | 16.66 ± 0.32 | herbal, fresh, woody |
β-Caryophyllene | 87-44-5 | 144.38 ± 2.70 | 138.36 ± 3.09 | spicy, sweet, woody |
Terpinolene | 586-62-9 | 21.14 ± 0.46 | 21.10 ± 0.78 | herbal, fresh, woody |
p-Cymene | 99-87-6 | 87.08 ± 2.18 | 82.93 ± 2.92 | terpenic, fresh, citrus |
α-Pinene | 7785-70-8 | 12.29 ± 0.38 | 10.58 ± 0.65 | herbal, terpenic, aromatic |
β-Pinene | 127-91-3 | 22.44 ± 1.17 | 20.50 ± 1.06 | woody, resinous, pine |
3-Carene | 13466-78-9 | 13.47 ± 0.62 | 11.90 ± 0.49 | citrus, terpenic, herbal |
α-Phellandrene | 99-83-2 | 22.39 ± 1.28 | 22.12 ± 1.30 | citrus, herbal, lime |
β-Elemene | 515-13-9 | 6.73 ± 0.30 | 6.28 ± 0.43 | sweet |
α-Caryophyllene | 6753-98-6 | 16.41 ± 0.68 | 15.97 ± 0.57 | woody |
Others | ||||
D-Camphor | 464-49-3 | 39.16 ± 1.25 | 42.18 ± 1.53 | camphoreous, minty phenolic |
4-Allylanisole | 140-67-0 | 350.49 ± 5.32 | 346.13 ± 4.40 | anisic, sweet, spicy |
L-Borneol | 464-45-9 | 11.00 ± 0.61 | 12.07 ± 0.40 | pine, woody, camphor |
Anethol | 104-46-1 | 512.03 ± 4.32 | 514.18 ± 4.29 | sweet, anisic, licorice |
Safrole | 94-59-7 | 38.50 ± 1.34 | 40.98 ± 2.01 | sweet, warm, spicy |
Eugenol | 97-53-0 | 304.92 ± 4.34 | 303.11 ± 3.97 | spicy, sweet, clove |
Methyl eugenol | 93-15-2 | 8.15 ± 0.49 | 7.67 ± 0.63 | sweet, fresh, warm |
Control-1 | Control-2 | Control-3 | Dh-SH4-1 | Dh-SH4-2 | Dh-SH4-3 | |
---|---|---|---|---|---|---|
Raw data (Mbp) | 6213.48 | 6663.19 | 6132.97 | 6537.33 | 6687.53 | 6663.51 |
Clean data (Mbp) | 6166.05 | 6636.61 | 6101.13 | 6512.53 | 6665.27 | 6641.50 |
Clean Q20 (%) | 97.73 | 97.68 | 95.05 | 97.63 | 97.56 | 97.50 |
Clean Q30 (%) | 94.18 | 93.95 | 90.17 | 93.92 | 93.78 | 93.63 |
Clean GC (%) | 45.01 | 42.85 | 45.11 | 44.01 | 44.08 | 44.01 |
Scaftigs number | 54,579 | 59,624 | 56,031 | 61,846 | 64,733 | 65,129 |
Scaftigs average length (bp) | 1437.31 | 1465.77 | 1374.02 | 1201.80 | 1266.19 | 1548.90 |
Scaftigs N50 length (bp) | 1896 | 1997 | 1716 | 1386 | 1534 | 2476 |
ORFs number | 36,475 | 40,912 | 35,795 | 37,949 | 39,155 | 40,490 |
Unigenes number | 61,921 | 62,991 | 61,108 | 64,118 | 64,385 | 64,368 |
References
- Li, L.; Perea-Sanz, L.; Salvador, A.; Belloch, C.; Flores, M. Understanding the impact of nitrogen and sulfur precursors on the aroma of dry fermented sausages. Meat Sci. 2022, 192, 108896. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Cruxen, C.E.; Funck, G.D.; Haubert, L.; da Silva Dannenberg, G.; de Lima Marques, J.; Chaves, F.C.; da Silva, W.P.; Fiorentini, Â.M. Selection of native bacterial starter culture in the production of fermented meat sausages: Application potential, safety aspects, and emerging technologies. Food Res. Int. 2019, 122, 371–382. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, F.; Genovese, A.; Ferranti, P.; Gilbert, J.A.; Ercolini, D. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate. Sci. R. 2016, 6, 21871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, S.; Sun, H.; Jiang, Z.; Xu, Y.; Mao, J.; Qian, B.; Wang, L.; Mao, J. Metagenomics-based insights into the microbial community profiling and flavor development potentiality of baijiu Daqu and huangjiu wheat Qu. Food Res. Int. 2022, 152, 110707. [Google Scholar] [CrossRef]
- Wen, R.; Sun, F.; Li, X.; Chen, Q.; Kong, B. The potential correlations between the fungal communities and volatile compounds of traditional dry sausages from Northeast China. Food Microbiol. 2021, 98, 103787. [Google Scholar] [CrossRef]
- Wen, R.; Yin, X.; Hu, Y.; Chen, Q.; Kong, B. Technological properties and flavour formation potential of yeast strains isolated from traditional dry fermented sausages in Northeast China. LWT-Food Sci. Technol. 2022, 154, 112853. [Google Scholar] [CrossRef]
- Fu, J.; Chen, L.; Yang, S.; Li, Y.; Jin, L.; He, X.; Zou, L. Metagenome and analysis of metabolic potential of the microbial community in pit mud used for Chinese strong-flavor liquor production. Food Res. Int. 2021, 143, 110294. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, M.; Yang, J. Recovering metagenome-assembled genomes from shotgun metagenomic sequencing data: Methods, applications, challenges, and opportunities. Microbiol. Res. 2022, 260, 127023. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Association of Official Methods of Analysis Methods 925.04, 6th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Brandfass, C.; Karlovsky, P. Upscaled CTAB-based DNA extraction and real-time PCR assays for Fusarium culmorum and F. graminearum DNA in plant material with reduced sampling error. IJMS 2008, 9, 2306–2321. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Feng, Q.; Liang, S.; Jia, H.; Stadlmayr, A.; Tang, L.; Lan, Z.; Zhang, D.; Xia, H.; Xu, X.; Jie, Z.; et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun. 2015, 6, 6528. [Google Scholar] [CrossRef]
- Corral, S.; Belloch, C.; López-Díez, J.J.L.; Salvador, A.; Flores, M. Yeast inoculation as a strategy to improve the physico-chemical and sensory properties of reduced salt fermented sausages produced with entire male fat. Meat Sci. 2017, 123, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, S.; Cachaldora, A.; Gómez, M.; Franco, I.; Carballo, J. Effect of different autochthonous starter cultures on the volatile compounds profile and sensory properties of Galician chorizo, a traditional Spanish dry fermented sausage. Food Control 2013, 33, 6–14. [Google Scholar] [CrossRef]
- Andrade, M.J.; Córdoba, J.J.; Casado, E.M.; Córdoba, M.G.; Rodríguez, M. Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage “salchichón”. Meat Sci. 2015, 85, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Boudaoud, S.; Aouf, C.; Devillers, H.; Sicard, D.; Segond, D. Sourdough yeast-bacteria interactions can change ferulic acid metabolism during fermentation. Food Microbiol. 2021, 98, 103790. [Google Scholar] [CrossRef]
- Álvarez-Martín, P.; Flórez, A.B.; Hernández-Barranco, A.; Mayo, B. Interaction between dairy yeasts and lactic acid bacteria strains during milk fermentation. Food Control 2008, 19, 62–70. [Google Scholar] [CrossRef]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 2017, 41, 95–128. [Google Scholar] [CrossRef]
- Sidira, M.; Kandylis, P.; Kanellaki, M.; Kourkoutas, Y. Effect of curing salts and probiotic cultures on the evolution of flavor compounds in dry-fermented sausages during ripening. Food Chem. 2016, 201, 334–338. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Liu, Q.; Wang, Y.; Chen, Q.; Kong, B. The potential correlation between bacterial diversity and the characteristic volatile flavour of traditional dry sausages from Northeast China. Food Microbiol. 2020, 91, 103505. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, Q.; Zou, H.; Yu, Y.; Zhou, Z.; Mao, J.; Zhang, S. A metagenomic analysis of the relationship between microorganisms and flavor development in Shaoxing mechanized huangjiu fermentation mashes. Int. J. Food Microbiol. 2019, 303, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; Verluyten, J.; De Vuyst, L. Functional meat starter cultures for improved sausage fermentation. Int. J. Food Microbiol. 2006, 106, 270–285. [Google Scholar] [CrossRef] [PubMed]
- Coolbear, T.; Weimer, B.; Wilkinson, M.G. Lactic acid bacteria in flavor development. In Encyclopedia of Dairy Sciences, 3rd ed.; Paul, L.H.M., John, P.M., Eds.; Academic Press: New York, NY, USA, 2022; pp. 181–186. [Google Scholar]
- Chen, Q.; Kong, B.; Han, Q.; Xia, X.; Xu, L. The role of bacterial fermentation in lipolysis and lipid oxidation in Harbin dry sausages and its flavour development. LWT-Food Sci. Technol. 2017, 77, 389–396. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef]
- Jaime, H.; Damian, S.; Kristoffer, F.; Helen, C.; Davide, H.; Mathias, C.W.; Christian, M. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2015, 44, D286–D293. [Google Scholar] [CrossRef]
- Khan, M.I.; Jo, C.; Tariq, M.R. Meat flavor precursors and factors influencing flavor precursors—A systematic review. Meat Sci. 2015, 110, 278–284. [Google Scholar] [CrossRef]
- Serina, J.; Fernandes, M.X.; Castilho, P.C. Effects of hydroxycinnamic acids on the glycolysis pathway. S. Afr. J. Bot. 2019, 120, 219–229. [Google Scholar] [CrossRef]
- Shi, L.; Tu, B.P. Acetyl-CoA and the regulation of metabolism: Mechanisms and consequences. Curr. Opin. Cell Biol. 2015, 33, 125–131. [Google Scholar] [CrossRef]
- Aro, J.M.A.; Nyam-Osor, P.; Tsuji, K.; Shimada, K.; Fukushima, M.; Sekikawa, M. The effect of starter cultures on proteolytic changes and amino acid content in fermented sausages. Food Chem. 2010, 119, 279–285. [Google Scholar] [CrossRef]
- Ardö, Y. Flavour formation by amino acid catabolism. Biotechnol. Adv. 2006, 24, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Le Bars, D.; Yvon, M. Formation of diacetyl and acetoin by Lactococcus lactis via aspartate catabolism. J. Appl. Microbiol. 2008, 104, 171–177. [Google Scholar] [CrossRef]
- Dura, M.A.; Flores, M.; Toldra, F. Effect of growth phase and dry-cured sausage processing conditions on Debaryomyces spp. generation of volatile compounds from branched-chain amino acids. Food Chem. 2004, 86, 391–399. [Google Scholar] [CrossRef]
- Seguinot, P.; Bloem, A.; Brial, P.; Meudec, E.; Ortiz-Julien, A.; Camarasa, C. Analysing the impact of the nature of the nitrogen source on the formation of volatile compounds to unravel the aroma metabolism of two non-Saccharomyces strains. Int. J. Food Microbiol. 2020, 316, 108441. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, V.; Song, Z.; Hwang, I. The potential role of secondary metabolites in modulating the flavor and taste of the meat. Food Res. Int. 2019, 122, 174–182. [Google Scholar] [CrossRef]
- Gajewski, J.; Pavlovic, R.; Fischer, M.; Boles, M.; Grininger, M. Engineering fungal de novo fatty acid synthesis for short chain fatty acid production. Nat. Commun. 2017, 8, 14650. [Google Scholar] [CrossRef]
- Sidira, M.; Kandylis, P.; Kanellaki, M.; Kourkoutas, Y. Effect of immobilized lactobacillus casei on the evolution of flavor compounds in probiotic dry-fermented sausages during ripening. Meat Sci. 2015, 100, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Flores, M.; Corral, S.; Cano-García, L.; Salvador, A.; Belloch, C. Yeast strains as potential aroma enhancers in dry fermented sausages. Int. J. Food Microbiol. 2015, 212, 16–24. [Google Scholar] [CrossRef]
- Liu, S.Q.; Holland, R.; Crow, V.L. Esters and their biosynthesis in fermented dairy products: A review. Int. Dairy J. 2004, 14, 923–945. [Google Scholar] [CrossRef]
- Park, Y.C.; Shaffer, C.E.H.; Bennett, G.N. Microbial formation of esters. Appl. Microbiol. Biot. 2009, 85, 13–25. [Google Scholar] [CrossRef] [PubMed]
Volatile Compound | Metabolism Pathway | Enzyme | Enzyme ID | Gene ID | Relative Contributions (%) | |
---|---|---|---|---|---|---|
Control | Dh-SH4 | |||||
Ethanol | Glycolysis | alcohol dehydrogenase | 1.1.1.1 | Adh, adhP, YiaY, frmA, adhE | L. plantarum (22.29) L. curvatus (16.27) L. sakei (8.82) D. hansenii (7.32) g_Candida (6.51) | L. plantarum (20.55) D. hansenii (15.98) W. minor (11.06) g_Candida (7.24) L. curvatus (5.31) |
Acetic acid | Pyruvate metabolism | aldehyde dehydrogenase (NAD+) | 1.2.1.3 | ALDH | g_Staphylococcus (17.45) | g_Staphylococcus (24.09) |
acetate kinase | 2.7.2.1 | ackA | L. fallax (31.15) L. curvatus (21.51) L. plantarum (7.37) | L. sakei (39.30) L. fallax (27.97) L. curvatus (14.74) | ||
acylphosphatase | 3.6.1.7 | acyP | L. fallax (70.69) S. saprophyticus (9.91) | L. fallax (65.18) L. sakei (24.94) | ||
acetyl-CoA synthetase | 6.2.1.1 | ACSS | c_Bacilli (34.15) | c_Bacilli (33.11) | ||
butanoic acid | Butanoate metabolism | acetaldehyde dehydrogenase | 1.2.1.10 | adhE | L. curvatus (18.47) L. sakei (6.03) | W. minor (23.40) L. sakei (11.56) |
acetyl-CoA acetyltransferase | 2.3.1.9 | ACAT, atoB | L. curvatus (10.77) Weissella minor (6.76) | L. sakei (41.53) L. curvatus (18.44) | ||
3-Hydroxy-2-butanone 2,3-Butanediol | Butanoate metabolism | (R, R)-butanediol dehydrogenase (R)-acetoin dehydrogenase | 1.1.1.4 1.1.1.303 | BDH, butB | L. fallax (55.49) g_Staphylococcus (27.67) | L. fallax (84.41) g_Staphylococcus (13.30) |
(S, S)-butanediol dehydrogenase (S)-acetoin dehydrogenase | 1.1.1.76 1.1.1.304 | butA, budC | L. fallax (69.60) W. jogaejeotgali (9.86) | L. fallax (83.59) W. jogaejeotgali (1.30) | ||
acetolactate synthase | 2.2.1.6 | ilvB, ilvG, ilvI | L. sakei (41.61) L. curvatus (16.69) | L. sakei (50.97) g_Weissella (15.64) | ||
acetolactate decarboxylase | 4.1.1.5 | alsD, budA, aldC | L. fallax (44.07) W. paramesenteroides (15.54) | L. fallax (74.43) L. curvatus (5.59) | ||
Branched-chain compounds derived from amino acid metabolism | Valine, leucine, and isoleucine biosynthesis | branched chain keto acid dehydrogenase | 1.2.4.4 | BCKDHA, bkdA1 | c_Bacilli (54.31) g_Candida (4.36) | c_Bacilli (51.63) g_Candida (6.19) |
branched-chain amino acid aminotransferase | 2.6.1.42 | ilvE | L. fallax (51.40) W. minor (7.97) | L. fallax (79.84) W. minor (5.57) | ||
Aromatic compounds derived from amino acid metabolism | Phenylalanine metabolism | aryl-alcohol dehydrogenase | 1.1.1.90 | E1.1.1.90 | L. curvatus (61.45) L. sakei (8.56) D. hansenii (3.15) | L. sakei (58.05) D. hansenii (17.32) L. curvatus (11.95) |
histidinol-phosphate aminotransferase | 2.6.1.9 | hisC | L. fallax (49.82) | L. fallax (77.63) | ||
D-alanine transaminase | 2.6.1.21 | dat | c_Bacilli | c_Bacilli | ||
Volatile compounds derived from fatty metabolism | Fatty acid biosynthesis | medium-chain acyl-[acyl-carrier-protein] hydrolase | 3.1.2.21 | MCH | L. fallax (66.55) L. curvatus (8.05) | L. fallax (68.33) L. sakei (23.02) |
long-chain acyl-CoA synthetase | 6.2.1.3 | ACSL, fadD | g_Staphylococcus | g_Staphylococcus | ||
acetyl-CoA carboxylase | 6.4.1.2 | accC, accD, accA | L. fallax (54.21) L. plantarum (4.38) | L. fallax (79.24) L. sakei (4.07) | ||
Fatty acid degradation | alcohol dehydrogenase | 1.1.1.1 | Adh, adhP, yiaY, frmA, adhE | L. plantarum (22.29) L. curvatus (16.27) L. sakei (6.82) D. hansenii (7.32) g_Candida (6.51) | L. plantarum (20.55) D. hansenii (15.98) W. minor (11.06) g_Candida (7.24) L. curvatus (5.31) | |
3-hydroxyacyl-CoA dehydrogenase | 1.1.1.35 | fadN | k_Bacteria | k_Bacteria | ||
aldehyde dehydrogenase (NAD+) | 1.2.1.3 | ALDH | g_Staphylococcus (17.45) | g_Staphylococcus (24.09) | ||
acetyl-CoA acetyltransferase | 2.3.1.9 | ACAT, atoB | L. curvatus (10.77) W. minor (6.76) | L. sakei (41.53) L. curvatus (18.44) | ||
acetyl-CoA acyltransferase | 2.3.1.16 | fadA, fadI | c_Bacilli | c_Bacilli | ||
— | fatty-acid peroxygenase | 1.11.2.4 | CYP152A | — | — | |
Glycerolipid metabolism | triacylglycerol lipase | 3.1.1.3 | Lip, TGL2 | g_Staphylococcus (36.08) D. hansenii (17.90) M. abscessus (6.31) | g_Staphylococcus (37.98) D. hansenii (8.80) M. abscessus (2.74) | |
esters | — | carboxylesterase | 3.1.1.1 | yvaK | D. hansenii (8.74) L. curvatus (5.22) | D. hansenii (23.53) L. sakei (3.41) |
Glycerolipid metabolism | triacylglycerol lipase | 3.1.1.3 | Lip, TGL2 | g_Staphylococcus (36.08) D. hansenii (17.90) M. abscessus (6.31) | g_Staphylococcus (37.98) D. hansenii (8.80) M. abscessus (2.74) | |
— | alcohol O-acetyltransferase | 2.3.1.84 | ATF | D. hansenii (5.49) g_Candida (3.13) | D. hansenii (16.04) g_Candida (3.75) | |
Glycolysis | alcohol dehydrogenase | 1.1.1.1 | Adh, adhP, yiaY, frmA, adhE | L. plantarum (22.29) L. curvatus (16.27) L. sakei (8.82) D. hansenii (7.32) g_Candida (6.51) | L. plantarum (20.55) D. hansenii (15.98) W. minor (11.06) g_Candida (7.24) L. curvatus (5.31) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; He, S.; Li, M.; Sui, Y.; Kong, B.; Wen, R. Metagenomic Reveals the Role of Autochthonous Debaryomyces hansenii in the Fermentation and Flavor Formation of Dry Sausage. Foods 2025, 14, 140. https://doi.org/10.3390/foods14010140
Chen Q, He S, Li M, Sui Y, Kong B, Wen R. Metagenomic Reveals the Role of Autochthonous Debaryomyces hansenii in the Fermentation and Flavor Formation of Dry Sausage. Foods. 2025; 14(1):140. https://doi.org/10.3390/foods14010140
Chicago/Turabian StyleChen, Qian, Siyuan He, Mengtong Li, Yumeng Sui, Baohua Kong, and Rongxin Wen. 2025. "Metagenomic Reveals the Role of Autochthonous Debaryomyces hansenii in the Fermentation and Flavor Formation of Dry Sausage" Foods 14, no. 1: 140. https://doi.org/10.3390/foods14010140
APA StyleChen, Q., He, S., Li, M., Sui, Y., Kong, B., & Wen, R. (2025). Metagenomic Reveals the Role of Autochthonous Debaryomyces hansenii in the Fermentation and Flavor Formation of Dry Sausage. Foods, 14(1), 140. https://doi.org/10.3390/foods14010140