Evaluation of Stress Tolerance and Fermentation Performance in Commercial Yeast Strains for Industrial Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains
2.2. Media
2.3. Microscopic Imaging of Yeast Morphology
2.4. Measurement of Fermentation Parameters
2.5. Measurement of Cell Density and Calculation of Doubling Time
2.6. Evaluation of Thermotolerance
2.7. Intracellular Trehalose Concentration
2.8. Measurement of Reactive Oxygen Species (ROS) Levels
2.9. Stress Tolerance Assessment
2.10. Statistical Analysis
3. Results
3.1. Yeast Morphology
3.2. Fermentation Profile
3.3. Carbon Source Utilization
3.4. Stress Tolerance
3.4.1. Glucose Limitation
3.4.2. Heat Tolerance
3.4.3. Other Stresses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Postaru, M.; Tucaliuc, A.; Cascaval, D.; Galaction, A.I. Cellular Stress Impact on Yeast Activity in Biotechnological Processes—A Short Overview. Microorganisms 2023, 11, 2522. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.M.; Basso, T.O. Mitigating Stress in Industrial Yeasts. Fungal Biol. 2020, 124, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Gibson, B.R.; Lawrence, S.J.; Leclaire, J.P.R.; Powell, C.D.; Smart, K.A. Yeast Responses to Stresses Associated with Industrial Brewery Handling. FEMS Microbiol. Rev. 2007, 31, 535–569. [Google Scholar] [CrossRef] [PubMed]
- Puligundla, P.; Smogrovicova, D.; Mok, C.; Obulam, V.S.R. Recent Developments in High Gravity Beer-Brewing. Innov. Food Sci. Emerg. Technol. 2020, 64, 102399. [Google Scholar] [CrossRef]
- Eardley, J.; Timson, D.J. Yeast Cellular Stress: Impacts on Bioethanol Production. Fermentation 2020, 6, 109. [Google Scholar] [CrossRef]
- Varize, C.S.; Bücker, A.; Lopes, L.D.; Christofoleti-Furlan, R.M.; Raposo, M.S.; Basso, L.C.; Stambuk, B.U. Increasing Ethanol Tolerance and Ethanol Production in an Industrial Fuel Ethanol Saccharomyces Cerevisiae Strain. Fermentation 2022, 8, 470. [Google Scholar] [CrossRef]
- Jona, G.; Choder, M.; Gileadi, O. Glucose Starvation Induces a Drastic Reduction in the Rates of Both Transcription and Degradation of MRNA in Yeast. Biochim. Biophys. Acta—Gene Struct. Expr. 2000, 1491, 37–48. [Google Scholar] [CrossRef]
- Ekberg, J.; Rautio, J.; Mattinen, L.; Vidgren, V.; Londesborough, J.; Gibson, B.R. Adaptive Evolution of the Lager Brewing Yeast Saccharomyces pastorianus for Improved Growth under Hyperosmotic Conditions and Its Influence on Fermentation Performance. FEMS Yeast Res. 2013, 13, 335–349. [Google Scholar] [CrossRef]
- Guan, Y.; Xu, X.; Liu, C.; Wang, J.; Niu, C.; Zheng, F.; Li, Q. Evaluating the Physiology and Fermentation Performance of the Lager Yeast during Very High Gravity Brewing with Increased Temperature. LWT 2023, 173, 114312. [Google Scholar] [CrossRef]
- Hickman, M.J.; Winston, F. Heme Levels Switch the Function of Hap1 of Saccharomyces Cerevisiae between Transcriptional Activator and Transcriptional Repressor. Mol. Cell. Biol. 2007, 27, 7414–7424. [Google Scholar] [CrossRef]
- Botstein, D.; Fink, G.R. Yeast: An Experimental Organism for 21st Century Biology. Genetics 2011, 189, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.A. Bioprocess Engineering Principles; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Stanbury, P.F.; Whitaker, A.; Hall, S.J. Principles of Fermentation Technology, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 2016. [Google Scholar]
- James, J.; Fiji, N.; Roy, D.; Andrew Mg, D.; Shihabudeen, M.S.; Chattopadhyay, D.; Thirumurugan, K. A Rapid Method to Assess Reactive Oxygen Species in Yeast Using H2DCF-DA. Anal. Methods 2015, 7, 8572–8575. [Google Scholar] [CrossRef]
- Broach, J.R. Nutritional Control of Growth and Development in Yeast. Genetics 2012, 192, 73–105. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, J.; Singh, S.; Nain, L. Thermotolerant Fermenting Yeasts for Simultaneous Saccharification Fermentation of Lignocellulosic Biomass. Electron. J. Biotechnol. 2016, 21, 82–92. [Google Scholar] [CrossRef]
- Harvey, H.J.; Hendry, A.C.; Chirico, M.; Archer, D.B.; Avery, S.V. Adaptation to Sorbic Acid in Low Sugar Promotes Resistance of Yeast to the Preservative. Heliyon 2023, 9, e22057. [Google Scholar] [CrossRef]
- Caspeta, L.; Chen, Y.; Nielsen, J. Thermotolerant Yeasts Selected by Adaptive Evolution Express Heat Stress Response at 30 °C. Sci. Rep. 2016, 6, 27003. [Google Scholar] [CrossRef]
- Gibney, P.A.; Schieler, A.; Chen, J.C.; Rabinowitz, J.D.; Botstein, D. Characterizing the in Vivo Role of Trehalose in Saccharomyces Cerevisiae Using the AGT1 Transporter. Proc. Natl. Acad. Sci. USA 2015, 112, 6116–6121. [Google Scholar] [CrossRef]
- Gouka, L.; Vogels, C.; Hansen, L.H.; Raaijmakers, J.M.; Cordovez, V. Genetic, Phenotypic and Metabolic Diversity of Yeasts From Wheat Flag Leaves. Front. Plant Sci. 2022, 13, 908628. [Google Scholar] [CrossRef]
- Reis, V.R.; Bassi, A.P.G.; da Silva, J.C.G.; Ceccato-Antonini, S.R. Characteristics of Saccharomyces Cerevisiae Yeasts Exhibiting Rough Colonies and Pseudohyphal Morphology with Respect to Alcoholic Fermentation. Braz. J. Microbiol. 2013, 44, 1121–1131. [Google Scholar] [CrossRef]
- Seguinot, P.; Ortiz-Julien, A.; Camarasa, C. Impact of Nutrient Availability on the Fermentation and Production of Aroma Compounds Under Sequential Inoculation With M. Pulcherrima and S. Cerevisiae. Front. Microbiol. 2020, 11, 305. [Google Scholar] [CrossRef]
- Joannis-Cassan, C.; Riess, J.; Jolibert, F.; Taillandier, P. Optimization of Very High Gravity Fermentation Process for Ethanol Production from Industrial Sugar Beet Syrup. Biomass Bioenergy 2014, 70, 165–173. [Google Scholar] [CrossRef]
- Conrad, M.; Schothorst, J.; Kankipati, H.N.; Van Zeebroeck, G.; Rubio-Texeira, M.; Thevelein, J.M. Nutrient Sensing and Signaling in the Yeast Saccharomyces Cerevisiae. FEMS Microbiol. Rev. 2014, 38, 254–299. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Roy, A.; Jouandot, D.; Cho, K.H. The Glucose Signaling Network in Yeast. Biochim. Biophys. Acta—Gen. Subj. 2013, 1830, 5204–5210. [Google Scholar] [CrossRef] [PubMed]
- Overal, G.B.; Teusink, B.; Bruggeman, F.J.; Hulshof, J.; Planqué, R. Understanding Start-up Problems in Yeast Glycolysis. Math. Biosci. 2018, 299, 117–126. [Google Scholar] [CrossRef]
- Vega, M.; Riera, A.; Fernández-Cid, A.; Herrero, P.; Moreno, F. Hexokinase 2 Is an Intracellular Glucose Sensor of Yeast Cells That Maintains the Structure and Activity of Mig1 Protein Repressor Complex. J. Biol. Chem. 2016, 291, 7267–7285. [Google Scholar] [CrossRef]
- Diezemann, A.; Boles, E. Functional Characterization of the Frt1 Sugar Transporter and of Fructose Uptake in Kluyveromyces Lactis. Curr. Genet. 2003, 43, 281–288. [Google Scholar] [CrossRef]
- Shen, D.; He, X.; Weng, P.; Liu, Y.; Wu, Z. A Review of Yeast: High Cell-Density Culture, Molecular Mechanisms of Stress Response and Tolerance during Fermentation. FEMS Yeast Res. 2022, 22, foac050. [Google Scholar] [CrossRef]
- Chen, A.; Gibney, P.A. Intracellular Trehalose Accumulation via the Agt1 Transporter Promotes Freeze–Thaw Tolerance in Saccharomyces Cerevisiae. J. Appl. Microbiol. 2022, 133, 2390–2402. [Google Scholar] [CrossRef]
- Chen, A.; Vargas-Smith, J.; Tapia, H.; Gibney, P.A. Characterizing Phenotypic Diversity of Trehalose Biosynthesis Mutants in Multiple Wild Strains of Saccharomyces Cerevisiae. G3 Genes Genomes Genet. 2022, 12, jkac196. [Google Scholar] [CrossRef]
- Salas-Navarrete, P.C.; Rosas-Santiago, P.; Suárez-Rodríguez, R.; Martínez, A.; Caspeta, L. Adaptive Responses of Yeast Strains Tolerant to Acidic PH, Acetate, and Supraoptimal Temperature. Appl. Microbiol. Biotechnol. 2023, 107, 4051–4068. [Google Scholar] [CrossRef]
- Mohd Azhar, S.H.; Abdulla, R.; Jambo, S.A.; Marbawi, H.; Gansau, J.A.; Mohd Faik, A.A.; Rodrigues, K.F. Yeasts in Sustainable Bioethanol Production: A Review. Biochem. Biophys. Rep. 2017, 10, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Meier, F.; Blount, B.A.; Pretorius, I.S.; Ellis, T.; Paulsen, I.T.; Williams, T.C. Trimming the Genomic Fat: Minimising and Re-Functionalising Genomes Using Synthetic Biology. Nat. Commun. 2023, 14, 1984. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Choe, D.; Cho, S.; Palsson, B.; Cho, B.K. Reduction-to-Synthesis: The Dominant Approach to Genome-Scale Synthetic Biology. Trends Biotechnol. 2024, 42, 1048–1063. [Google Scholar] [CrossRef] [PubMed]
Strain * | Description |
---|---|
ACY8 | Wyeast Laboratories-London ale |
ACY19 | Wyeast Laboratories-Dry white/sparking |
ACY21 | Wyeast Laboratories-Belgian style ale |
ACY29 | Wyeast Laboratories-Sweet mead |
ACY30 | Wyeast Laboratories-Belgian high gravity |
ACY31 | Wyeast Laboratories-Belgian abbey style ale II |
ACY34 | Wyeast Laboratories-Scottish ale |
ACY35 | Wyeast Laboratories-Kolsch |
ACY81 | Wyeast Laboratories-Belgian witbier |
ACY82 | Wyeast Laboratories-American ale |
ACY84 | Wyeast Laboratories-Irish ale |
ACY283 | S288C (prototrophic HAP1+ derivative of FY4) |
Strain | Fermentation Profile | ||
---|---|---|---|
Average Glucose Consumption Rate (g/L/h) | Average Ethanol Production Rate (g/L/h) | pH Change (pHinitial − pHfinal) | |
ACY8 | 1.133 ± 0.078 | 0.120 ± 0.004 | −0.054 ± 0.001 |
ACY19 | 1.215 ± 0.013 | 0.142 ± 0.003 | −0.041 ± 0.001 |
ACY21 | 1.211 ± 0.019 | 0.114 ± 0.007 | −0.032 ± 0.003 |
ACY29 | 1.233 ± 0.033 | 0.108 ± 0.003 | −0.018 ± 0.040 |
ACY30 | 1.193 ± 0.017 | 0.106 ± 0.006 | −0.016 ± 0.012 |
ACY31 | 1.185 ± 0.046 | 0.128 ± 0.015 | 0.009 ± 0.018 |
ACY34 | 1.604 ± 0.028 | 0.263 ± 0.006 | −0.019 ± 0.006 |
ACY35 | 1.156 ± 0.022 | 0.173 ± 0.008 | −0.048 ± 0.004 |
ACY81 | 1.178 ± 0.011 | 0.057 ± 0.018 | −0.046 ± 0.001 |
ACY82 | 1.159 ± 0.017 | 0.052 ± 0.008 | −0.046 ± 0.000 |
ACY84 | 1.115 ± 0.023 | 0.233 ± 0.001 | −0.020 ± 0.001 |
ACY283 | 0.658 ± 0.002 | 0.091 ± 0.006 | −0.010 ± 0.003 |
Strain | Doubling Time | |||||||
---|---|---|---|---|---|---|---|---|
YP + 2% Glucose | YP + 2% Fructose | YP + 2% Galactose | YP + 2% Maltose | YP + 2% Trehalose | YP + 2% Sucrose | YP + 2% Raffinose | AVERAGE * (Normalized Growth Score) | |
ACY8 | 0.70 ± 0.13 | 0.00 ± 0.14 | 0.70 ± 0.16 | 0.99 ± 0.07 | 1.00 ± 0.11 | 0.95 ± 0.15 | 0.84 ± 0.21 | 0.862 |
ACY19 | 0.36 ± 0.17 | 0.89 ± 0.03 | 0.35 ± 0.04 | 0.96 ± 0.05 | 0.07 ± 0.16 | 0.96 ± 0.18 | 0.45 ± 0.20 | 0.674 |
ACY21 | 0.34 ± 0.13 | 1.00 ± 0.03 | 0.55 ± 0.05 | 0.89 ± 0.05 | 0.06 ± 0.18 | 0.95 ± 0.21 | 0.74 ± 0.19 | 0.753 |
ACY29 | 0.71 ± 0.08 | 0.98 ± 0.03 | 0.62 ± 0.05 | 1.00 ± 0.04 | 0.55 ± 0.16 | 0.93 ± 0.22 | 0.68 ± 0.17 | 0.912 |
ACY30 | 0.61 ± 0.06 | 0.39 ± 0.04 | 0.79 ± 0.05 | 0.81 ± 0.05 | 0.20 ± 0.07 | 0.38 ± 0.22 | 0.94 ± 0.19 | 0.685 |
ACY31 | 0.89 ± 0.05 | 0.38 ± 0.03 | 0.93 ± 0.05 | 0.90 ± 0.05 | 0.00 ± 0.03 | 0.00 ± 0.22 | 0.86 ± 0.20 | 0.660 |
ACY34 | 0.00 ± 0.04 | 0.13 ± 0.04 | 0.17 ± 0.05 | 0.85 ± 0.05 | 0.77 ± 0.05 | 0.39 ± 0.20 | 0.85 ± 0.20 | 0.527 |
ACY35 | 0.91 ± 0.04 | 0.11 ± 0.04 | 0.72 ± 0.05 | 0.60 ± 0.04 | 0.66 ± 0.06 | 0.35 ± 0.22 | 0.00 ± 0.17 | 0.559 |
ACY81 | 0.14 ± 0.03 | 0.00 ± 0.04 | 0.00 ± 0.05 | 0.74 ± 0.05 | 0.42 ± 0.08 | 0.36 ± 0.23 | 0.48 ± 0.18 | 0.357 |
ACY82 | 1.00 ± 0.03 | 0.6 ± 0.04 | 1.00 ± 0.05 | 0.00 ± 0.05 | 0.19 ± 0.10 | 0.64 ± 0.21 | 0.44 ± 0.16 | 0.645 |
ACY84 | 0.83 ± 0.03 | 0.17 ± 0.04 | 0.13 ± 0.05 | 0.90 ± 0.06 | 1.00 ± 0.12 | 0.71 ± 0.22 | 1.00 ± 0.15 | 0.790 |
ACY283 | 0.79 ± 0.24 | 1.00 ± 0.04 | 0.63 ± 0.31 | 0.98 ± 0.21 | 0.58 ± 0.24 | 1.00 ± 0.14 | 0.80 ± 0.16 | 0.961 |
Strain | Doubling Time (Hour) | Maximum OD600 | Time Before Enters Log Phase (Hour) | Scoring * (Normalized) | Overall Scoring | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Osmotic Stress | Cold Stress | Acid Stress | Ethanol Stress | Osmotic Stress | Cold Stress | Acid Stress | Ethanol Stress | Osmotic Stress | Cold Stress | Acid Stress | Ethanol Stress | Osmotic Stress | Cold Stress | Acid Stress | Ethanol Stress | ||
ACY8 | 1.87 ± 0.10 | 1.71 ± 0.04 | 4.81 ± 0.08 | 6.48 ± 0.01 | 1.59 ± 0.07 | 2.35 ± 0.01 | 1.40 ± 0.04 | 2.02 ± 0.02 | 7.5 ± 0.13 | 27.0 ± 0.06 | 8.0 ± 0.11 | 35 ± 0.12 | 0.608 | 0.824 | 0.584 | 0.830 | 0.645 |
ACY19 | 2.12 ± 0.09 | 1.94 ± 0.04 | 2.67 ± 0.07 | 4.34 ± 0.02 | 1.88 ± 0.06 | 2.48 ± 0.02 | 2.20 ± 0.04 | 2.09 ± 0.03 | 5.5 ± 0.13 | 9.0 ± 0.07 | 5.0 ± 0.11 | 28 ± 0.12 | 0.727 | 0.968 | 0.934 | 0.982 | 0.790 |
ACY21 | 2.68 ± 0.11 | 5.70 ± 0.06 | 4.10 ± 0.09 | 4.14 ± 0.03 | 1.68 ± 0.07 | 1.61 ± 0.03 | 1.79 ± 0.05 | 0.86 ± 0.04 | 7.0 ± 0.14 | 37.0 ± 0.08 | 6.0 ± 0.12 | 27 ± 0.15 | 0.451 | 0.491 | 0.731 | 0.752 | 0.605 |
ACY29 | 2.05 ± 0.11 | 2.28 ± 0.07 | 3.78 ± 0.09 | 4.84 ± 0.05 | 1.84 ± 0.07 | 1.90 ± 0.04 | 1.48 ± 0.05 | 1.58 ± 0.06 | 10.0 ± 0.14 | 24.0 ± 0.10 | 7.5 ± 0.12 | 32 ± 0.21 | 0.524 | 0.763 | 0.692 | 0.813 | 0.711 |
ACY30 | 2.14 ± 0.10 | 11.39 ± 0.10 | 4.00 ± 0.09 | 10.87 ± 0.08 | 1.65 ± 0.07 | 0.24 ± 0.07 | 1.90 ± 0.05 | 0.80 ± 0.08 | 11.0 ± 0.14 | 48.0 ± 0.13 | 7.0 ± 0.13 | 48 ± 0.32 | 0.396 | 0.000 | 0.748 | 0.318 | 0.402 |
ACY31 | 2.21 ± 0.11 | 1.86 ± 0.12 | 4.20 ± 0.09 | 9.07 ± 0.10 | 2.56 ± 0.08 | 2.48 ± 0.09 | 1.76 ± 0.05 | 0.80 ± 0.11 | 10.0 ± 0.14 | 23.0 ± 0.16 | 7.0 ± 0.19 | 48 ± 0.17 | 0.705 | 0.865 | 0.707 | 0.350 | 0.672 |
ACY34 | 2.40 ± 0.12 | 3.19 ± 0.15 | 7.28 ± 0.10 | 4.88 ± 0.13 | 1.78 ± 0.08 | 2.17 ± 0.11 | 1.64 ± 0.06 | 1.32 ± 0.13 | 11.0 ± 0.15 | 32.0 ± 0.19 | 17.0 ± 0.06 | 35 ± 0.55 | 0.369 | 0.703 | 0.325 | 0.716 | 0.474 |
ACY35 | 3.02 ± 0.12 | 2.10 ± 0.17 | 5.05 ± 0.10 | 5.51 ± 0.15 | 1.59 ± 0.09 | 1.79 ± 0.13 | 1.75 ± 0.07 | 1.23 ± 0.15 | 12.0 ± 0.16 | 36.0 ± 0.21 | 7.0 ± 0.07 | 37 ± 0.72 | 0.108 | 0.666 | 0.632 | 0.658 | 0.529 |
ACY81 | 2.30 ± 0.14 | 1.89 ± 0.17 | 4.80 ± 0.12 | 26.46 ± 0.16 | 1.95 ± 0.10 | 2.09 ± 0.13 | 2.09 ± 0.08 | 0.61 ± 0.16 | 8.5 ± 0.17 | 8.0 ± 0.21 | 6.0 ± 0.09 | 38 ± 0.21 | 0.562 | 0.924 | 0.721 | 0.143 | 0.614 |
ACY82 | 3.44 ± 0.16 | 1.31± 0.15 | 5.93 ± 0.15 | 19.23 ± 0.16 | 2.09 ± 0.12 | 1.56 ± 0.12 | 1.71 ± 0.10 | 0.61 ± 0.14 | 12.0 ± 0.20 | 33.5 ± 0.19 | 8.0 ± 0.12 | 48 ± 0.31 | 0.155 | 0.686 | 0.539 | 0.130 | 0.278 |
ACY84 | 2.32 ± 0.15 | 1.88 ± 0.13 | 3.19 ± 0.14 | 4.86 ± 0.14 | 1.78 ± 0.11 | 2.08 ± 0.10 | 0.82 ± 0.09 | 1.30 ± 0.12 | 11.5 ± 0.19 | 28.0 ± 0.17 | 36.5 ± 0.45 | 38 ± 0.44 | 0.367 | 0.773 | 0.355 | 0.284 | 0.472 |
ACY283 | 2.38 ± 0.31 | 2.18 ± 0.02 | 3.26 ± 0.12 | 8.31 ± 0.12 | 1.89 ± 0.02 | 2.13 ± 0.12 | 2.59 ± 0.19 | 1.28 ± 0.05 | 7.0 ± 0.25 | 34.0 ± 0.19 | 5.0 ± 0.48 | 36 ± 0.35 | 0.594 | 0.723 | 0.948 | 0.633 | 0.769 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, A.; Si, Q.; Xu, Q.; Pan, C.; Qu, T.; Chen, J. Evaluation of Stress Tolerance and Fermentation Performance in Commercial Yeast Strains for Industrial Applications. Foods 2025, 14, 142. https://doi.org/10.3390/foods14010142
Chen A, Si Q, Xu Q, Pan C, Qu T, Chen J. Evaluation of Stress Tolerance and Fermentation Performance in Commercial Yeast Strains for Industrial Applications. Foods. 2025; 14(1):142. https://doi.org/10.3390/foods14010142
Chicago/Turabian StyleChen, Anqi, Qiqi Si, Qingyun Xu, Chenwei Pan, Tianzhi Qu, and Jian Chen. 2025. "Evaluation of Stress Tolerance and Fermentation Performance in Commercial Yeast Strains for Industrial Applications" Foods 14, no. 1: 142. https://doi.org/10.3390/foods14010142
APA StyleChen, A., Si, Q., Xu, Q., Pan, C., Qu, T., & Chen, J. (2025). Evaluation of Stress Tolerance and Fermentation Performance in Commercial Yeast Strains for Industrial Applications. Foods, 14(1), 142. https://doi.org/10.3390/foods14010142