Effects of Different Sulfur Dioxide Pads on Botrytis Mold in ‘Italia’ Table Grapes under Cold Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Treatments
2.3. Packaging of the Grapes
2.4. Cooling System
2.5. Incidence Analysis of Gray Mold
2.6. Physical Analysis
2.7. Chemical Analysis
2.8. Statistical Analysis
3. Results
3.1. Gray Mold Incidence (%)
3.2. Physical Analysis
3.3. Chemical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kishino, A.Y.; Carvalho, S.L.C.; Roberto, S.R. Viticultura Tropical: O Sistema de Produção do Paraná; IAPAR: Londrina, Brazil, 2007; pp. 117–140. ISBN 978-85-881-8428-2. [Google Scholar]
- Smilanick, J.L.; Brown, G.E.; Eckert, J.W. The biology and control of post-harvest diseases. In Fresh Citrus Fruits, 2nd ed.; Wardowski, W.F., Miller, W.M., Hall, D.J., Grierson, W., Eds.; Florida Science Source Inc.: Longboat Key, FL, USA, 2006; pp. 339–396. [Google Scholar]
- Ladaniya, M.S. Citrus Fruit: Biology, Technology and Evaluation; Academic Press: San Diego, CA, USA; Elsevier Inc.: Atlanta, GA, USA, 2008; pp. 1–10. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Mitchell, F.G. Postharvest handling systems: Small fruits (Table grapes). In Postharvest Technology of Horticulture Crops; Kader, A., Ed.; University of California, Agriculture and Natural Resources: Oakland, CA, USA, 2002; pp. 357–363. [Google Scholar]
- Elad, Y.; Vivier, M.; Fillinger, S. Botrytis: The good, the bad and the ugly. In Botrytis—The Fungus, the Pathogen and Its Management in Agricultural Systems; Fillinger, S., Elad, Y., Vivier, M., Eds.; Springer: Heidelberg, Germany, 2015; pp. 1–15. ISBN 978-3-319-23371-0. [Google Scholar]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Droby, S.; Lichter, A. Post-harvest botrytis infection: Etiology development and management. In Botrytis: Biology, Pathology and Control; Elad, Y., Williamson, B., Tudzynski, P., Delen, N., Eds.; Kluwer Academic Publishers: London, UK, 2004; pp. 349–367. [Google Scholar]
- Luvisi, D.; Shorey, H.; Smilanick, J.; Thompson, J.; Gump, B.; Knutson, J. Sulfur Dioxide Fumigation of Table Grapes; University of California: Oakland, CA, USA, 1932; p. 22. [Google Scholar]
- Chervin, C.; Aked, J.; Crisosto, C.H. Grapes. In Crop Post-Harvest: Science and Technology; Rees, D., Farrell, G., Orchard, J., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2012; pp. 187–211. [Google Scholar]
- Michailides, T.J.; Elmer, P.A.G. Botrytis gray mold of kiwifruit caused by Botrytis cinerea in the United States and New Zealand. Plant Dis. 2000, 84, 208–223. [Google Scholar] [CrossRef]
- Romanazzi, G.; Lichter, A.; Gabler, F.M.; Smilanick, J.L. Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biol. Technol. 2012, 63, 141–147. [Google Scholar] [CrossRef]
- Teles, C.S.; Benedetti, B.C.; Gubler, W.D.; Crisosto, C.H. Pre-storage application of high carbon dioxide combined with controlled atmosphere storage as a dual approach to control Botrytis cinerea in organic ‘Flame Seedless’ and ‘Crimson Seedless’ table grapes. Postharvest Biol. Technol. 2014, 89, 32–39. [Google Scholar] [CrossRef]
- Melgarejo-Flores, B.G.; Ortega-Ramírez, L.A.; Silva-Espinoza, B.A.; González-Aguilar, G.A.; Miranda, M.R.A.; Ayala-Zavala, J.F. Antifungal protection and antioxidant enhancement of table grapes treated with emulsions, vapors, and coatings of cinnamon leaf oil. Postharvest Biol. Technol. 2013, 86, 321–328. [Google Scholar] [CrossRef]
- Mustonen, H.M. The efficacy of a range of sulfur dioxide generating pads against Botrytis cincerea infection & on out-turns quality of ‘Calmeria’ table grapes. Aust. J. Exp. Agric. 1992, 32, 389–393. [Google Scholar] [CrossRef]
- Zutahy, Y.; Lichter, A.; Kaplunov, T.; Lurie, S. Extended storage of ‘Red Globe’ grapes in modified SO2 generating pads. Postharvest Biol. Technol. 2008, 50, 12–17. [Google Scholar] [CrossRef]
- Youssef, K.; Roberto, S.R. Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of ‘Italia’ table grapes. Postharvest Biol. Technol. 2014, 87, 95–102. [Google Scholar] [CrossRef]
- Mattiuz, B.; Miguel, A.C.A.; Galati, V.C.; Nachtigal, J.C. Efeito da temperatura no armazenamento de uvas apirênicas minimamente processadas. Revista Brasileira de Fruticultura 2009, 31, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Lijavetzky, D.; Carbonell-Bejerano, P.; Grimplet, J.; Bravo, G.; Flores, P.; Fenoll, J.; Hellín, P.; Oliveros, J.C.; Martínez-Zapater, J.M. Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling. PLoS ONE 2012, 7, e39547. [Google Scholar] [CrossRef]
- Ngcobo, M.E.K.; Delele, M.A.; Opara, U.L.; Meyer, C.J. Performance of multi-packing for table grapes based on airflow, cooling rates and fruit quality. J. Food Eng. 2013, 116, 613–621. [Google Scholar] [CrossRef]
- Mcguire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar]
- Lancaster, J.E.; Lister, C.; Reay, P.F.; Triggs, C.M. Influence of pigment composition on skin color in a wide range of fruits and vegetables. Am. Soc. Hortic. Sci. 1997, 122, 594–598. [Google Scholar]
- Peppi, M.C.; Fidelibus, M.W.; Dokoozlian, N. Abscisic acid application timing and concentration affect firmness, pigmentation and color of ‘Flame Seedless’ grapes. HortScience 2006, 41, 1440–1445. [Google Scholar]
- Youssef, K.; Roberto, S.R. Salt strategies to control Botrytis mold of ‘Benitaka’ table grapes and to maintain fruit quality during storage. Postharvest Biol. Technol. 2014, 95, 95–102. [Google Scholar] [CrossRef]
- Cappellini, R.A.; Ceponis, M.J.; Lightner, G.W. Disorders in table grapes shipments to the New York market, 1972–1984. Plant Dis. 1986, 70, 1075–1079. [Google Scholar] [CrossRef]
- Gubler, W.D.; Marois, J.J.; Bledsoe, A.M.; Bettiga, L.J. Control of Botrytis bunch rot of grape with canopy management. Plant Dis. 1987, 71, 599–601. [Google Scholar] [CrossRef]
- Palou, L.; Crisosto, C.H.; Garner, D.; Basinal, L.M.; Smilanick, J.L.; Zoffoli, J.P. Minimum constant sulfur dioxide emission rates to control gray mold of cold stored table grapes. Am. J. Enol. Vitic. 2002, 52, 110–115. [Google Scholar]
- Harindra, C.W.A. Pre and postharvest practices for quality improvement of table grapes (Vitis vinifera L.). J. Natl. Sci. Found. Sri Lanka 2015, 43, 3–9. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Smilanick, J.L.; Dokoozlian, N.K.; Luvisi, D.A. Maintaining table grape post-harvest quality for long distant markets. In Proceedings of the International Symposium on Table Grape Production, Anaheim, CA, USA, 28–29 June 1994; American Society for Enology and Viticulture, University of California: Davis, CA, USA, 1994; pp. 195–199. [Google Scholar]
- Crisosto, C.H.; Smilanick, J.L.; Dokoozlian, N.K. Table grapes suffer water loss, stem browning during cooling delays. Calif. Agric. 2001, 55, 39–42. [Google Scholar] [CrossRef] [Green Version]
- Lichter, A.; Zutahy, Y.; Kaplunov, T.; Lurie, S. Evaluation of table grape storage in boxes with sulfur dioxide releasing pads with either an internal plastic liner or external wrap. HortTechnology 2008, 18, 206–214. [Google Scholar]
- Opara, U.L. From Hand Holes to Vent Holes: What’s Next in Innovative Horticultural Packaging? Stellenbosch University: Stellenbosch, South Africa, 2011; 24p. [Google Scholar]
- Youssef, K.; Roberto, S.R.; Chiarotti, F.; Koyama, R.; Hussain, I.; De Souza, R.T. Control of Botrytis mold of the new seedless grape ‘BRS Vitoria’ during cold storage. Sci. Hortic. 2015, 193, 316–321. [Google Scholar] [CrossRef]
Treatments | Mass Loss (%) | Firmness (N) | Mass Loss (%) | Firmness (N) |
---|---|---|---|---|
At 50 Days of Cold Storage | At 7 Days of Storage at Room Temperature | |||
Control | 2.4 | 8.2 | 1.5 | 12.5 ab |
SO2 SLP | 4.2 | 7.3 | 1.1 | 13.8 a |
SO2 DRP | 1.4 | 7.9 | 0.8 | 11.0 ab |
SO2 DRP-FR | 1.4 | 7.8 | 0.9 | 10.0 ab |
SO2 SLP inoculated | 2.0 | 7.9 | 0.9 | 9.8 ab |
SO2 DRP inoculated | 1.6 | 8.6 | 2.7 | 10.6 ab |
SO2 DRP-FR inoculated | 2.1 | 7.0 | 0.5 | 9.0 b |
F value | 0.7 ns | 1.2 ns | 1.7 ns | 2.8 * |
Treatments | Shattered Berries (%) | Stem Browning Scores a | Shattered Berries (%) | Stem Browning Scores a |
---|---|---|---|---|
At 50 Days of Cold Storage | At 7 Days of Storage at Room Temperature | |||
Control | 0.2 | 1.6 a | 0.5 | 2.5 |
SO2 SLP | 0.5 | 1.3 ab | 0.7 | 2.1 |
SO2 DRP | 0.3 | 1.1 b | 1.9 | 2.2 |
SO2 DRP-FR | 0.1 | 1.1 b | 0.9 | 2.0 |
SO2 SLP inoculated | 0.4 | 1.4 ab | 1.2 | 2.4 |
SO2 DRP inoculated | 0.0 | 1.0 b | 0.5 | 2.1 |
SO2 DRP-FR inoculated | 0.1 | 1.1 b | 0.5 | 2.0 |
F value | 0.7 ns | 2.7 * | 2.1 ns | 3.1 ns |
Treatments | L* | C* | h° | L* | C* | h° |
---|---|---|---|---|---|---|
At 50 Days of Cold Storage | At 7 Days of Storage at Room Temperature | |||||
Control | 30.4 | 12.0 | 119.9 | 31.7 | 12.0 | 113.5 |
SO2 SLP | 31.8 | 13.1 | 107.2 | 31.7 | 12.5 | 114.0 |
SO2 DRP | 31.3 | 11.9 | 113.1 | 31.5 | 12.0 | 114.9 |
SO2 DRP-FR | 31.5 | 12.5 | 116.8 | 31.8 | 12.3 | 116.0 |
SO2 SLP inoculated | 31.4 | 12.7 | 115.1 | 30.8 | 12.3 | 115.3 |
SO2 DRP inoculated | 31.4 | 13.1 | 118.6 | 31.3 | 12.4 | 116.6 |
SO2 DRP-FR inoculated | 31.0 | 12.4 | 115.3 | 30.7 | 11.9 | 113.3 |
F value | 2.4 ns | 2.4 ns | 1.8 ns | 1.3 ns | 0.3 ns | 2.3 ns |
Treatments | Soluble Solids SS (°Brix) | Titratable Acidity TA (%) | SS/TA | Soluble Solids SS (°Brix) | Titratable Acidity TA (%) | SS/TA |
---|---|---|---|---|---|---|
At 50 Days of Cold Storage | At 7 Days of Storage at Room Temperature | |||||
Control | 13.1 | 1.1 | 12.1 | 13.3 | 1.0 | 13.6 |
SO2 SLP | 14.0 | 1.1 | 13.1 | 13.6 | 1.0 | 15.0 |
SO2 DRP | 13.7 | 1.0 | 13.7 | 13.6 | 1.0 | 13.4 |
SO2 DRP-FR | 13.3 | 1.1 | 12.2 | 13.2 | 1.0 | 13.1 |
SO2 SLP inoculated | 13.5 | 1.0 | 13.0 | 13.5 | 1.1 | 12.8 |
SO2 DRP inoculated | 14.0 | 1.1 | 13.5 | 13.5 | 1.1 | 13.2 |
SO2 DRP-FR inoculated | 14.4 | 1.1 | 13.2 | 14.0 | 1.0 | 14.3 |
F value | 2.1 ns | 2.5 ns | 1.1 ns | 0.6 ns | 0.7 ns | 0.7 ns |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.; Roberto, S.R.; Domingues, A.R.; Shahab, M.; Junior, O.J.C.; Sumida, C.H.; De Souza, R.T. Effects of Different Sulfur Dioxide Pads on Botrytis Mold in ‘Italia’ Table Grapes under Cold Storage. Horticulturae 2018, 4, 29. https://doi.org/10.3390/horticulturae4040029
Ahmed S, Roberto SR, Domingues AR, Shahab M, Junior OJC, Sumida CH, De Souza RT. Effects of Different Sulfur Dioxide Pads on Botrytis Mold in ‘Italia’ Table Grapes under Cold Storage. Horticulturae. 2018; 4(4):29. https://doi.org/10.3390/horticulturae4040029
Chicago/Turabian StyleAhmed, Saeed, Sergio Ruffo Roberto, Allan Ricardo Domingues, Muhammad Shahab, Osmar José Chaves Junior, Ciro Hideki Sumida, and Reginaldo Teodoro De Souza. 2018. "Effects of Different Sulfur Dioxide Pads on Botrytis Mold in ‘Italia’ Table Grapes under Cold Storage" Horticulturae 4, no. 4: 29. https://doi.org/10.3390/horticulturae4040029
APA StyleAhmed, S., Roberto, S. R., Domingues, A. R., Shahab, M., Junior, O. J. C., Sumida, C. H., & De Souza, R. T. (2018). Effects of Different Sulfur Dioxide Pads on Botrytis Mold in ‘Italia’ Table Grapes under Cold Storage. Horticulturae, 4(4), 29. https://doi.org/10.3390/horticulturae4040029