Seasonal Characteristics of the Chemical Composition of Fine Particles in Residences of Nanjing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Sites
2.3. Water-Soluble Ions Analysis
2.4. Metallic Elements Analysis
2.5. Data Analysis
2.6. Health Risk Assessment
3. Results and Discussion
3.1. Seasonal Variations of PM2.5 and Chemical Composition
3.1.1. PM2.5 Concentrations
3.1.2. Water-Soluble Ions in PM2.5
3.1.3. Metallic Elements in PM2.5
3.2. Relationship of Indoor and Outdoor PM2.5 Chemical Composition
3.2.1. Water-Soluble Ions
3.2.2. Metallic Elements
3.3. Health Risk Assessment of Metallic Elements
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ministry of Ecology and Environment of the People’s Republic of China. Ecological Environment Status Bulletin in China; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018.
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F.J.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef]
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Arnold, C. Disease burdens associated with PM2.5 exposure: How a new model provided global estimates. Environ. Health Perspect. 2014, 122, A111. [Google Scholar] [CrossRef]
- Lin, H.; Liu, T.; Xiao, J.; Zeng, W.; Li, X.; Guo, L.; Xu, Y.; Zhang, Y.; Vaughn, M.G.; Nelson, E.J.; et al. Quantifying short-term and long-term health benefits of attaining ambient fine particulate pollution standards in Guangzhou, China. Atmos. Environ. 2016, 137, 38–44. [Google Scholar] [CrossRef]
- Fang, D.; Wang, Q.G.; Li, H.; Yu, Y.; Lu, Y.; Qian, X. Mortality effects assessment of ambient PM2.5 pollution in the 74 leading cities of China. Sci. Total Environ. 2016, 569, 1545–1552. [Google Scholar] [CrossRef]
- Atkinson, R.W.; Mills, I.C.; Walton, H.A.; Anderson, H.R. Fine particle components and health-a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.H.; Wang, H.; Yu, Y.J.; Gao, S.X.; Feng, J.F.; Gao, S.T.; Wang, L.S. Chemical characterization of water-soluble components of PM10 and PM2.5 atmospheric aerosols in five locations of Nanjing, China. Atmos. Environ. 2003, 37, 2893–2902. [Google Scholar] [CrossRef]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med Toxicol. Off. J. Am. Coll. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.-C.; Huang, Y.-L.; Huang, J.-H. Study of atmospheric metallic elements pollution in Asia during 2000–2007. J. Hazard. Mater. 2010, 180, 115–121. [Google Scholar] [CrossRef]
- Zheng, G.; Xu, X.; Li, B.; Wu, K.; Yekeen, T.A.; Huo, X. Association between lung function in school children and exposure to three transition metals from an e-waste recycling area. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Zhao, X.; Chen, J.; Gao, L.; Zhu, A.; Wang, Z.; Li, S.; Shan, J.; Long, Y.; Yan, C.; et al. Seasonal characteristics of chemical compositions and sources identification of PM2.5 in Zhuhai, China. Environ. Geochem. Health 2018. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, B.; Shen, L.; Xu, H.; An, J.; Xue, G.; Cao, J. Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China: Size-fractionated, seasonal variations and sources. Atmos. Environ. 2015, 123, 370–379. [Google Scholar] [CrossRef]
- He, Q.; Yan, Y.; Guo, L.; Zhang, Y.; Zhang, G.; Wang, X. Characterization and source analysis of water-soluble inorganic ionic species in PM2.5 in Taiyuan city, China. Atmos. Res. 2017, 184, 48–55. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, X.; Wang, Z.; Yang, L.; Wang, J.; Wang, W. Trace elements in PM2.5 in Shandong Province: Source identification and health risk assessment. Sci. Total Environ. 2018, 621, 558–577. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; He, S.; Chen, S.; Zhang, Y.; Wang, A.; Luo, J.; Ye, X.; Mo, Z.; Wu, L.; Xu, P.; et al. Spatiotemporal Characteristics and Health Risk Assessment of Heavy Metals in PM2.5 in Zhejiang Province. Int. J. Environ. Res. Public Health 2018, 15, 583. [Google Scholar] [CrossRef]
- Atkinson, R.W.; Carey, I.M.; Kent, A.J.; van Staa, T.P.; Anderson, H.R.; Cook, D.G. Long-term exposure to outdoor air pollution and incidence of cardiovascular diseases. Epidemiology 2013, 24, 44–53. [Google Scholar] [CrossRef]
- EPA. Exposure Factors Handbook; EPA/600/R-090/52F; Office of Research and Development: Washington, DC, USA, 2011.
- Jang, J.Y.; Jo, S.N.; Kim, S.J.; Cheong, H.K. Development of Korean Exposure Factors Handbook. Epidemiology 2008, 19, S214. [Google Scholar] [CrossRef] [PubMed]
- Duan, X. Exposure Factors Handbook of Chinese Population (Adults); China Environmental Science Press: Beijing, China, 2013. [Google Scholar]
- Ji, W.; Zhao, B. Contribution of outdoor-originating particles, indoor-emitted particles and indoor secondary organic aerosol (SOA) to residential indoor PM2.5 concentration: A model-based estimation. Build. Environ. 2015, 90, 196–205. [Google Scholar] [CrossRef]
- Avery, C.L.; Mills, K.T.; Williams, R.; McGraw, K.A.; Poole, C.; Smith, R.L.; Whitsel, E.A. Estimating error in using residential outdoor PM2.5 concentrations as proxies for personal exposures: A meta-analysis. Environ. Health Perspect. 2010, 118, 673–678. [Google Scholar] [CrossRef]
- Che, W.W.; Frey, H.C.; Lau, A.K.H. Comparison of sources of variability in school age children exposure to ambient PM2.5. Environ. Sci. Technol. 2015, 49, 1511–1520. [Google Scholar] [CrossRef]
- Kearney, J.; Wallace, L.; MacNeill, M.; Xu, X.; VanRyswyk, K.; You, H.; Kulka, R.; Wheeler, A.J. Residential indoor and outdoor ultrafine particles in Windsor, Ontario. Atmos. Environ. 2011, 45, 7583–7593. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, L.; Meng, C.; Yuan, Q.; Yan, C.; Dong, C.; Sui, X.; Yao, L.; Yang, F.; Lu, Y.; et al. Indoor/outdoor relationships and diurnal/nocturnal variations in water-soluble ion and PAH concentrations in the atmospheric PM2.5 of a business office area in Jinan, a heavily polluted city in China. Atmos. Res. 2015, 153, 276–285. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, S.; Xu, X.; Qiu, J.; Chen, M.; Wang, D.; Guan, D.; Wang, C.; Wang, X.; Dong, B.; et al. Metals compositions of indoor PM2.5, health risk assessment, and birth outcomes in Lanzhou, China. Environ. Monit. Assess. 2016, 188, 325. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, L.; Xu, C.; Li, N.; Liu, Z.; Wang, Q.; Xu, D. Source apportionment and influencing factor analysis of residential indoor PM2.5 in Beijing. Int. J. Environ. Res. Public Health 2018, 15, 686. [Google Scholar] [CrossRef] [PubMed]
- Bi, D.; Qiu, Y.; Cheng, H.; Zhou, Q.; Liu, X.; Chen, J.; Cui, X.; Liu, M.; Zhu, Z. Seasonal characteristics of indoor and outdoor fine particles and their metallic compositions in Nanjing, China. Build. Environ. 2018, 137, 118–126. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Liu, L.Y.; Guo, L.L.; Lv, Y.L.; Zhang, G.M.; Lei, J.; Liu, W.T.; Xiong, Y.Y.; Wen, H.M. Seasonal concentrations, contamination levels, and health risk assessment of arsenic and heavy metals in the suspended particulate matter from an urban household environment in a metropolitan city, Beijing, China. Environ. Monit. Assess. 2015, 187, 409. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Lei, T.; Jia, L.; Song, Y.; Lin, N.; Du, Y.; Feng, Y.; Zhang, Z.; Cui, F. Exposure and health risk assessment of PM2.5-bound trace metals during winter in university campus in Northeast China. Sci. Total Environ. 2017, 576, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhou, Y.; Meng, D.; Han, M.; Jia, C. Heavy metal characteristics and health risk assessment of PM2.5 in three residential homes during winter in Nanjing, China. Build. Environ. 2018, 143, 339–348. [Google Scholar] [CrossRef]
- Han, Y.; Li, X.; Zhu, T.; Lv, D.; Chen, Y.; Hou, L.A.; Zhang, Y.; Ren, M. Characteristics and relationships between indoor and outdoor PM2.5 in Beijing: A residential apartment case study. Aerosol Air Qual. Res. 2016, 16, 2386–2395. [Google Scholar] [CrossRef]
- Huang, H.; Lee, S.-C.; Cao, J.-J.; Zou, C.-W.; Chen, X.-G.; Fan, S.-J. Characteristics of indoor/outdoor PM2.5 and elemental components in generic urban, roadside and industrial plant areas of Guangzhou City, China. J. Environ. Sci. China 2007, 19, 35–43. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Yang, L.; Sui, X.; Yao, L.; Zheng, L.; Wen, L.; Xu, C.; Wang, W. Indoor PM2.5 and its chemical composition during a heavy haze-fog episode at Jinan, China. Atmos. Environ. 2014, 99, 641–649. [Google Scholar] [CrossRef]
- Nanjing Environmental Protection Agency. Nanjing Environmental Aspect Bulletin in 2016; Nanjing Environmental Protection Agency: Nanjing, China, 2017.
- Shao, Z.; Bi, J.; Ma, Z.; Wang, J. Seasonal trends of indoor fine particulate matter and its determinants in urban residences in Nanjing, China. Build. Environ. 2017, 125, 319–325. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund, Volume Ι: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); EPA-540-R-070-002; USEPA: Washington, DC, USA, 2009.
- USEPA. Regional Screening Leve (RSL) Resident Air Supporting Table. 2011. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 3 January 2019).
- Hieu, N.T.; Lee, B.-K. Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmos. Res. 2010, 98, 526–537. [Google Scholar] [CrossRef]
- Park, E.-J.; Kim, D.-S.; Park, K. Monitoring of ambient particles and heavy metals in a residential area of Seoul, Korea. Environ. Monit. Assess. 2008, 137, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Niu, H.; Liu, B.; Hu, X.; Ren, Z. The indoor-outdoor characteristics of water-soluble ion in PM2.5 in Tianjin wintertime. Environ. Sci. Pollut. Res. 2018, 25, 20985–20998. [Google Scholar] [CrossRef]
- Hassanvand, M.S.; Naddafi, K.; Faridi, S.; Arhami, M.; Nabizadeh, R.; Sowlat, M.H.; Pourpak, Z.; Rastkari, N.; Momeniha, F.; Kashani, H.; et al. Indoor/outdoor relationships of PM10, PM2.5, and PM1 mass concentrations and their water-soluble ions in a retirement home and a school dormitory. Atmos. Environ. 2014, 82, 375–382. [Google Scholar] [CrossRef]
- Wang, J.; Lai, S.; Ke, Z.; Zhang, Y.; Yin, S.; Zheng, J. Exposure assessment, chemical characterization and source identification of PM2.5 for school children and industrial downwind residents in Guangzhou, China. Environ. Geochem. Health 2014, 36, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Kulshrestha, A.; Bisht, D.S.; Masih, J.; Massey, D.; Tiwari, S.; Taneja, A. Chemical characterization of water-soluble aerosols in different residential environments of semi aridregion of India. J. Atmos. Chem. 2009, 62, 121–138. [Google Scholar] [CrossRef]
- Seguin, A.M.; Norman, A.-L.; Eaton, S.; Wadleigh, M. Seasonality in size segregated biogenic, anthropogenic and sea salt sulfate aerosols over the North Atlantic. Atmos. Environ. 2011, 45, 6947–6954. [Google Scholar] [CrossRef]
- Widory, D. Lead isotopes decipher multiple origins within single PM10 samples in the atmosphere of Paris. Isot. Environ. Health Stud. 2006, 42, 97–105. [Google Scholar] [CrossRef]
- Kristensen, L.J. Quantification of atmospheric lead emissions from 70 years of leaded petrol consumption in Australia. Atmos. Environ. 2015, 111, 195–201. [Google Scholar] [CrossRef]
- Massey, D.; Kulshrestha, A.; Masih, J.; Taneja, A. Seasonal trends of PM10, PM5.0, PM2.5 & PM1.0 in indoor and outdoor environments of residential homes located in North-Central India. Build. Environ. 2012, 47, 223–231. [Google Scholar]
- Madany, I.M.; Akhter, M.S.; Jowder, O.A.A. the correlations between heavy-metals in residential indoor dust and outdoor street dust in Bahrain. Environ. Int. 1994, 20, 483–492. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Z.W.; Cheng, H.R.; Lv, X.P.; Gong, W.; Wang, X.M.; Zhang, G. Seasonal variations and chemical characteristics of PM2.5 in Wuhan, central China. Sci. Total Environ. 2015, 518–519, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J. Air pollution and children’s health. Pediatrics 2004, 113, 1037–1043. [Google Scholar]
- Kurt-Karakus, P.B. Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environ. Int. 2012, 50, 47–55. [Google Scholar] [CrossRef]
- Zhang, N.; Han, B.; He, F.; Xu, J.; Niu, C.; Zhou, J.; Kong, S.; Bai, Z.; Xu, H. Characterization, health risk of heavy metals, and source apportionment of atmospheric PM2.5 to children in summer and winter: An exposure panel study in Tianjin, China. Air Qual. Atmos. Health 2015, 8, 347–357. [Google Scholar] [CrossRef]
- Kulshrestha, A.; Massey, D.D.; Masih, J.; Taneja, A. Source characterization of trace elements in indoor environments at urban, rural and roadside sites in a semi arid region of India. Aerosol Air Qual. Res. 2014, 14, 1738–1751. [Google Scholar] [CrossRef]
Variables | Spring N (%) | Summer N (%) | Autumn N (%) | Winter N (%) | |
---|---|---|---|---|---|
Building Height | Multi-story | 18 (52.9) | 16 (45.7) | 11 (55.0) | 20 (57.1) |
High-rise | 16 (47.1) | 19 (54.3) | 9 (45.0) | 15 (42.9) | |
Construction date | Before 1990 | 6 (17.6) | 6 (17.1) | 3 (15.0) | 5 (14.3) |
1991–2000 | 5 (14.7) | 4 (11.4) | 5 (25.0) | 9 (25.7) | |
2001–2010 | 5 (14.7) | 7 (20.0) | 5 (25.0) | 10 (28.6) | |
After 2011 | 18 (52.9) | 18 (51.4) | 7 (35.0) | 11 (31.4) | |
Floor area | <60 m2 | 5 (14.7) | 7 (20.0) | 3 (15.0) | 9 (25.7) |
60–90 m2 | 15 (44.1) | 13 (37.1) | 8 (40.0) | 16 (45.7) | |
90–120 m2 | 11 (32,4) | 12 (34.3) | 7 (35.0) | 6 (17.1) | |
>120 m2 | 3 (8.8) | 3 (8.6) | 2 (10.0) | 4 (11.4) | |
Building orientation | North-South | 21 (61.8) | 25 (71.4) | 12 (60.0) | 24 (68.6) |
Other | 13 (38.2) | 10 (28.6) | 8 (40.0) | 11 (31.4) | |
Distance to the main traffic Road | <100 m | 12 (35.3) | 16 (45.7) | 13 (65.0) | 15 (42.9) |
100–500 m | 13 (38.2) | 13 (37.1) | 5 (25.0) | 13 (37.1) | |
500–1000 m | 9 (26.5) | 6 (17.1) | 2 (10.0) | 6 (17.1) | |
Dwelling ownership | Owner | 28 (82.4) | 28 (80.0) | 13 (65.0) | 30 (85.7) |
Tenant | 6 (17.6) | 7 (20.0) | 7 (35.0) | 5 (14.3) | |
Number of occupants | ≤1 | 2(5.9) | 1 (2.90) | 1 (5.0) | 2 (5.7) |
2–3 | 15 (44.1) | 16 (45.7) | 6 (30.0) | 14 (40.0) | |
4–5 | 17 (50.0) | 17 (48.6) | 13 (65.0) | 18 (51.4) | |
≥6 | - | 1 (2.9) | - | 1 (2.9) |
Toxicity Parameters | Pb | Mn | Cu | Cr | As | Cd |
---|---|---|---|---|---|---|
IUR (μg/m3))−1 | 1.2 × 10−5 | - | - | 1.2 × 10−2 | 4.3 × 10−3 | 1.8 × 10−3 |
RfC (mg/m3) | - | 5.0 × 10−5 | - | 1.0 × 10−4 | 1.5 × 10−5 | 1.0 × 10−5 |
Ion | Spring | Summer | Autumn | Winter | ||||
---|---|---|---|---|---|---|---|---|
I/O | r | I/O | r | I/O | r | I/O | r | |
Cl− | 0.96 ± 1.04 | 0.88 b | 1.19 ± 0.57 | 0.60 b | 0.94 ± 0.18 | 0.68 a | 0.89 ± 0.22 | 0.46 a |
NO3− | 0.72 ± 0.51 | 0.69 b | 1.29 ± 0.57 | 0.61 b | 0.92 ± 0.35 | 0.68 a | 0.89 ± 0.50 | 0.62 b |
SO42− | 0.98 ± 0.15 | 0.71 b | 1.12 ± 0.66 | 0.60 b | 0.99 ± 0.32 | 0.66 a | 0.90 ± 0.39 | 0.61 a |
Na+ | 1.27 ± 1.29 | 0.80 b | 1.26 ± 0.91 | 0.50 a | 0.64 ± 0.51 | 0.22 | 4.67 ± 8.55 | 0.04 |
NH4+ | 0.66 ± 0.35 | 0.84 b | 3.05 ± 5.06 | 0.93 b | 0.55 ± 0.40 | 0.91 b | 1.45 ± 2.49 | 0.63 b |
K+ | 0.90 ± 0.97 | 0.65 b | 1.73 ± 2.64 | 0.56 a | 0.74 ± 0.38 | 0.89 b | 1.40 ± 1.94 | 0.09 |
Mg2+ | 0.87 ± 0.66 | 0.51 a | - | 0.06 | - | - | - | - |
Ca2+ | 1.85 ± 2.02 | 0.27 | - | 0.07 | 0.63 ± 0.40 | 0.80 c | 1.29 ± 1.29 | 0.02 |
Element | Spring | Summer | Autumn | Winter | ||||
---|---|---|---|---|---|---|---|---|
I/O | r | I/O | r | I/O | r | I/O | r | |
Pb | 0.90 ± 0.35 | 0.62 c | 1.07 ± 0.33 | 0.50 b | 0.92 ± 0.41 | 0.44 | 1.01 ± 0.50 | 0.58 c |
Mn | 0.55 ± 0.35 | 0.40 a | 1.26 ± 0.87 | 0.39 a | 0.84 ± 0.37 | 0.61 b | 1.34 ± 1.67 | 0.43 b |
Cu | 0.80 ± 0.55 | 0.62 c | 2.37 ± 5.43 | 0.28 | 0.86 ± 0.64 | 0.00 | 7.92 ± 23.37 | 0.21 |
Cr | 0.89 ± 0.43 | 0.20 | 2.65 ± 7.89 | 0.02 | 1.49 ± 1.02 | 0.49 a | 1.18 ± 0.82 | 0.08 |
As | 0.88 ± 0.48 | 0.78 c | 1.21 ± 0.55 | 0.82 c | 0.96 ± 0.55 | 0.42 | 1.01 ± 0.58 | 0.64 c |
Cd | 1.02 ± 0.62 | 0.65 c | 1.50 ± 1.14 | 0.57 c | 1.50 ± 1.64 | 0.66 c | 2.09 ± 3.01 | 0.50 b |
Metallic Elements | Indoor | Outdoor | ||||||
---|---|---|---|---|---|---|---|---|
Noncarcinogenic Risk (HQ) | Carcinogenic Risk (CR) | Noncarcinogenic Risk (HQ) | Carcinogenic Risk (CR) | |||||
Adult | Children | Adult | Children | Adult | Children | Adult | Children | |
Pb | - | - | 2.58× 10−6 | 6.44× 10−7 | - | - | 2.94 × 10−6 | 7.35 × 10−7 |
Mn | 1.15 | 1.15 | - | - | 1.30 | 1.30 | - | - |
Cr | 4.80 × 10−1 | 4.80 × 10−1 | 2.82 × 10−5 | 7.06 × 10−6 | 2.58 × 10−1 | 2.58 × 10−1 | 1.51 × 10−5 | 3.79 × 10−6 |
As | 4.69 × 10−1 | 4.69 × 10−1 | 1.04 × 10−5 | 2.59 × 10−6 | 5.31 × 10−1 | 5.31 × 10−1 | 1.18 × 10−5 | 2.94 × 10−6 |
Cd | 4.64 × 10−1 | 4.64 × 10−1 | 2.86 × 10−6 | 7.16 × 10−7 | 4.89 × 10−1 | 4.89 × 10−1 | 3.02 × 10−6 | 7.54 × 10−7 |
Total | 2.08 | 2.08 | 4.40 × 10−5 | 1.10 × 10−5 | 2.58 | 2.58 | 3.29 × 10−5 | 8.22 × 10−6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, G.; Bi, J.; Ma, Z.; Shao, Z.; Wang, J. Seasonal Characteristics of the Chemical Composition of Fine Particles in Residences of Nanjing, China. Int. J. Environ. Res. Public Health 2019, 16, 1066. https://doi.org/10.3390/ijerph16061066
Cao G, Bi J, Ma Z, Shao Z, Wang J. Seasonal Characteristics of the Chemical Composition of Fine Particles in Residences of Nanjing, China. International Journal of Environmental Research and Public Health. 2019; 16(6):1066. https://doi.org/10.3390/ijerph16061066
Chicago/Turabian StyleCao, Guozhi, Jun Bi, Zongwei Ma, Zhijuan Shao, and Jinnan Wang. 2019. "Seasonal Characteristics of the Chemical Composition of Fine Particles in Residences of Nanjing, China" International Journal of Environmental Research and Public Health 16, no. 6: 1066. https://doi.org/10.3390/ijerph16061066
APA StyleCao, G., Bi, J., Ma, Z., Shao, Z., & Wang, J. (2019). Seasonal Characteristics of the Chemical Composition of Fine Particles in Residences of Nanjing, China. International Journal of Environmental Research and Public Health, 16(6), 1066. https://doi.org/10.3390/ijerph16061066