Secreted Extracellular Vesicle Molecular Cargo as a Novel Liquid Biopsy Diagnostics of Central Nervous System Diseases
Abstract
:1. Introduction
2. Methods
3. Methods and Factors for Isolation of Central Nervous System Extracellular Vesicles in Liquid Biopsies
4. Central Nervous System Disease-Related Biomarkers in Extracellular Vesicles
5. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samanta, S.; Rajasingh, S.; Drosos, N.; Zhou, Z.; Dawn, B.; Rajasingh, J. Exosomes: New molecular _targets of diseases. Acta Pharmacol. Sin. 2018, 39, 501–513. [Google Scholar] [CrossRef]
- Lee, Y.; El Andaloussi, S.; Wood, M.J. Exosomes and microvesicles: Extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet. 2012, 21, R125–R134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gheinani, A.H.; Vogeli, M.; Baumgartner, U.; Vassella, E.; Draeger, A.; Burkhard, F.C.; Monastyrskaya, K. Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci. Rep. 2018, 8, 3945. [Google Scholar] [CrossRef]
- Zhang, H.; Lyden, D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. Nat. Protoc. 2019, 14, 1027–1053. [Google Scholar] [CrossRef]
- Dos Anjos Pultz, B.; Andres Cordero da Luz, F.; Socorro Faria, S.; Peixoto Ferreira de Souza, L.; Cristina Brigido Tavares, P.; Alonso Goulart, V.; Fontes, W.; Ricardo Goulart, L.; Jose Barbosa Silva, M. The multifaceted role of extracellular vesicles in metastasis: Priming the soil for seeding. Int. J. Cancer 2017, 140, 2397–2407. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Sheng, L.; Stewart, T.; Zabetian, C.P.; Zhang, J. New windows into the brain: Central nervous system-derived extracellular vesicles in blood. Prog. Neurobiol. 2019, 175, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, J.; Stewart, T.; Banks, W.A.; Zhang, J. The Transport Mechanism of Extracellular Vesicles at the Blood-Brain Barrier. Curr. Pharm. Des. 2017, 23, 6206–6214. [Google Scholar] [CrossRef]
- Brennan, K.; Martin, K.; FitzGerald, S.P.; O’Sullivan, J.; Wu, Y.; Blanco, A.; Richardson, C.; Mc Gee, M.M. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci. Rep. 2020, 10, 1039. [Google Scholar] [CrossRef] [Green Version]
- Fiandaca, M.S.; Kapogiannis, D.; Mapstone, M.; Boxer, A.; Eitan, E.; Schwartz, J.B.; Abner, E.L.; Petersen, R.C.; Federoff, H.J.; Miller, B.L.; et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimer’s Dement. 2015, 11, 600–607e601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lachenal, G.; Pernet-Gallay, K.; Chivet, M.; Hemming, F.J.; Belly, A.; Bodon, G.; Blot, B.; Haase, G.; Goldberg, Y.; Sadoul, R. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell Neurosci. 2011, 46, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Faure, J.; Lachenal, G.; Court, M.; Hirrlinger, J.; Chatellard-Causse, C.; Blot, B.; Grange, J.; Schoehn, G.; Goldberg, Y.; Boyer, V.; et al. Exosomes are released by cultured cortical neurones. Mol. Cell Neurosci. 2006, 31, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Goetzl, E.J.; Mustapic, M.; Kapogiannis, D.; Eitan, E.; Lobach, I.V.; Goetzl, L.; Schwartz, J.B.; Miller, B.L. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer’s disease. FASEB J. 2016, 30, 3853–3859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer-Albers, E.M.; Bretz, N.; Tenzer, S.; Winterstein, C.; Mobius, W.; Berger, H.; Nave, K.A.; Schild, H.; Trotter, J. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clin. Appl. 2007, 1, 1446–1461. [Google Scholar] [CrossRef]
- Mustapic, M.; Eitan, E.; Werner, J.K., Jr.; Berkowitz, S.T.; Lazaropoulos, M.P.; Tran, J.; Goetzl, E.J.; Kapogiannis, D. Plasma extracellular vesicles enriched for neuronal origin: A potential window into brain pathologic processes. Front. Neurosci. 2017, 11, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobarrez, F.; Nybom, R.; Johansson, V.; Hultman, C.M.; Wallén, H.; Landén, M.; Wetterberg, L. Microparticles and microscopic structures in three fractions of fresh cerebrospinal fluid in schizophrenia: Case report of twins. Schizophr. Res. 2013, 143, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Kanhai, D.A.; de Kleijn, D.P.; Kappelle, L.J.; Uiterwaal, C.S.; van der Graaf, Y.; Pasterkamp, G.; Geerlings, M.I.; Visseren, F.L. Extracellular vesicle protein levels are related to brain atrophy and cerebral white matter lesions in patients with manifest vascular disease: The SMART-MR study. BMJ Open 2014, 4, e003824. [Google Scholar] [CrossRef] [Green Version]
- Manterola, L.; Guruceaga, E.; Gállego Pérez-Larraya, J.; González-Huarriz, M.; Jauregui, P.; Tejada, S.; Diez-Valle, R.; Segura, V.; Samprón, N.; Barrena, C.; et al. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro. Oncol. 2014, 16, 520–527. [Google Scholar] [CrossRef]
- Shi, M.; Liu, C.; Cook, T.J.; Bullock, K.M.; Zhao, Y.; Ginghina, C.; Li, Y.; Aro, P.; Dator, R.; He, C.; et al. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol. 2014, 128, 639–650. [Google Scholar] [CrossRef]
- Shao, H.; Chung, J.; Lee, K.; Balaj, L.; Min, C.; Carter, B.S.; Hochberg, F.H.; Breakefield, X.O.; Lee, H.; Weissleder, R. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat. Commun. 2015, 6, 6999. [Google Scholar] [CrossRef] [Green Version]
- Shi, R.; Wang, P.Y.; Li, X.Y.; Chen, J.X.; Li, Y.; Zhang, X.Z.; Zhang, C.G.; Jiang, T.; Li, W.B.; Ding, W.; et al. Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Onco_target 2015, 6, 26971–26981. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Keene, C.D.; Peskind, E.R.; Galasko, D.R.; Hu, S.C.; Cudaback, E.; Wilson, A.M.; Li, G.; Yu, C.E.; Montine, K.S.; et al. Cerebrospinal fluid particles in Alzheimer disease and Parkinson disease. J. Neuropathol. Exp. Neurol. 2015, 74, 672–687. [Google Scholar] [CrossRef] [Green Version]
- Goetzl, E.J.; Kapogiannis, D.; Schwartz, J.B.; Lobach, I.V.; Goetzl, L.; Abner, E.L.; Jicha, G.A.; Karydas, A.M.; Boxer, A.; Miller, B.L. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer’s disease. FASEB J. 2016, 30, 4141–4148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Q.; Ji, Y.; Peng, J.; Zhou, X.; Chen, X.; Zhao, H.; Xu, T.; Chen, L.; Xu, Y. Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS ONE 2016, 11, e0163645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; McKinney, K.Q.; Pavlopoulos, A.J.; Han, M.H.; Kim, S.H.; Kim, H.J.; Hwang, S. Exosomal proteome analysis of cerebrospinal fluid detects biosignatures of neuromyelitis optica and multiple sclerosis. Clin. Chim. Acta 2016, 462, 118–126. [Google Scholar] [CrossRef]
- Shi, M.; Kovac, A.; Korff, A.; Cook, T.J.; Ginghina, C.; Bullock, K.M.; Yang, L.; Stewart, T.; Zheng, D.; Aro, P.; et al. CNS tau efflux via exosomes is likely increased in Parkinson’s disease but not in Alzheimer’s disease. Alzheimer’s Dement. 2016, 12, 1125–1131. [Google Scholar] [CrossRef] [Green Version]
- Winston, C.N.; Goetzl, E.J.; Akers, J.C.; Carter, B.S.; Rockenstein, E.M.; Galasko, D.; Masliah, E.; Rissman, R.A. Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimer’s Dement. 2016, 3, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Akers, J.C.; Hua, W.; Li, H.; Ramakrishnan, V.; Yang, Z.; Quan, K.; Zhu, W.; Li, J.; Figueroa, J.; Hirshman, B.R.; et al. A cerebrospinal fluid microRNA signature as biomarker for glioblastoma. Onco_target 2017, 8, 68769–68779. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, J.M.; Skog, J.; Akers, J.; Li, H.; Komotar, R.; Jensen, R.; Ringel, F.; Yang, I.; Kalkanis, S.; Thompson, R.; et al. Detection of wild-type EGFR amplification and EGFRvIII mutation in CSF-derived extracellular vesicles of glioblastoma patients. Neuro. Oncol. 2017, 19, 1494–1502. [Google Scholar] [CrossRef] [PubMed]
- Mullins, R.J.; Mustapic, M.; Goetzl, E.J.; Kapogiannis, D. Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer’s disease. Hum. Brain Mapp. 2017, 38, 1933–1940. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, Z.; Ye, T.; Mabrouk, O.S.; Maltbie, T.; Aasly, J.; West, A.B. Elevated LRRK2 autophosphorylation in brain-derived and peripheral exosomes in LRRK2 mutation carriers. Acta Neuropathol. Commun. 2017, 5, 86. [Google Scholar] [CrossRef]
- Welton, J.L.; Loveless, S.; Stone, T.; von Ruhland, C.; Robertson, N.P.; Clayton, A. Cerebrospinal fluid extracellular vesicle enrichment for protein biomarker discovery in neurological disease; multiple sclerosis. J. Extracell. Vesicles 2017, 6, 1369805. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhang, H.; Xie, W.; Meng, F.; Zhang, K.; Jiang, Y.; Zhang, X.; Zhang, J. Altered microRNA profiles in plasma exosomes from mesial temporal lobe epilepsy with hippocampal sclerosis. Onco_target 2017, 8, 4136–4146. [Google Scholar] [CrossRef]
- Drusco, A.; Fadda, P.; Nigita, G.; Fassan, M.; Bottoni, A.; Gardiman, M.P.; Sacchi, D.; Calore, F.; Carosi, M.; Antenucci, A.; et al. circulating micrornas predict survival of patients with tumors of glial origin. EBioMedicine 2018, 30, 105–112. [Google Scholar] [CrossRef]
- Galazka, G.; Mycko, M.P.; Selmaj, I.; Raine, C.S.; Selmaj, K.W. Multiple sclerosis: Serum-derived exosomes express myelin proteins. Mult. Scler. 2018, 24, 449–458. [Google Scholar] [CrossRef]
- Goetzl, E.J.; Abner, E.L.; Jicha, G.A.; Kapogiannis, D.; Schwartz, J.B. Declining levels of functionally specialized synaptic proteins in plasma neuronal exosomes with progression of Alzheimer’s disease. FASEB J. 2018, 32, 888–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guix, F.X.; Corbett, G.T.; Cha, D.J.; Mustapic, M.; Liu, W.; Mengel, D.; Chen, Z.; Aikawa, E.; Young-Pearse, T.; Kapogiannis, D.; et al. Detection of aggregation-competent tau in neuron-derived extracellular vesicles. Int. J. Mol. Sci. 2018, 19, 663. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Fang, C.; Yi, K.; Liu, X.; Qi, H.; Tan, Y.; Zhou, J.; Li, Y.; Liu, M.; Zhang, Y.; et al. The role of PTRF/Cavin1 as a biomarker in both glioma and serum exosomes. Theranostics 2018, 8, 1540–1557. [Google Scholar] [CrossRef]
- Kerr, N.; García-Contreras, M.; Abbassi, S.; Mejias, N.H.; Desousa, B.R.; Ricordi, C.; Dietrich, W.D.; Keane, R.W.; de Rivero Vaccari, J.P. inflammasome proteins in serum and serum-derived extracellular vesicles as biomarkers of stroke. Front. Mol. Neurosci. 2018, 11, 309. [Google Scholar] [CrossRef] [Green Version]
- Kuwano, N.; Kato, T.A.; Mitsuhashi, M.; Sato-Kasai, M.; Shimokawa, N.; Hayakawa, K.; Ohgidani, M.; Sagata, N.; Kubo, H.; Sakurai, T.; et al. Neuron-related blood inflammatory markers as an objective evaluation tool for major depressive disorder: An exploratory pilot case-control study. J. Affect. Disord. 2018, 240, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Lan, F.; Qing, Q.; Pan, Q.; Hu, M.; Yu, H.; Yue, X. Serum exosomal miR-301a as a potential diagnostic and prognostic biomarker for human glioma. Cell Oncol. 2018, 41, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Manda, S.V.; Kataria, Y.; Tatireddy, B.R.; Ramakrishnan, B.; Ratnam, B.G.; Lath, R.; Ranjan, A.; Ray, A. Exosomes as a biomarker platform for detecting epidermal growth factor receptor-positive high-grade gliomas. J. Neurosurg. 2018, 128, 1091–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKeever, P.M.; Schneider, R.; Taghdiri, F.; Weichert, A.; Multani, N.; Brown, R.A.; Boxer, A.L.; Karydas, A.; Miller, B.; Robertson, J.; et al. MicroRNA expression levels are altered in the cerebrospinal fluid of patients with young-onset Alzheimer’s disease. Mol. Neurobiol. 2018, 55, 8826–8841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieragostino, D.; Cicalini, I.; Lanuti, P.; Ercolino, E.; di Ioia, M.; Zucchelli, M.; Zappacosta, R.; Miscia, S.; Marchisio, M.; Sacchetta, P.; et al. Enhanced release of acid sphingomyelinase-enriched exosomes generates a lipidomics signature in CSF of Multiple Sclerosis patients. Sci. Rep. 2018, 8, 3071. [Google Scholar] [CrossRef] [Green Version]
- Reátegui, E.; van der Vos, K.E.; Lai, C.P.; Zeinali, M.; Atai, N.A.; Aldikacti, B.; Floyd, F.P., Jr.; Aimal, H.K.; Thapar, V.; Hochberg, F.H.; et al. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat. Commun. 2018, 9, 175. [Google Scholar] [CrossRef] [PubMed]
- Ricklefs, F.L.; Alayo, Q.; Krenzlin, H.; Mahmoud, A.B.; Speranza, M.C.; Nakashima, H.; Hayes, J.L.; Lee, K.; Balaj, L.; Passaro, C.; et al. Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci. Adv. 2018, 4, eaar2766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santangelo, A.; Imbrucè, P.; Gardenghi, B.; Belli, L.; Agushi, R.; Tamanini, A.; Munari, S.; Bossi, A.M.; Scambi, I.; Benati, D.; et al. A microRNA signature from serum exosomes of patients with glioma as complementary diagnostic biomarker. J. Neurooncol. 2018, 136, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.; McKeever, P.; Kim, T.; Graff, C.; van Swieten, J.C.; Karydas, A.; Boxer, A.; Rosen, H.; Miller, B.L.; Laforce, R., Jr.; et al. Downregulation of exosomal miR-204-5p and miR-632 as a biomarker for FTD: A GENFI study. J. Neurol. Neurosurg. Psychiatr. 2018, 89, 851–858. [Google Scholar] [CrossRef]
- Sproviero, D.; La Salvia, S.; Giannini, M.; Crippa, V.; Gagliardi, S.; Bernuzzi, S.; Diamanti, L.; Ceroni, M.; Pansarasa, O.; Poletti, A.; et al. Pathological proteins are transported by extracellular vesicles of sporadic amyotrophic lateral sclerosis patients. Front. Neurosci. 2018, 12, 487. [Google Scholar] [CrossRef]
- Tan, S.K.; Pastori, C.; Penas, C.; Komotar, R.J.; Ivan, M.E.; Wahlestedt, C.; Ayad, N.G. Serum long noncoding RNA HOTAIR as a novel diagnostic and prognostic biomarker in glioblastoma multiforme. Mol. Cancer 2018, 17, 74. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Li, D.B.; Li, R.Y.; Zhou, X.; Yu, D.J.; Lan, X.Y.; Li, J.P.; Liu, J.L. Diagnosis of Hyperacute and Acute Ischaemic Stroke: The potential utility of exosomal MicroRNA-21-5p and MicroRNA-30a-5p. Cerebrovasc. Dis. 2018, 45, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Xu, Y.; Xu, W.; Zhou, Q.; Chen, Q.; Yang, M.; Feng, F.; Liu, Y.; Zhu, X.; Yu, M.; et al. Serum exosomal miR-223 serves as a potential diagnostic and prognostic biomarker for dementia. Neuroscience 2018, 379, 167–176. [Google Scholar] [CrossRef]
- Winston, C.N.; Goetzl, E.J.; Baker, L.D.; Vitiello, M.V.; Rissman, R.A. Growth hormone-releasing hormone modulation of neuronal exosome biomarkers in mild cognitive impairment. J. Alzheimer’s Dis. 2018, 66, 971–981. [Google Scholar] [CrossRef]
- Agliardi, C.; Guerini, F.R.; Zanzottera, M.; Bianchi, A.; Nemni, R.; Clerici, M. SNAP-25 in serum is carried by exosomes of neuronal origin and is a potential biomarker of Alzheimer’s disease. Mol. Neurobiol. 2019, 56, 5792–5798. [Google Scholar] [CrossRef] [PubMed]
- Athauda, D.; Gulyani, S.; Karnati, H.K.; Li, Y.; Tweedie, D.; Mustapic, M.; Chawla, S.; Chowdhury, K.; Skene, S.S.; Greig, N.H.; et al. Utility of neuronal-derived exosomes to examine molecular mechanisms that affect motor function in patients with Parkinson disease: A secondary analysis of the exenatide-PD Trial. JAMA Neurol. 2019, 76, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Cha, D.J.; Mengel, D.; Mustapic, M.; Liu, W.; Selkoe, D.J.; Kapogiannis, D.; Galasko, D.; Rissman, R.A.; Bennett, D.A.; Walsh, D.M. miR-212 and miR-132 are downregulated in neurally derived plasma exosomes of Alzheimer’s patients. Front. Neurosci. 2019, 13, 1208. [Google Scholar] [CrossRef] [Green Version]
- Cicognola, C.; Brinkmalm, G.; Wahlgren, J.; Portelius, E.; Gobom, J.; Cullen, N.C.; Hansson, O.; Parnetti, L.; Constantinescu, R.; Wildsmith, K.; et al. Novel tau fragments in cerebrospinal fluid: Relation to tangle pathology and cognitive decline in Alzheimer’s disease. Acta Neuropathol. 2019, 137, 279–296. [Google Scholar] [CrossRef] [Green Version]
- Cumba Garcia, L.M.; Peterson, T.E.; Cepeda, M.A.; Johnson, A.J.; Parney, I.F. Isolation and analysis of plasma-derived exosomes in patients with glioma. Front. Oncol. 2019, 9, 651. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Yu, Y.; Hu, Y.; Li, X.W.; Wei, Z.X.; Pan, R.Y.; Li, X.S.; Zheng, G.E.; Qin, X.Y.; Liu, Q.S.; et al. Genome-wide, integrative analysis implicates exosome-derived microrna dysregulation in schizophrenia. Schizophr. Bull. 2019, 45, 1257–1266. [Google Scholar] [CrossRef] [PubMed]
- Gámez-Valero, A.; Campdelacreu, J.; Reñé, R.; Beyer, K.; Borràs, F.E. Comprehensive proteomic profiling of plasma-derived Extracellular Vesicles from dementia with Lewy Bodies patients. Sci. Rep. 2019, 9, 13282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goetzl, E.J.; Elahi, F.M.; Mustapic, M.; Kapogiannis, D.; Pryhoda, M.; Gilmore, A.; Gorgens, K.A.; Davidson, B.; Granholm, A.C.; Ledreux, A. Altered levels of plasma neuron-derived exosomes and their cargo proteins characterize acute and chronic mild traumatic brain injury. FASEB J. 2019, 33, 5082–5088. [Google Scholar] [CrossRef]
- Jain, G.; Stuendl, A.; Rao, P.; Berulava, T.; Pena Centeno, T.; Kaurani, L.; Burkhardt, S.; Delalle, I.; Kornhuber, J.; Hüll, M.; et al. A combined miRNA-piRNA signature to detect Alzheimer’s disease. Transl. Psychiatry 2019, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.S.; Yekula, A.; Lansbury, E.; Small, J.L.; Ayinon, C.; Mordecai, S.; Hochberg, F.H.; Tigges, J.; Delcuze, B.; Charest, A.; et al. Characterization of plasma-derived protoporphyrin-IX-positive extracellular vesicles following 5-ALA use in patients with malignant glioma. EBioMedicine 2019, 48, 23–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, J.; Hemphill, M.; Yang, Z.; Beard, K.; Sewell, E.; Shallcross, J.; Schweizer, M.; Sandsmark, D.K.; Diaz-Arrastia, R.; Kim, J.; et al. Multi-dimensional mapping of brain-derived extracellular vesicle MicroRNA biomarker for traumatic brain injury diagnostics. J. Neurotrauma 2019. [Google Scholar] [CrossRef]
- Kuharić, J.; Grabušić, K.; Tokmadžić, V.S.; Štifter, S.; Tulić, K.; Shevchuk, O.; Lučin, P.; Šustić, A. Severe traumatic brain injury induces early changes in the physical properties and protein composition of intracranial extracellular vesicles. J. Neurotrauma 2019, 36, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Baxter, D.; Scherler, K.; Kim, T.K.; Wu, X.; Abu-Amara, D.; Flory, J.; Yehuda, R.; Marmar, C.; Jett, M.; et al. Distinct profiles of cell-free MicroRNAs in plasma of veterans with post-traumatic stress disorder. J. Clin. Med. 2019, 8, 963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, J.; Alattar, A.A.; Akers, J.; Carter, B.S.; Heller, M.; Chen, C.C. A pilot proof-of-principle analysis demonstrating dielectrophoresis (DEP) as a glioblastoma biomarker platform. Sci. Rep. 2019, 9, 10279. [Google Scholar] [CrossRef] [Green Version]
- Muraoka, S.; Jedrychowski, M.P.; Tatebe, H.; DeLeo, A.M.; Ikezu, S.; Tokuda, T.; Gygi, S.P.; Stern, R.A.; Ikezu, T. Proteomic profiling of extracellular vesicles isolated from cerebrospinal fluid of former national football league players at risk for chronic traumatic encephalopathy. Front. Neurosci. 2019, 13, 1059. [Google Scholar] [CrossRef] [Green Version]
- Otake, K.; Kamiguchi, H.; Hirozane, Y. Identification of biomarkers for amyotrophic lateral sclerosis by comprehensive analysis of exosomal mRNAs in human cerebrospinal fluid. BMC Med. Genomics 2019, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Ricklefs, F.L.; Maire, C.L.; Reimer, R.; Dührsen, L.; Kolbe, K.; Holz, M.; Schneider, E.; Rissiek, A.; Babayan, A.; Hille, C.; et al. Imaging flow cytometry facilitates multiparametric characterization of extracellular vesicles in malignant brain tumours. J. Extracell Vesicles 2019, 8, 1588555. [Google Scholar] [CrossRef] [Green Version]
- Saucier, D.; Wajnberg, G.; Roy, J.; Beauregard, A.P.; Chacko, S.; Crapoulet, N.; Fournier, S.; Ghosh, A.; Lewis, S.M.; Marrero, A.; et al. Identification of a circulating miRNA signature in extracellular vesicles collected from amyotrophic lateral sclerosis patients. Brain Res. 2019, 1708, 100–108. [Google Scholar] [CrossRef]
- Shao, N.; Xue, L.; Wang, R.; Luo, K.; Zhi, F.; Lan, Q. miR-454-3p is an exosomal biomarker and functions as a tumor suppressor in glioma. Mol. Cancer Ther. 2019, 18, 459–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, X.; Tian, J.; Chen, Y.; Yan, Y.; Pu, J.; Zhang, B. Central nervous system-derived exosomal alpha-synuclein in serum may be a biomarker in Parkinson’s disease. Neuroscience 2019, 413, 308–316. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, D.; Li, W.; Xiang, X.; Zhao, J.; Yu, B.; Wang, C.; He, Z.; Zhu, L.; Yang, Y. Evaluation of serum extracellular vesicles as noninvasive diagnostic markers of glioma. Theranostics 2019, 9, 5347–5358. [Google Scholar] [CrossRef] [PubMed]
- Winston, C.N.; Romero, H.K.; Ellisman, M.; Nauss, S.; Julovich, D.A.; Conger, T.; Hall, J.R.; Campana, W.; O’Bryant, S.E.; Nievergelt, C.M.; et al. Assessing neuronal and astrocyte derived exosomes from individuals with mild traumatic brain injury for markers of neurodegeneration and cytotoxic activity. Front. Neurosci. 2019, 13, 1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banack, S.A.; Dunlop, R.A.; Cox, P.A. An miRNA fingerprint using neural-enriched extracellular vesicles from blood plasma: Towards a biomarker for amyotrophic lateral sclerosis/motor neuron disease. Open Biol. 2020, 10, 200116. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, M.; Cui, C.; Zhao, Y.; Sun, X.; Wang, Y.; Liu, C.; Wu, H.; Zhong, X.; et al. Different exosomal microRNA profile in aquaporin-4 antibody positive neuromyelitis optica spectrum disorders. Front. Immunol. 2020, 11, 1064. [Google Scholar] [CrossRef]
- Choi, J.; Kim, S.Y.; Kim, H.; Lim, B.C.; Hwang, H.; Chae, J.H.; Kim, K.J.; Oh, S.; Kim, E.Y.; Shin, J.S. Serum α-synuclein and IL-1β are increased and correlated with measures of disease severity in children with epilepsy: Potential prognostic biomarkers? BMC Neurol. 2020, 20, 85. [Google Scholar] [CrossRef]
- Devoto, C.; Lai, C.; Qu, B.X.; Guedes, V.A.; Leete, J.; Wilde, E.; Walker, W.C.; Diaz-Arrastia, R.; Kenney, K.; Gill, J. Exosomal MicroRNAs in military personnel with mild traumatic brain injury: Preliminary results from the chronic effects of neurotrauma consortium biomarker discovery project. J. Neurotrauma 2020. [Google Scholar] [CrossRef]
- Ebrahimkhani, S.; Beadnall, H.N.; Wang, C.; Suter, C.M.; Barnett, M.H.; Buckland, M.E.; Vafaee, F. Serum exosome MicroRNAs predict multiple sclerosis disease activity after fingolimod treatment. Mol. Neurobiol. 2020, 57, 1245–1258. [Google Scholar] [CrossRef]
- Eguchi, A.; Fukuda, S.; Kuratsune, H.; Nojima, J.; Nakatomi, Y.; Watanabe, Y.; Feldstein, A.E. Identification of actin network proteins, talin-1 and filamin-A, in circulating extracellular vesicles as blood biomarkers for human myalgic encephalomyelitis/chronic fatigue syndrome. Brain Behav. Immun. 2020, 84, 106–114. [Google Scholar] [CrossRef]
- Goetzl, E.J.; Peltz, C.B.; Mustapic, M.; Kapogiannis, D.; Yaffe, K. Neuron-derived plasma exosome proteins after remote traumatic brain injury. J. Neurotrauma 2020, 37, 382–388. [Google Scholar] [CrossRef]
- Goetzl, E.J.; Yaffe, K.; Peltz, C.B.; Ledreux, A.; Gorgens, K.; Davidson, B.; Granholm, A.C.; Mustapic, M.; Kapogiannis, D.; Tweedie, D.; et al. Traumatic brain injury increases plasma astrocyte-derived exosome levels of neurotoxic complement proteins. FASEB J. 2020, 34, 3359–3366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guedes, V.A.; Kenney, K.; Shahim, P.; Qu, B.X.; Lai, C.; Devoto, C.; Walker, W.C.; Nolen, T.; Diaz-Arrastia, R.; Gill, J.M. Exosomal neurofilament light: A prognostic biomarker for remote symptoms after mild traumatic brain injury? Neurology 2020, 94, e2412–e2423. [Google Scholar] [CrossRef] [PubMed]
- Mansur, R.B.; Delgado-Peraza, F.; Subramaniapillai, M.; Lee, Y.; Iacobucci, M.; Rodrigues, N.; Rosenblat, J.D.; Brietzke, E.; Cosgrove, V.E.; Kramer, N.E.; et al. Extracellular vesicle biomarkers reveal inhibition of neuroinflammation by infliximab in association with antidepressant response in adults with bipolar depression. Cells 2020, 9, 865. [Google Scholar] [CrossRef] [Green Version]
- Mondello, S.; Guedes, V.A.; Lai, C.; Czeiter, E.; Amrein, K.; Kobeissy, F.; Mechref, Y.; Jeromin, A.; Mithani, S.; Martin, C.; et al. Circulating brain injury exosomal proteins following moderate-to-severe traumatic brain injury: Temporal profile, outcome prediction and therapy implications. Cells 2020, 9, 977. [Google Scholar] [CrossRef] [Green Version]
- Nasca, C.; Dobbin, J.; Bigio, B.; Watson, K.; de Angelis, P.; Kautz, M.; Cochran, A.; Mathé, A.A.; Kocsis, J.H.; Lee, F.S.; et al. Insulin receptor substrate in brain-enriched exosomes in subjects with major depression: On the path of creation of biosignatures of central insulin resistance. Mol. Psychiatry 2020. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; Sun, Y.; Zhen, H.; Guo, M.; Ye, J.; Liu, Z.; Yang, Y.; Zhang, X. Differential expression of plasma Exo-miRNA in neurodegenerative diseases by next-generation sequencing. Front. Neurosci. 2020, 14, 438. [Google Scholar] [CrossRef]
- Niu, M.; Li, Y.; Li, G.; Zhou, L.; Luo, N.; Yao, M.; Kang, W.; Liu, J. A longitudinal study on α-synuclein in plasma neuronal exosomes as a biomarker for Parkinson’s disease development and progression. Eur. J. Neurol. 2020, 27, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Peltz, C.B.; Kenney, K.; Gill, J.; Diaz-Arrastia, R.; Gardner, R.C.; Yaffe, K. Blood biomarkers of traumatic brain injury and cognitive impairment in older veterans. Neurology 2020. [Google Scholar] [CrossRef]
- Perrotte, M.; Haddad, M.; Le Page, A.; Frost, E.H.; Fulöp, T.; Ramassamy, C. Profile of pathogenic proteins in total circulating extracellular vesicles in mild cognitive impairment and during the progression of Alzheimer’s disease. Neurobiol. Aging 2020, 86, 102–111. [Google Scholar] [CrossRef]
- Puigdelloses, M.; González-Huárriz, M.; García-Moure, M.; Martínez-Vélez, N.; Esparragosa Vázquez, I.; Bruna, J.; Zandio, B.; Agirre, A.; Marigil, M.; Petrirena, G.; et al. RNU6-1 in circulating exosomes differentiates GBM from non-neoplastic brain lesions and PCNSL but not from brain metastases. Neurooncol. Adv. 2020, 2, vdaa010. [Google Scholar] [CrossRef] [Green Version]
- Ricklefs, F.L.; Maire, C.L.; Matschke, J.; Dührsen, L.; Sauvigny, T.; Holz, M.; Kolbe, K.; Peine, S.; Herold-Mende, C.; Carter, B.; et al. FASN is a biomarker enriched in malignant glioma-derived extracellular vesicles. Int. J. Mol. Sci. 2020, 21, 1931. [Google Scholar] [CrossRef] [Green Version]
- Serpente, M.; Fenoglio, C.; D’Anca, M.; Arcaro, M.; Sorrentino, F.; Visconte, C.; Arighi, A.; Fumagalli, G.G.; Porretti, L.; Cattaneo, A.; et al. MiRNA profiling in plasma neural-derived small extracellular vesicles from patients with Alzheimer’s disease. Cells 2020, 9, 1443. [Google Scholar] [CrossRef]
- Tabibkhooei, A.; Izadpanahi, M.; Arab, A.; Zare-Mirzaei, A.; Minaeian, S.; Rostami, A.; Mohsenian, A. Profiling of novel circulating microRNAs as a non-invasive biomarker in diagnosis and follow-up of high and low-grade gliomas. Clin. Neurol. Neurosurg. 2020, 190, 105652. [Google Scholar] [CrossRef]
- Tan, N.; Hu, S.; Hu, Z.; Wu, Z.; Wang, B. Quantitative proteomic characterization of microvesicles/exosomes from the cerebrospinal fluid of patients with acute bilirubin encephalopathy. Mol. Med. Rep. 2020, 22, 1257–1268. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, P.; Bian, X.; Xu, S.; Zhou, Q.; Zhang, Y.; Ding, M.; Han, M.; Huang, L.; Bi, J.; et al. Elevated plasma levels of exosomal BACE1-AS combined with the volume and thickness of the right entorhinal cortex may serve as a biomarker for the detection of Alzheimer’s disease. Mol. Med. Rep. 2020, 22, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Galbo, P.M., Jr.; Ciesielski, M.J.; Figel, S.; Maguire, O.; Qiu, J.; Wiltsie, L.; Minderman, H.; Fenstermaker, R.A. Circulating CD9+/GFAP+/survivin+ exosomes in malignant glioma patients following survivin vaccination. Onco_target 2017, 8, 114722–114735. [Google Scholar] [CrossRef] [PubMed]
- Masters, C.L.; Bateman, R.; Blennow, K.; Rowe, C.C.; Sperling, R.A.; Cummings, J.L. Alzheimer’s disease. Nat. Rev. Dis. Primers 2015, 1, 15056. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C. Clinical practice. Mild cognitive impairment. N. Engl. J. Med. 2011, 364, 2227–2234. [Google Scholar] [CrossRef] [Green Version]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef]
- Filippi, M.; Bar-Or, A.; Piehl, F.; Preziosa, P.; Solari, A.; Vukusic, S.; Rocca, M.A. Multiple sclerosis. Nat. Rev. Dis. Primers 2018, 4, 43. [Google Scholar] [CrossRef] [PubMed]
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 2017, 3, 17071. [Google Scholar] [CrossRef] [PubMed]
- Mattick, J.S.; Rinn, J.L. Discovery and annotation of long noncoding RNAs. Nat. Struct. Mol. Biol. 2015, 22, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Ramalho-Carvalho, J.; Fromm, B.; Henrique, R.; Jeronimo, C. Deciphering the function of non-coding RNAs in prostate cancer. Cancer Metastasis Rev. 2016, 35, 235–262. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blennow, K.; Brody, D.L.; Kochanek, P.M.; Levin, H.; McKee, A.; Ribbers, G.M.; Yaffe, K.; Zetterberg, H. Traumatic brain injuries. Nat. Rev. Dis. Primers 2016, 2, 16084. [Google Scholar] [CrossRef] [PubMed]
- Levin, H.S.; Diaz-Arrastia, R.R. Diagnosis, prognosis, and clinical management of mild traumatic brain injury. Lancet Neurol. 2015, 14, 506–517. [Google Scholar] [CrossRef]
- Marder, S.R.; Cannon, T.D. Schizophrenia. N. Engl. J. Med. 2019, 381, 1753–1761. [Google Scholar] [CrossRef]
- Collaborators, G.B.D.S. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 439–458. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.C.V.; De Silva, D.A.; Macleod, M.R.; Coutts, S.B.; Schwamm, L.H.; Davis, S.M.; Donnan, G.A. Ischaemic stroke. Nat. Rev. Dis. Primers 2019, 5, 70. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, Y. The Yin and Yang of innate immunity in stroke. Biomed. Res. Int. 2014, 2014, 807978. [Google Scholar] [CrossRef] [Green Version]
- Brand, F.J., 3rd; de Rivero Vaccari, J.C.; Mejias, N.H.; Alonso, O.F.; de Rivero Vaccari, J.P. RIG-I contributes to the innate immune response after cerebral ischemia. J. Inflamm. 2015, 12, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, S.; Shields, N.J.; Balle, T.; Chebib, M.; Clarkson, A.N. Innate immunity and inflammation post-stroke: An alpha7-nicotinic agonist perspective. Int. J. Mol. Sci. 2015, 16, 29029–29046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers 2016, 2, 16065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kupfer, D.J.; Frank, E.; Phillips, M.L. Major depressive disorder: New clinical, neurobiological, and treatment perspectives. Lancet 2012, 379, 1045–1055. [Google Scholar] [CrossRef] [Green Version]
- Etkin, A.; Buchel, C.; Gross, J.J. The neural bases of emotion regulation. Nat. Rev. Neurosci. 2015, 16, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Watson, K.; Nasca, C.; Aasly, L.; McEwen, B.; Rasgon, N. Insulin resistance, an unmasked culprit in depressive disorders: Promises for interventions. Neuropharmacology 2018, 136, 327–334. [Google Scholar] [CrossRef]
- Nasca, C.; Rasgon, N.; McEwen, B. An emerging epigenetic framework of systemic and central mechanisms underlying stress-related disorders. Neuropsychopharmacology 2019, 44, 235–236. [Google Scholar] [CrossRef] [Green Version]
- Duarte, A.I.; Moreira, P.I.; Oliveira, C.R. Insulin in central nervous system: More than just a peripheral hormone. J. Aging Res. 2012, 2012, 384017. [Google Scholar] [CrossRef] [Green Version]
Molecule | Disease | Sample Type | Sample Grouping and Size | Patients Gender and Mean Age | EVs Isolation Method | Key Findings | Ref. |
---|---|---|---|---|---|---|---|
pSer312, p-panTyr-IRS-1 | AD | Plasma | Patients (N = 24) | 14♀ + 10♂ (73 yrs) | Thromboplastin-D + ExoQuick® (System Biosciences) + L1CAM IP | Markers of brain insulin resistance in NDEVs associate with atrophy in AD. | [29] |
NPTX2, NRXN2a, AMPA4, NLGN1 | AD | Plasma | C.S.S.: Patients (N = 28), HC (N = 28); L.S.: Patients (N = 18 + 18), HC (N = 18) | C.S.S.: Patients and HC—16♀ + 12♂ (73 yrs); L.S.: Patients and HC—8♀ + 10♂ (69 & 78 yrs) | Thromboplastin-D + 3000× g (30′ at 4 °C) + ExoQuick® + L1CAM IP | Reduction of the marker levels in NDEVs may be indicative of the extent of cognitive loss and reflect progression of the severity of AD. | [35] |
Tau | AD | Plasma | AD patients (N = 20), MCI patients (N = 10), HC (N = 10) | AD—11♀ + 9♂ (75 yrs) MCI—5♀ + 5♂ (76 yrs) HC—7♀ + 3♂ (76 yrs) | Thrombin + 6000× g (20′ at 4 °C) + ExoQuick® + L1CAM IP | Tau was found free-floating with a small component inside EVs; full-length Tau was higher inside EVs than in free solution. | [36] |
SNAP-25 | AD | Serum | AD patients (N = 24), HC (N = 17) | AD—16♀ + 8♂ (78 yrs) HC—13♀ + 4♂ (77 yrs) | 10,000× g (10′ at RT) + ExoQuick® + L1CAM IP | The levels of SNAP-25 carried by NDEVs were reduced in AD patients (sensitivity 87.5%, specificity 70.6%). | [53] |
N-123 tau, N-224 tau | AD | Serum | Patients w/CSF+ biomarkers (N = 4), patients w/CSF- biomarkers (N = 4) | n.m. | 4000× g (20′ at 4 °C) + ExoQuick® + L1CAM IP | N-224 tau was present in NDEVs, while N-123 tau showed comparable concentrations in both NDEVs and peripherally derived EVs. | [56] |
BACE1-AS | AD | Plasma | AD patients (N = 72), HC (N = 62) | AD—38♀ + 34♂ (74 yrs) HC—39♀ + 23♂ (72 yrs) | Thrombin + 14,000× g (5′ at 4 °C) + 3000× g (15′ at 4 °C) + ExoQuick® | EVs BACE1-AS transcript levels in AD patients were significantly higher compared with the HC (sensitivity 87.5%, specificity 61.3%) | [96] |
SYP, SYNPO, SYT2, NRGN, GAP43, SYN1 | AD and FTD | Plasma | C.S.S.: AD patients (N = 12), FTD patients (N = 16), HC (N = 28); L.S.: AD patients (N = 9), FTD patients (N = 10), HC (N = 19) | C.S.S.: AD—6♀ + 6♂ (74 yrs) FTD—4♀ + 12♂ (64 yrs) L.S.: AD—7♀ + 2♂ (82 yrs) FTD—5♀ + 5♂ (63 yrs) | Thromboplastin-D + 3000× g (30′ at 4 °C) + ExoQuick® + L1CAM IP | SYP, SYNPO, SYT2, and NRGN levels were significantly lower in patients with FTD and AD than in HC. Some markers were decreased years before dementia in FTD and AD patients. | [22] |
Tau | AD and PD | Plasma | AD patients (N = 106), PD patients (N = 91), HC (N = 106) | AD—49♀ + 57♂ (70 yrs) PD—26♀ + 65♂ (65 yrs) HC—48♀ + 58♂ (67 yrs) | 2000× g (15′) + ultracentrifugation + L1CAM IP | Tau was significantly higher in PD patients than HCs, but not in AD patients, and correlated with CSF tau. | [25] |
pS1292-LRRK2 | PD | CSF | PD patients: LRRK2+ mutation (N = 19), LRRK2− (N = 19); HC: LRRK2+ (N = 39), LRRK2- (N = 5) | PD patients: LRRK2+ 16♀ + 3♂ (57 yrs) LRRK2− 8♀ + 11♂ (60 yrs) HC: LRRK2+ 26♀ + 13♂ (63 yrs) LRRK2- 5♀ (60 yrs) | 10,000× g (30′ at 4 °C) + ultracentrifugation | pS1292-LRRK2 levels in CSF EVs were near saturated in most subjects, 10-fold higher than in urinary EVs, irrespective of LRRK2 mutation status or PD diagnosis. | [30] |
Akt, p-mTOR, p-Tyr-IRS-1 | PD | Serum | PD patients (N = 60) | 17♀+ 43♂ (60 yrs) | 4500× g (20′ at 4 °C) + ExoQuick® + L1CAM IP | Exenatide-treated patients had elevated expression of tyrosine phosphorylation of IRS-1 and of downstream _targets, total Akt and p-mTOR. | [54] |
α-synuclein | PD | Plasma | PD patients (N = 267), HC (N = 215) | PD—119♀ + 145♂ (66 yrs) HC—99♀ + 116♂ (66 yrs) | 2000× g (15′) + ultracentrifugation + L1CAM IP | Levels of α-synuclein in EVs were substantially higher in PD patients than in HC. A significant correlation between α-synuclein found on EVs and disease severity was observed. | [18] |
α-synuclein | PD | Serum | PD patients: Tremor type (N = 22), Non-tremor (N = 16); essential tremor (ET) patients (N = 21); HC (N = 18) | Tremor type—10♀ + 12♂ (63 yrs) Non-tremor type—9♀ + 9♂ (62 yrs) ET—10♀ + 11♂ (62 yrs) HC—10♀ + 8♂ (63 yrs) | 3000× g for (15′ at 4 °C) + ExoQuick® + L1CAM IP | α-synuclein levels were lower in the PD group than in the ET and HC. Levels were lower in the NTD group than in the TD group. α-synuclein was found to moderately aid in PD diagnosis (AUC = 0.675) and had a potential to diagnose NTD (AUC = 0.761). | [72] |
α-synuclein | PD | Plasma | Early-stage PD patients (N = 36), Advanced PD patients (N = 17), iRBD patients (N = 20), HC (N = 21) | Early-stage PD—18♀ + 18♂ (64 yrs) Advanced PD—10♀ + 7♂ (67 yrs) iRBD—8♀ + 12♂ (63 yrs) HC—10♀ + 11♂ (64 yrs) | 2000× g (15′) + ultracentrifugation + L1CAM IP | α-synuclein levels in NDEVs were significantly higher in patients with early-stage PD compared with HCs. Longitudinally increased α-synuclein were associated with higher risk for motor symptom progression in PD. | [88] |
Aß1-42, p-Tau-S396, NRGN, SYP, SYT1, SYNPO | MCI | Plasma | MCI patients (N = 61), HC (N = 76) | MCI—39♀ + 22♂ (70 yrs) HC—47♀ + 29♂ (68 yrs) | Thrombin + 10,000 rpm (5′) + ExoQuick® + L1CAM IP | NDEVs concentrations of Aβ1-42 were significantly increased while NRGN, synaptophysin, synaptotagmin, and synaptopodin levels were significantly decreased in patients with MCI. | [52] |
apoA1, apoE, apoJ, AnnexinV, Aß-42 | MCI, AD and PD | CSF | MCI patients (N = 21), AD patients (N = 27), PD patients (N = 28), young HC (N = 15), middle-aged HC (N = 21), older HC (N = 23) | MCI—7♀ + 14♂ (75 yrs) AD—11♀ + 16♂ (69 yrs) PD—12♀ + 12♂ (64 yrs) Young HC—11♀ + 4♂ (28yrs) Middle-aged HC—10♀ + 11♂ (55 yrs) Older HC—12♀ + 11♂ (73yrs) | Flow cytometric assay | ApoE and Aß-42-positive particle concentrations were reduced in middle and older age subjects, whereas apoAI increased with age. ApoAI and annexin V levels were reduced in MCI and/or AD patients vs. HCs. | [21] |
GSN, BCHE | DLB | Plasma | DLB patients (N = 19), AD patients (N = 10), HC (N = 20) | DLB—ratio ♀/♂ 2:3 (72 yrs) AD—ratio ♀/♂ 2:3 (74 yrs) HC—ratio ♀/♂ 2:1 (69 yrs) | 2500× g (15′) + 16,000× g (10′) + SEC | Gelsolin decreased levels were found on EVs from DLB patients, compared to HCs and to AD patients. | [59] |
P-tau, Aß1-42, NRGN, REST | MCI and AD | Plasma | MCI patients (N = 20), AD patients (N = 10), MCI-to-AD (ADC) patients (N = 20) HC (N = 10) | MCI—7♀ + 13♂ (69 yrs) ADC—9♀ + 11♂ (75 yrs) AD and HC—n.m. | Thromboplastin-D + ExoQuick® + L1CAM IP | Abnormal NDEVs levels of P-tau, Aß1-42, NRGN and REST accurately predicted conversion of MCI to AD dementia. | [26] |
Tau, APP, pTau-T181, Aβ42 | MCI and AD | Plasma | MCI patients (N = 12), mild AD patients (N = 12), moderate AD patients (N = 12), severe AD patients (N = 20), HC (N = 12) | MCI—11♀ + 1♂ (75 yrs) Mild AD—11♀ + 1♂ (76yrs) Moderate AD patients 8♀ + 4♂ (79 yrs) Severe AD patients 10♀ + 2♂ (83 yrs) HC—9♀ + 3♂ (69 yrs) | 2000× g (20′) + 10,000× g (20′) + Total Exosome Isolation reagent (InvitrogenTM) | Abnormal APP levels and pTau-T181/tTau ratio in EVs demonstrated a high accuracy to define MCI and AD staging. | [90] |
FN1, GFAP | NMOSD | CSF | MS patients (N = 10), NMOSD patients (N = 10), idiopathic longitudinally extensive transverse myelitis patients (N = 12) | MS—7♀ + 3♂ (n.m.) NMO—9♀ + 1♂ (n.m.) I-LETM—1♀ + 11♂ (n.m.) | 18,000× g (30′) + ultracentrifugation | 442 significant proteins generated a list of signature molecules of diseases validated primarily by the identification of known markers such as GFAP and FN1, specific to NMO and MS. | [24] |
KLKB1, APOE | MS | CSF | RRMS patients (N = 4), non-demyelinating controls (N = 3) | n.m. | Exo-SpinTM (Cell Guidance Systems) | Plasma kallikrein and Apolipoprotein-E4 were increased in CSF-EVs compared to CSF. | [31] |
MOG | MS | Serum and CSF | RRMS patients (N = 45), secondary progressive MS (SPMS) patients (N = 30), HC (N = 45) | n.m. | ExoQuick® | Exosomal content of MOG strongly correlated with disease activity and was highest in RRMS patients in relapse and in SPMS patients. | [34] |
ASMase | MS | CSF | MS patients (N = 95), other central neurological disease (C_OND) patients (N = 45), other peripheral neurological disease (P_OND) patients (N = 31) | MCI—55♀ + 40♂ (37yrs) C_OND—29♀ + 16♂ (43yrs) P_OND—13♀ + 18♂ (58yrs) | Flow cytometric assay | A high number of acid sphingomyelinase-enriched EVs correlated to enzymatic activity and to disease severity. | [43] |
SOD1, TDP-43, p-TDP-43, FUS | ALS | Plasma | ALS patients (N = 30) HC (N = 30) | ALS—15♀ + 15♂ (71 yrs) HC – n.m. | 1600× g (20′) + ultracentrifugation | Microvesicles (MVs) and Exosomes (EXOs) size were increased in ALS patients compared to HCs; MVs of ALS patients were enriched with toxic proteins compared to HCs. | [48] |
CUEDC2 | ALS | CSF | ALS patients (N = 4), HC (N = 4) | ALS—4♂ (58 yrs) HC—4♂ (59 yrs) | 2000× g (5′ at 4 °C) + 10,000× g (20′ at 4 °C) + ExoRNeasy Serum/Plasma Midi Kit (QIAGEN) | By RNA sequencing, several genes, such as CUEDC2, in CSF EVs were suggested to be candidate disease biomarkers for ALS. | [68] |
CD14, Cystatin C | CWML/Brain atrophy | Plasma | Manifest vascular disease patients (N = 994) | 210♀ + 784♂ (59 yrs) | 3000× g (15′) + ExoQuick® | EV proteins cystatin C and CD14 were related to CWMLs and the progression of brain atrophy in patients with manifest vascular disease. | [16] |
Ras-related small GTPase 10, Annexin VII, UCHL1, Claudin-5, NKCC1, AQP4, SYNGR3, Aβ42, P-T181-tau, P-S396-tau, IL-6, PRPc | TBI | Plasma | Acute mild TBI (N = 18), chronic mild TBI (N = 14), HC (N = 21) | Acute mild TBI—12♀ + 6♂ (21 yrs) Chronic mild TBI—3♀ + 11♂ (20 yrs) HC—14♀ + 7♂ (21 yrs) | Thromboplastin-D + 3000× g (30′ at 4 °C) + ExoQuick® + L1CAM IP | Increases in NDEV levels of most neurofunctional proteins in acute mild TBI, and elevations of most NDEV neuropathological proteins in chronic and acute mild TBI delineated phase-specificity. | [60] |
FLOT1, Arf6, Rab7a | TBI | CSF | Severe TBI patients (N = 17), HC (N = 18) | Severe TBI—2♀ + 15♂ (40 yrs) HC—n.m. | 500× g (10′ at 4 °C) + 2000× g (30′ at 4 °C) + ultracentrifugation | CSF after severe TBI contains Flotillin+ EVs. Unfavorable outcomes included decreasing Arf6 concentrations and a delayed Rab7a concentration increase. | [64] |
Aβ42, NRGN | TBI | Plasma | Mild TBI patients (N = 19), HC (N = 20) | Mild TBI—19♂ (22 yrs) HC—20♂ (22 yrs) | Thrombin + 10,000 rpm (5′) + ExoQuick® + L1CAM or GLAST IP | NDEV and ADEV levels of Aβ42 were significantly higher while NDEV and ADEV levels of neurogranin were significantly lower in mild TBI patients compared to HCs. | [74] |
Aβ42, P-tau, PRPc, SYNGR3 | TBI | Plasma | TBI patients: W/CI (N = 26), W/o CI (N = 21); Controls: W/CI (N = 19), W/o CI (N = 42) | TBI w/CI—26♂ (75 yrs) TBI w/o CI—3♀ + 18♂ (79 yrs) Controls w/CI—1♀ + 18♂ (80 yrs) Controls w/o CI—7♀ + 35♂ (79 yrs) | Thromboplastin-D + 3000× g (30′ at 4 °C) + ExoQuick® + L1CAM IP | Aβ42 and P-tau species, and their respective putative receptors, PrPc and synaptogyrin-3, remain elevated for decades after TBI, and may mediate TBI-associated CI. | [81] |
Complement effector/regulatory proteins | TBI | Plasma | sTBI patients (N = 24); mtTBI patients: Early (N = 10) and late (N = 15); sTBI controls (N = 12); mtTBI controls: Early (N = 5) and late (N = 5) | sTBI—12♀ + 12♂ (21 yrs) Early mtTBI—3♀ + 7♂ (38 yrs) Late mtTBI—2♀ + 13♂ (77 yrs) sTBI controls—6♀ + 6♂ (22 yrs) Early mtTBI controls—1♀ + 4♂ (38 yrs) Late mtTBI controls—2♀ + 3♂ (75 yrs) | Thromboplastin-D + 3000× g (30′ at 4 °C) + ExoQuick® + GLAST IP | TBI increased plasma ADEVs levels of neurotoxic complement proteins. | [82] |
NfL | TBI | Plasma | 1–2 TBIs patients (N = 94), ≥3 TBIs patients (N = 56), HC (N = 45) | 1–2 TBIs—12♀ + 82♂ (38 yrs) ≥3 TBIs—9♀ + 47♂ (37 yrs) HC—7♀ + 38♂ (38 yrs) | Thrombin + 10,000 rpm (5–10′) + ExoQuick® | Repetitive mild TBIs were associated with elevated EV levels of NfL, even years following these injuries. | [83] |
UCH-L1, GFAP, NfL, Tau | TBI | Serum | TBI patients (N = 21) | 3♀ + 18♂ (52 yrs) | 3000× g (15′ at 4 °C) + ExoQuick® | Patients with diffuse injury displayed higher acute EVs NFL and GFAP concentrations than those with focal lesions. EVs UCH-L1 specific profile was associated with early mortality. | [85] |
NfL, GFAP, p-Tau, TNFa, IL-6 | TBI | Plasma | TBI patients: W/CI (N = 35), W/o CI (N = 30); Controls: W/CI (N = 30), W/o CI (N = 60) | TBI w/CI—35♂ (77 yrs) TBI w/o CI—4♀ + 26♂ (80 yrs) Controls w/CI—3♀ + 27♂ (82 yrs) Controls w/o CI—9♀ + 51♂ (79 yrs) | Thrombin + ExoQuick® + L1CAM IP | All significantly associated biomarkers combined separated TBI w/vs. w/o CI (AUC = 0.85) and CI w/vs. w/o TBI (AUC = 0.88). | [89] |
ASC, caspase-1, IL-1β, IL-18 | Stroke | Serum | Patients (N = 16), HC (N = 80) | Stroke—n.m. HC—40♀ + 40♂ (n.m.) | 2000× g (30′) + Total Exosome Isolation reagent/ 3000× g (15′) + ExoQuick® | The AUC for ASC was 0.99, whereas the AUC for caspase-1, IL-1β, and IL-18 were 0.75, 0.61, and 0.67, respectively, and can act as biomarkers for stroke. | [38] |
Tau, p-tau181 | Chronic traumatic encephalopathy | CSF | Patients (N = 15), HC (N = 16) | Patients—15♂ (n.m.) HC—16♂ (n.m.) | 1200× g (20′ at 4 °C) + 10,000× g (30′ at 4 °C) + MagCaptureTM Exosome Isolation Kit PS (FUJIFILM Wako Pure Chemical Corporation) | T-tau and p-tau181 levels of CSF-derived EV were positively correlated with the t-tau and p-tau181 levels of total CSF in patients, respectively, but not in the HCs. | [67] |
TLN1, FLNA, 14-3-3 proteins | ME/CFS | Plasma | ME/CFS patients (N = 99), ICF patients (N = 6), depression patients (N = 8), HC (N = 56) | n.m. | SEC (qEV iZON Science) | Talin-1, filamin-A, and 14-3-3 family proteins were the most abundant proteins in EVs from ME/CFS patients. | [80] |
S100a9, S100a7, lTF, DEFA1 | ABE | CSF | Moderate ABE patients (N = 10), severe ABE patients (N = 10), HC (N = 10) | Moderate ABE—4♀ + 6♂ (5.7 days) Severe ABE—3♀ + 7♂ (5.5 days) HC—5♀ + 5♂ (6.4 days) | 2000× g (20′ at 4 °C) + Ribo™ exosome isolation reagent | A total of 291 dysregulated proteins were identified by comparing ABE patients with HCs, by mass spectrometry. S100a9, S100a7, lTF and DEFA1 were further validated. | [95] |
α-synuclein, IL-1β | Epilepsy and ADD | Serum | Epilepsy patients (N = 115), ADD patients (N = 10), HC (N = 146) | Epilepsy—47♀ + 68♂ (9 yrs) ADD—7♀ + 3♂ (8 yrs) HC—68♀ + 76♂ (9 yrs) | 3000× g (15′ at 4 °C) + ExoQuick® | α-synuclein levels were significantly increased in children with epilepsy and with ADD of the CNS and correlated with measures of disease severity. IL-1β levels showed significant correlation only with drug resistance in children with epilepsy. | [77] |
Phosphatidylserine | SCZ | CSF | SCZ patients (N = 2), HC (N = 14) | SCZ—2♀ (56 yrs) HC—n.m. | 2000× g (20′ at RT) + 13,000× g (2′ at RT) + flow cytometric assay | SCZ patients displayed more phosphatidylserine+ EVs in CSF compared with HCs. | [15] |
IL-34, SYP, TNFR1 | MDD | Plasma | MDD patients (N = 34), HC (N = 34) | MDD—14♀ + 20♂ (31 yrs) HC—14♀ + 20♂ (n.m.) | “Sandwich” ELISA w/CD81 | IL-34/CD81 levels were significantly higher in MDD group compared to HC group. Synaptophysin (SYP), SYP/CD81, and TNFR1/CD81 were positively correlated with severities of depression and/or various subsymptoms. | [39] |
IRS-1 | MDD | Plasma | MDD patients (N = 64), HC (N = 29) | MDD—40♀ + 24♂ (43 yrs) HC—11♀ + 18♂ (38 yrs) | Thrombin + 4500× g (20′ at 4 °C) + ExoQuick® + L1CAM IP | An increased concentration of IRS-1 in EVs of MDD patients was found, as compared with HC. Gender differences were observed for serine-312 phosphorylation of IRS-1 in MDD patients EVs. | [86] |
TNFR1, NF-κB | Bipolar disorder | Plasma | Patients: Infliximab-treated (N = 27), placebo (N = 28) | Infliximab—20♀ + 7♂ (44 yrs) Placebo—24♀ + 4♂ (46 yrs) | Thrombin + 4500× g (20′ at 4 °C) + ExoQuick® + L1CAM IP | Higher levels of physical abuse were associated with larger biomarker decreases over time. The antidepressant response to infliximab was moderated by TNFR1. In infliximab-treated participants, reductions in TNFR1 levels were associated with improvement in depressive symptoms. | [84] |
MGMT, APNG | GM | Serum | GM patients (N = 17), HC (N = 15) | n.m. | 1100× g (10′) + immunomagnetic exosomal RNA (iMER) platform | EVs mRNA levels of MGMT and APNG correlate well with levels found in parental cells and change considerably during treatment of seven GM patients. | [19] |
EGFRvIII mutation | GM | CSF | GM patients (N = 71) | 20♀ + 51♂ (61 yrs) | 1500× g (10′) + ultracentrifugation | EGFRvIII was detected in CSF-derived EVs for 14/23 EGFRvIII tissue+ GM patients. Only one of the 48 EGFRvIII tissue- patients had the EGFRvIII mutation detected in EVs. Sensitivity and specificity of EVs to detect an EGFRvIII-positive GBM was 61% and 98%, respectively. | [28] |
EGFRvIII mutation | GM | Serum/plasma | GM patients (N = 13), HC (N = 6) | GM—4♀ + 8♂ (63 yrs) HC—n.m. | Microfluidic isolation | The EVHB-Chip achieved 94% tumor-EV specificity. EVs from serum and plasma samples from GM patients had mutant EGFRvIII mRNA. | [44] |
PD-L1 | GM | Serum/plasma | GM patients (N = 21), HC (N = 5) | n.m. | 15,000× g (10′) + ultracentrifugation | PD-L1 DNA was present in circulating EVs from GM patients where it correlated with tumor volumes of up to 60cm3. | [45] |
IFN-γ, IL-10, IL-3, B7-1, B7-2, ICOSL | GM | Plasma | GM patients (N = 19), HC (N = 19) | GM—6♀ + 13♂ (n.m.) HC—n.m. | 3000 rpm (15′) + OptiPrepTM solution (Sigma-Aldrich) + ultracentrifugation | Cytokines and costimulatory molecules were readily detected but appeared globally reduced in GM patients’ EVs. | [57] |
GFAP, Tau | GM | Plasma | GM patients (N = 15), HC (N = 8) | n.m. | Dielectrophoretic (DEP) micro-chip device | For GM diagnosis, EV-GFAP reached 93% sensitivity, 38% specificity, and AUC of 0.65; for EV-Tau, 67% sensitivity, 75% specificity and AUC of 0.71 was disclosed. | [66] |
PTRF | Glioma | Serum | Glioma patients (N = 36) | n.m. | 10,000× g (30′) + ultracentrifugation | A positive correlation between tumor grade and PTRF expression was found in both tumor tissues and blood EVs from GM patients. PTRF expression in exosomes isolated from the sera of GM patients was decreased after surgery. | [37] |
EGFRvIII mutation | Glioma | Serum | Grade III glioma patients (N = 23), Grade IV glioma patients (N = 73) Other neurological diseases patients (N = 15), HC (N = 50) | Grade III glioma—4♀ + 19♂ (44 yrs) Grade IV glioma—25♀ + 48♂ (53 yrs) Controls—n.m. | 600× g (10′) + 2000× g (20′) + 10,000× g (20′) + Total Exosome Isolation Kit | Sensitivity and specificity of EVs EGFRvIII detection assay in serum were 81.58% and 79.31%, respectively. EGFRvIII expression either in EVs or tissue correlated with poor survival. | [41] |
EGFR, NLGN3, PTTG1 | Glioma | Serum | Glioma patients (N = 23), HC (N = 12) | Glioma—9♀ + 14♂ (52 yrs) HC—3♀ + 9♂ (59 yrs) | 2000× g (15′) + ultracentrifugation | Protein expression of EGFR in EVs can accurately differentiate high-grade and low-grade glioma patients, and positively correlates with ki-67 labeling index in tumor tissue. NLGN3 and PTTG1 mRNA in EVs were also validated for detecting glioma patients. | [73] |
FASN | Glioma | Plasma | Glioma patients (N = 8 + 9), HC (N = 8 + 3) | n.m. | 1000× g (7′) + 10,000× g (30′) + ultracentrifugation | FASN was elevated in CD63+ and CD81+ EVs in glioma patient samples. | [92] |
GFAP, Survivin | Glioma | Serum | Glioma patients (N = 8), HC (N = 3) | Glioma—3♀ + 5♂ (52 yrs) HC—n.m. | 10,000× g (80′at 4 °C) + ultracentrifugation | Patients with longer time to tumor progression exhibited a decrease in CD9+/SVN+ and CD9+/GFAP+/SVN+ EVs immediately following survivin vaccination; whereas, those with early tumor progression had an increase in the same markers, despite anti-survivin immunotherapy. | [97] |
PpIX | Glioma | Plasma | Glioma patients (N = 6) | 2♀ + 4♂ (59 yrs) | exoEasy Maxi Kit (Qiagen) | Plasma of patients with avidly fluorescent tumors undergoing FGS contain circulating PpIX+ EVs at levels significantly higher than their predosing background, which correlates with enhancing tumor volumes. | [62] |
CD63, CD81 | Brain tumors (mixed) | Plasma | GM patients (n.m.), anaplastic astrocytoma patients (n.m.), brain metastases patients (n.m.), meningioma patients (n.m), Pituitary adenoma patients (n.m.), epilepsy controls (n.m.), HC (n.m.) | n.m. | 15,000× g (15′) + ultracentrifugation | EVs with double positive CD63+/CD81+ expression are enriched in cancer cell lines and patient plasma samples. | [69] |
Molecule | Disease | Sample Type | Sample Grouping and Size | Patients Gender and Mean Age | EVs Isolation Method | Key Findings | Ref. |
---|---|---|---|---|---|---|---|
miR-16-5p, miR-125b-5p, miR-451a, miR-605-5p | AD | CSF | Young-onset AD (YOAD) Patients (N = 17), Late-onset AD (LOAD) Patients (N = 13) HC (N = 12) | YOAD—10♀ + 7♂ (61 yrs) LOAD—5♀ + 8♂ (76 yrs) HC—7♀ + 5♂ (67 yrs) | 3000× g (5′) + miRCURYTM Exosome Isolation Kit (Exiqon) | MiR-16-5p, miR-125b-5p, miR-451a, and miR-605-5p were differentially expressed in the EVs of YOAD patients when compared with HC. In LOAD patients, miR-125b-5p, miR-451a, and miR-605-5p were similarly altered in expression, but miR-16-5p showed similar expression to HC. | [42] |
miR-27a-3p, miR-30a-5p, miR-34c, piR_019324, piR_019949, piR_020364 | AD | CSF | AD patients (N = 42), MCI patients (N = 17), psychiatric and neurological controls (N = 82) | n.m. | 3500× g (10′ at 4 °C) + 2X 4500× g (10′ at 4 °C) + 10,000× g (30′ at 4 °C) + ultracentrifugation | A combined signature consisting of three miRNAs and three piRNAs were suitable to detect AD with an AUC of 0.83. The piRNA signature could predict the conversion of MCI patients to AD with an AUC of 0.86. When combining the smallRNA signature with pTau and Aβ 42/40 ratio the AUC reaches 0.98. | [61] |
miR-23a-3p, miR-223-3p, miR-190a-5p, miR-100-3p | AD | Plasma | AD patients (N = 40), HC (N = 40) | AD—25♀ + 15♂ (73 yrs) HC—18♀ + 22♂ (67 yrs) | 3000× g (15′) + Thrombin + 10,000 rpm (5′) + ExoQuick® (System Biosciences) + L1CAM IP | MiR-23a-3p, miR-223- 3p and miR-190a-5p levels in NDEVs from AD patients were significantly upregulated as compared with HCs, whereas miR-100-3p levels were significantly downregulated. | [93] |
miR-204-5p, miR-632 | FTD | CSF | GeNFI cohort: GRN, C9orf72 and MAPT mutation carriers (N = 38), Non-mutation carriers (N = 11); Sporadic disease cohort: FTD patients (N = 11), PPA patients (N = 6), AD patients (N = 13), HC (N = 10) | Mutation carriers—25♀ + 13♂ (54 yrs) Non-mutation carriers—6♀ + 5♂ (47 yrs) FTD—2♀ + 9♂ (67 yrs) PPA—2♀ + 4♂ (66yrs) AD—5♀ + 8♂ (63 yrs) HC—5♀ + 5♂ (69 yrs) | 10,000× g (5′) + miRCURYTM Exosome Isolation Kit | In the GeNFI cohort, miR-204-5p and miR-632 were significantly decreased in symptomatic compared with presymptomatic mutation carriers, with an AUC of 0.89 and 0.81, respectively, and 0.93 when combined. In sporadic FTD, only miR-632 was significantly decreased compared with AD and HC (AUC = 0.90). | [47] |
miR-233 | Dementia | Serum | Dementia patients: First clinic visit AD (ADfirst) (N = 11), Treatment-receiving AD (ADcare) (N = 11), VD (N = 10); HC (N = 16) | ADfirst—5♀ + 6♂ (76 yrs) ADcare—4♀ + 7♂ (79 yrs) VD—4♀ + 6♂ (82 yrs) HC—8♀ + 8♂ (80 yrs) | 3000× g (15′ at 4 °C) + ExoQuick® | The median levels of EVs miR-223 was significantly decreased in dementia patients, when comparing with HC (AUC = 0.875). | [51] |
miR-132-3p, miR-212 | AD and MCI | Plasma | AD patients (N = 16), AD-MCI patients (N = 16), HC (N = 31) | n.m. | Thrombin + 6000× g (20′ at 4 °C) + ExoQuick® + L1CAM IP | Measurement of miR-132-3p in NDEVs showed good sensitivity and specificity to diagnose AD, but did not effectively separate individuals with AD-MCI from HC. MiR-212 was also decreased in NDEVs from AD patients compared to HC. | [55] |
let-7e-5p, miR- 125a-5p, miR-23a-3p, miR-375, miR-1468-5p, miR-204-5p, miR-369-5p, miR-423-5p | AD and PD | Plasma | AD patients (N = 5), PD patients (N = 7), HC (N = 34) | AD—18♀ + 22♂ (67 yrs) PD—6♀ + 1♂ (62 yrs) HC—14♀ + 20♂ (33 yrs) | exoRNeasy Serum/Plasma Maxi Kit (QIAGEN) and 8000× g (5′) + ExoQuick® | Compared to the HC, eight miRNAs were found to be significantly elevated/declined in AD and PD samples, of which fiour miRNAs were newly identified. | [87] |
miR-1246, miR-127-3p, miR-19b-3p, miR-134-5p, miR-370- 3p, miR-375, miR-379-5p, miR-382-5p, miR-432-5p, miR-485-5p, miR-493-3p | MS | Serum | RRMS patients (N = 29) | 17♀ + 12♂ (34 yrs) | SEC (qEV iZON Science) | Several combinations of two or three miRNAs were able to distinguish active from quiescent disease with greater than 90% accuracy. Additional miRNAs associated with stable remission, and a positive response to fingolimod in patients with active disease prior to treatment. | [79] |
miR-9-5p, miR-15a-5p, miR-183-5p, miR- 193a-5p, miR-338-3p, miR-1246 | ALS | Plasma | ALS patients (N = 14), HC (N = 8) | ALS—8♀ + 6♂ (62 yrs) HC—n.m. | Vn96 peptide method | MiRNAs with relevance to ALS were found to be deregulated, including miR-9-5p, miR-183-5p, miR-338-3p and miR-1246. MiR-15a-5p and miR-193a-5p were identified for their di- agnostic potential of ALS and association with disability progression, respectively. | [70] |
miR-146a-5p, miR-199a-3p, miR-4454, miR-10b-5p, miR-29b-3p, miR-151a-3p, miR-151a-5p, miR-199a-5p | ALS/MND | Plasma | ALS/MND patients (N = 10 + 10), HC (N = 10 + 10) | n.m. | Thrombin + ExoQuick® + L1CAM IP | Five upregulated and three downregulated miRNA sequences significantly distinguished ALS/MND patients from HC in two independent patient cohorts. | [75] |
miR-203b-5p, miR-203a-3p, miR-206, miR- 185-5p | TBI | Plasma | TBI patients (N = 16), HC (N = 20) | n.m. | Track Etched Magnetic Nanopore (TENPO) sorting for GluR2 | A panel of four miRNAs significantly discriminated TBI patients vs. HC. | [63] |
miR-139-5p, miR-18a-5p, miR-103a-3p | TBI | Plasma | 1-2 TBIs patients (N = 73), rTBI patients (N = 45), HC (N = 35) | 1-2 TBI—7♀ + 66♂ (39 yrs) rTBI—9♀ + 36♂ (41 yrs) HC—4♀ + 31♂ (42 yrs) | 3000 rpm (5′) + exoRNeasy Serum/Plasma Kit | MiR-139-5p and miR-18a-5p, were significantly differentially expressed in the rTBI and 1-2 TBI groups. TBI history and neurobehavioral symptom survey scores negatively correlated with miR-103a-3p expression. | [78] |
miR-9, miR-124 | AIS | Serum | AIS patients (N = 65), HC (N = 66) | AIS—25♀ + 40♂ (64 yrs) HC—30♀ + 36♂ (60 yrs) | 21,000× g (15′ at 4 °C) + ExoQuick® | miR-9 and miR-124 were significantly higher in AIS patients vs. HC (AUCs of 0.8026 and 0.6976, respectively). | [23] |
miR-21-5p, miR-30a-5p | IS | Plasma | HIS patients (N = 15), AIS patients days 1-3 (N = 33), AIS patients days 3-7 (N = 32), SIS patients (N = 31), RIS patients (N = 32) HC (N = 24) | HIS—5♀ + 10♂ (58 yrs) AIS days 1-3—9♀ + 24♂ (58 yrs) AIS days 3-7—13♀ + 19♂ (58 yrs) SIS—9♀ + 22♂ (62 yrs) RIS—4♀ + 28♂ (62 yrs) HC—6♀ + 18♂ (57 yrs) | 16,000× g (10′ at 4 °C) + exoRNeasy Serum/Plasma Kit | MiR- 21-5p and miRNA-30a-5p in combination are promising biomarkers for diagnosing IS and distinguishing among HIS, SIS, and RIS, especially miRNA-30a-5p for the diagnosis of the HIS phase. | [50] |
miR-122-3p, miR-200a-5p | NMOSD | Serum | NMOSD in relapsing patients (N = 16), NMOSD in remission patients (N = 15), HC (N = 14) | NMOSD relapsing—14♀ + 2♂ (37 yrs) NMOSD remission—13♀ + 2♂ (39 yrs) HC—12♀ + 2♂ (35 yrs) | RiboTM Exosome Isolation Reagent (RiboBio) | MiR-122-3p and miR-200a-5p could distinguish NMOSD status, and were significantly upregulated in the serum EVs of relapsing NMOSD compared with that in remitting NMOSD. The two miRNAs had positive correlations with disease severity in NMOSD patients. | [76] |
miR-3613-5p, miR-4668-5p, miR-8071, miR-197-5p, miR-4322, miR-6781-5p | mTLE-HS | Plasma | mTLE-HS patients (N = 40), HC (N = 40) | mTLE-HS—15♀ + 25♂ (27 yrs) HC—n.m. | 2000× g (20′) + 10,000× g (20′) + ExoQuick® | Among six candidate microRNAs, miR-8071 had the best diagnostic value for mTLE-HS with 83.33% sensitivity and 96.67% specificity, and was associated with seizure severity. | [32] |
miR-206, miR619-5p, miR-133a-3p, miR-143-3p, miR-144-5p, miR-499a-5p, miR-3614-5p, miR-941, miR-30c-5p, miR-339-5p, miR-30b-5p, miR-6515-5p | SCZ | Serum | SCZ patients (N = 100), HC (N = 100) | SCZ—50♀ + 50♂ (30 yrs) HC—42♀ + 58♂ (29 yrs) | SEC (qEV iZON Science) | MiR-206 was the most upregulated miRNA in the EVs of SCZ patients. A signature of 11 miRNAs were identified in EVs from SCZ patients and were used to classify samples from SCZ and HC subjects with high accuracy. | [58] |
miR-203a-3p | PTSD | Plasma | Discovery set: PTSD patients (N = 12), HC (N = 12); validation set: PTSD patients (N = 10), HC (N = 10) | Discovery set: PTSD—12♂ (31 yrs) HC—12♂ (34 yrs) validation set: PTSD—10♂ (31 yrs) HC—10♂ (31 yrs) | 10,000× g (10′) + SEC (iZON Science) | The concentration changes of miR-203a-3p in EV and miR-339-5p in EV-depleted plasma were confirmed two independent cohort veterans with PTSD. | [65] |
RNU6-1, miR-320, miR-574 | GM | Serum | Training set: GM patients (N = 25), HC (N = 25); validation set: GM patients (N = 50), HC (N = 30) | Training set: GM—11♀ + 14♂ (60 yrs) HC—11♀ + 14♂ (60 yrs) validation set: GM—20♀ + 30♂ (61 yrs) HC—16♀ + 14♂ (54 yrs) | ExoQuick® | The expression levels of the sncRNA RNU6-1, miR-320 and miR-574-3p were significantly associated with a GM diagnosis. RNU6-1 was consistently an independent predictor of a GBM diagnosis. | [17] |
miR-21, miR-27b, miR-130b, miR-193b, miR-218, miR-331, miR-374a, miR-520f, miR-548c | GM | CSF | Discovery cohort 1 patients (N = 24) and HC (N = 15); discovery cohort 2 patients (N = 40) and HC (N = 27); discovery cohort 3 patients (N = 13) and HC (N = 19); validation cohort 4 patients (N = 10) and HC (N = 12); validation cohort 5 patients (N = 18) and HC (N = 20) | Discovery cohort 1—17♀ + 22♂ (61 yrs) discovery cohort 2—32♀ + 35♂ (59 yrs) discovery cohort 3—13♀ + 19♂ (57 yrs) validation cohort 4—5♀ + 17♂ (54 yrs) validation cohort 5—25♀ + 15♂ (58 yrs) | 2000× g (20′) + ultracentrifugation | Comparison of miRNA profiles between GM patients and HC yielded a tumor “signature” consisting of nine miRNAs, which correlated with GM tumor volume. | [27] |
HOTAIR | GM | Serum | GM patients (N = 43), HC (N = 40) | n.m. | Total Exosome Isolation Kit (InvitrogenTM) | HOTAIR was present in whole serum and purified EVs but not in serum supernatant depleted of EVs, in GM patients. | [49] |
RNU6-1 | GM | Serum | GM patients (N = 18), subacute stroke patients (N = 30), acute/subacute hemorrhage patients (N = 30), MS patients (N = 18), brain metastases patients (N = 21), PCNSL patients (N = 12), HC (n = 30), | GM—8♀ + 10♂ (63 yrs) stroke—11♀ + 19♂ (71 yrs) hemorrhage—9♀ + 21♂ (66 yrs) MS—13♀ + 6♂ (41 yrs) PCNSL—4♀ + 8♂ (66 yrs) metastases—10♀ + 11♂ (60 yrs) HC—17♀ + 13♂ (47 yrs) | ExoQuick® | RNU6-1 expression was significantly higher in GM patients vs. HC, and also when comparing with patients with non-neoplastic lesions. No significant differences were found between GM patients and brain metastases. | [91] |
miR-21 | Glioma | CSF | Glioma patients (N = 70), non-glioma controls (N = 25) | Glioma—28♀ + 42♂ (50 yrs) non-glioma—7♀ + 18♂ (54 yrs) | 2000× g (30′) + 12,000× g (25′) + ultracentrifugation | MiR-21 levels in CSF-EVs of glioma patients were found significantly higher than in non-glioma controls; whereas no difference was detected in serum-derived EVs. The CSF-EVs miR-21 levels correlated with tumor spinal/ventricle metastasis and the recurrence with anatomical site preference. | [20] |
miR-4443, miR-422a, miR-494-3p, miR-502-5p, miR-520f-3p, miR-549a | Glioma | Serum | Glioma patients (N = 28), HC (N = 8) | Glioma—13♀ + 15♂ (49 yrs) HC—n.m. | 3 × 3500 rpm (20′) + ExoQuick® | Six overexpressed miRNAs were found on EVs from glioma patients vs. HC. MiR-549a and miR-502-5p expression predicted prognosis in glioma patients. | [33] |
miR-301a | Glioma | Serum | Glioma patients (N = 60), HC (N = 43) | Glioma—33♀ + 27♂ (n.m.) HC—n.m. | 3000× g (15′ at 4 °C) + ExoQuick® | MiR-301a levels on EVs were upregulated in glioma patients compared to HC, and correlated with ascending pathological grades. MiR-301a levels were significantly reduced after surgical resection of primary tumors and increased again during GM recurrence, and were independently associated with overall survival. | [40] |
miR-21, miR-222, miR-124-3p | Glioma | Serum | Glioma patients (N = 100), brain non-glial metastases patients (N = 11), HC (N = 30) | Glioma—40♀ + 60♂ (n.m.) non-glial metastases—40♀ + 60♂ (n.m.) HC—8♀ + 3♂ (41 yrs) | 3000× g (15′) + ExoQuick® | The expression levels of miR-21, miR-222 and miR-124-3p in EVs of patients with high grade gliomas were significantly higher than those of low grade gliomas and HC, and were decreased in samples obtained after surgery. | [46] |
miR-454-3p | Glioma | Serum | Glioma patients (N = 24), HC (N = 24) | n.m. | RiboTM Exosome Isolation Reagent | MiR-454-3p was significantly downregulated in tumor tissues, while it was upregulated in EVs from the same patients with glioma, corresponding to an AUC of 0.8663. MiR-454-3p expression was lower in the post-operative samples. High miR- 454-3p expression in EVs or low expression in tissues was associated with poor prognosis | [71] |
miR-210, miR-5194, miR-449 | Glioma | Plasma | GM patients (N = 25), LGA patients (N = 25), Head trauma patients (N = 15) | GM—6♀ + 19♂ (n.m.) LGA—10♀ + 15♂ (n.m.) trauma—6♀ + 9♂ (n.m.) | n.m. | MiR-210 was upregulated in GM and LGA, whereas miR-185, miR-5194, and miR-449 were downregulated in GM and LGA compared to trauma patients. MiR-5194 and miR-449 were significantly decreased in GM patients compared with LGA. | [94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro-Reis, S.; Carvalho-Maia, C.; Bart, G.; Vainio, S.J.; Pedro, J.; Silva, E.R.; Sales, G.; Henrique, R.; Jerónimo, C. Secreted Extracellular Vesicle Molecular Cargo as a Novel Liquid Biopsy Diagnostics of Central Nervous System Diseases. Int. J. Mol. Sci. 2021, 22, 3267. https://doi.org/10.3390/ijms22063267
Monteiro-Reis S, Carvalho-Maia C, Bart G, Vainio SJ, Pedro J, Silva ER, Sales G, Henrique R, Jerónimo C. Secreted Extracellular Vesicle Molecular Cargo as a Novel Liquid Biopsy Diagnostics of Central Nervous System Diseases. International Journal of Molecular Sciences. 2021; 22(6):3267. https://doi.org/10.3390/ijms22063267
Chicago/Turabian StyleMonteiro-Reis, Sara, Carina Carvalho-Maia, Genevieve Bart, Seppo J. Vainio, Juliana Pedro, Eunice R. Silva, Goreti Sales, Rui Henrique, and Carmen Jerónimo. 2021. "Secreted Extracellular Vesicle Molecular Cargo as a Novel Liquid Biopsy Diagnostics of Central Nervous System Diseases" International Journal of Molecular Sciences 22, no. 6: 3267. https://doi.org/10.3390/ijms22063267
APA StyleMonteiro-Reis, S., Carvalho-Maia, C., Bart, G., Vainio, S. J., Pedro, J., Silva, E. R., Sales, G., Henrique, R., & Jerónimo, C. (2021). Secreted Extracellular Vesicle Molecular Cargo as a Novel Liquid Biopsy Diagnostics of Central Nervous System Diseases. International Journal of Molecular Sciences, 22(6), 3267. https://doi.org/10.3390/ijms22063267