Vaporized Hydrogen Peroxide and Ozone Gas Synergistically Reduce Prion Infectivity on Stainless Steel Wire
Abstract
:1. Introduction
2. Results
2.1. Ozone Gas and Vaporized Hydrogen Peroxide Synergistically Reduce Prion Infectivity on Stainless Steel Wires
2.2. Prion-Inactivating Activity of Ozone Gas Mixed with Vaporized Hydrogen Peroxide Is Correlated to Exposure Time but Not to Vaporized Hydrogen Peroxide Concentration
2.3. Ozone Gas Mixed with Vaporized Hydrogen Peroxide Reduces Prion Infectivity in a Highly Sensitive Mouse Model
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Antibodies
4.3. Animals
4.4. Fixation of RML Prions onto Stainless Steel Wires
4.5. Inactivation of RML Prions on Stainless Steel Wires
4.6. Intracerebral Inoculation with Prion-Infected Brain Homogenates
4.7. Intracerebral Insertion of Prion-Contaminated Stainless Steel Wires
4.8. Western Blotting
4.9. Hematoxylin-Eosin Staining
4.10. Immunohistochemistry
4.11. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 1998, 95, 13363–13383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weissmann, C. Birth of a prion: Spontaneous generation revisited. Cell 2005, 122, 165–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadsworth, J.D.; Collinge, J. Update on human prion disease. Biochim. Biophys. Acta 2007, 1772, 598–609. [Google Scholar] [CrossRef] [Green Version]
- Uttley, L.; Carroll, C.; Wong, R.; Hilton, D.A.; Stevenson, M. Creutzfeldt-Jakob disease: A systematic review of global incidence, prevalence, infectivity, and incubation. Lancet Infect. Dis. 2020, 20, e2–e10. [Google Scholar] [CrossRef]
- Abrahantes, J.C.; Aerts, M.; van Everbroeck, B.; Saegerman, C.; Berkvens, D.; Geys, H.; Mintiens, K.; Roels, S.; Cras, P. Classification of sporadic Creutzfeldt-Jakob disease based on clinical and neuropathological characteristics. Eur. J. Epidemiol. 2007, 22, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Mead, S.; Lloyd, S.; Collinge, J. Genetic Factors in Mammalian Prion Diseases. Annu. Rev Genet. 2019, 53, 117–147. [Google Scholar] [CrossRef]
- Collinge, J.; Whitfield, J.; McKintosh, E.; Beck, J.; Mead, S.; Thomas, D.J.; Alpers, M.P. Kuru in the 21st century—An acquired human prion disease with very long incubation periods. Lancet 2006, 367, 2068–2074. [Google Scholar] [CrossRef]
- Will, R.G.; Ironside, J.W.; Zeidler, M.; Cousens, S.N.; Estibeiro, K.; Alperovitch, A.; Poser, S.; Pocchiari, M.; Hofman, A.; Smith, P.G. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 1996, 347, 921–925. [Google Scholar] [CrossRef]
- Ghani, A.C.; Donnelly, C.A.; Ferguson, N.M.; Anderson, R.M. Updated projections of future vCJD deaths in the UK. BMC Infect. Dis. 2003, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.; Brandel, J.P.; Sato, T.; Nakamura, Y.; MacKenzie, J.; Will, R.G.; Ladogana, A.; Pocchiari, M.; Leschek, E.W.; Schonberger, L.B. Iatrogenic Creutzfeldt-Jakob disease, final assessment. Emerg. Infect. Dis. 2012, 18, 901–907. [Google Scholar] [CrossRef]
- Bernoulli, C.; Siegfried, J.; Baumgartner, G.; Regli, F.; Rabinowicz, T.; Gajdusek, D.C.; Gibbs, C.J., Jr. Danger of accidental person-to-person transmission of Creutzfeldt-Jakob disease by surgery. Lancet 1977, 1, 478–479. [Google Scholar] [CrossRef]
- El Hachimi, K.H.; Chaunu, M.P.; Cervenakova, L.; Brown, P.; Foncin, J.F. Putative neurosurgical transmission of Creutzfeldt-Jakob disease with analysis of donor and recipient: Agent strains. C. R. Acad. Sci. III 1997, 320, 319–328. [Google Scholar] [CrossRef]
- Mahillo-Fernandez, I.; de Pedro-Cuesta, J.; Bleda, M.J.; Cruz, M.; Molbak, K.; Laursen, H.; Falkenhorst, G.; Martinez-Martin, P.; Siden, A.; Group, E.R. Surgery and risk of sporadic Creutzfeldt-Jakob disease in Denmark and Sweden: Registry-based case-control studies. Neuroepidemiology 2008, 31, 229–240. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, G.; Dehen, C.; Perrin, A.; Thomas, V.; Igel-Egalon, A.; Burke, P.A.; Deslys, J.P.; Comoy, E. Cleaning, disinfection and sterilization of surface prion contamination. J. Hosp. Infect. 2013, 85, 268–273. [Google Scholar] [CrossRef]
- Taylor, D.M. Decontamination of Creutzfeldt-Jakob disease agent. Ann. Neurol. 1986, 20, 749–750. [Google Scholar] [CrossRef]
- Tateishi, J.; Tashima, T.; Kitamoto, T. Practical methods for chemical inactivation of Creutzfeldt-Jakob disease pathogen. Microbiol. Immunol. 1991, 35, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Botsios, S.; Tittman, S.; Manuelidis, L. Rapid chemical decontamination of infectious CJD and scrapie particles parallels treatments known to disrupt microbes and biofilms. Virulence 2015, 6, 787–801. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D.M. Autoclaving standards for Creutzfeldt-Jakob disease agent. Ann. Neurol. 1987, 22, 557–558. [Google Scholar] [CrossRef]
- Sakudo, A.; Yamashiro, R.; Harata, C. Effect of Non-Concentrated and Concentrated Vaporized Hydrogen Peroxide on Scrapie Prions. Pathogens 2020, 9, 947. [Google Scholar] [CrossRef] [PubMed]
- Fichet, G.; Comoy, E.; Duval, C.; Antloga, K.; Dehen, C.; Charbonnier, A.; McDonnell, G.; Brown, P.; Lasmezas, C.I.; Deslys, J.P. Novel methods for disinfection of prion-contaminated medical devices. Lancet 2004, 364, 521–526. [Google Scholar] [CrossRef]
- Ding, N.; Neumann, N.F.; Price, L.M.; Braithwaite, S.L.; Balachandran, A.; Mitchell, G.; Belosevic, M.; Gamal El-Din, M. Kinetics of ozone inactivation of infectious prion protein. Appl. Environ. Microbiol. 2013, 79, 2721–2730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telling, G.C.; Haga, T.; Torchia, M.; Tremblay, P.; DeArmond, S.J.; Prusiner, S.B. Interactions between wild-type and mutant prion proteins modulate neurodegeneration in transgenic mice. Genes Dev. 1996, 10, 1736–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, N.; Neumann, N.F.; Price, L.M.; Braithwaite, S.L.; Balachandran, A.; Belosevic, M.; Gamal El-Din, M. Ozone inactivation of infectious prions in rendering plant and municipal wastewaters. Sci. Total Environ. 2014, 470-471, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.J.; Gilbert, P.U.; McKenzie, D.; Pedersen, J.A.; Aiken, J.M. Ultraviolet-ozone treatment reduces levels of disease-associated prion protein and prion infectivity. BMC Res. Notes 2009, 2, 121. [Google Scholar] [CrossRef] [Green Version]
- Collinge, J.; Clarke, A.R. A general model of prion strains and their pathogenicity. Science 2007, 318, 930–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadsworth, J.D.; Asante, E.A.; Collinge, J. Review: Contribution of transgenic models to understanding human prion disease. Neuropathol. Appl. Neurobiol. 2010, 36, 576–597. [Google Scholar] [CrossRef] [Green Version]
- Mudd, J.B.; Leavitt, R.; Ongun, A.; McManus, T.T. Reaction of ozone with amino acids and proteins. Atmos. Environ. 1969, 3, 669–682. [Google Scholar] [CrossRef]
- McEvoy, B.; Rowan, N.J. Terminal sterilization of medical devices using vaporized hydrogen peroxide: A review of current methods and emerging opportunities. J. Appl. Microbiol. 2019, 127, 1403–1420. [Google Scholar] [CrossRef] [Green Version]
- Glaze, W.H.; Kang, J.-W.; Chapin, D.H. The chhemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 1987, 9, 335–352. [Google Scholar] [CrossRef]
- Hara, H.; Miyata, H.; Das, N.R.; Chida, J.; Yoshimochi, T.; Uchiyama, K.; Watanabe, H.; Kondoh, G.; Yokoyama, T.; Sakaguchi, S. Prion Protein Devoid of the Octapeptide Repeat Region Delays Bovine Spongiform Encephalopathy Pathogenesis in Mice. J. Virol. 2018, 92, e01368-17. [Google Scholar] [CrossRef] [Green Version]
Gas Exposure Mode | Diseased Mice /Total Mice | Incubation Times 1 (Days) |
---|---|---|
Unexposed | 8/8 | 96 ± 7 |
Standard mode | 2/7 | >326 (106, 106) |
ET mode | 2/7 | >326 (113, 116) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hara, H.; Chida, J.; Pasiana, A.D.; Uchiyama, K.; Kikuchi, Y.; Naito, T.; Takahashi, Y.; Yamamura, J.; Kuromatsu, H.; Sakaguchi, S. Vaporized Hydrogen Peroxide and Ozone Gas Synergistically Reduce Prion Infectivity on Stainless Steel Wire. Int. J. Mol. Sci. 2021, 22, 3268. https://doi.org/10.3390/ijms22063268
Hara H, Chida J, Pasiana AD, Uchiyama K, Kikuchi Y, Naito T, Takahashi Y, Yamamura J, Kuromatsu H, Sakaguchi S. Vaporized Hydrogen Peroxide and Ozone Gas Synergistically Reduce Prion Infectivity on Stainless Steel Wire. International Journal of Molecular Sciences. 2021; 22(6):3268. https://doi.org/10.3390/ijms22063268
Chicago/Turabian StyleHara, Hideyuki, Junji Chida, Agriani Dini Pasiana, Keiji Uchiyama, Yutaka Kikuchi, Tomoko Naito, Yuichi Takahashi, Junji Yamamura, Hisashi Kuromatsu, and Suehiro Sakaguchi. 2021. "Vaporized Hydrogen Peroxide and Ozone Gas Synergistically Reduce Prion Infectivity on Stainless Steel Wire" International Journal of Molecular Sciences 22, no. 6: 3268. https://doi.org/10.3390/ijms22063268
APA StyleHara, H., Chida, J., Pasiana, A. D., Uchiyama, K., Kikuchi, Y., Naito, T., Takahashi, Y., Yamamura, J., Kuromatsu, H., & Sakaguchi, S. (2021). Vaporized Hydrogen Peroxide and Ozone Gas Synergistically Reduce Prion Infectivity on Stainless Steel Wire. International Journal of Molecular Sciences, 22(6), 3268. https://doi.org/10.3390/ijms22063268