Maternal Exposure to Dibutyl Phthalate (DBP) or Diethylstilbestrol (DES) Leads to Long-Term Changes in Hypothalamic Gene Expression and Sexual Behavior
Abstract
:1. Introduction
2. Results
2.1. General Effect of Treatments
2.2. Anogenital Distance (AGD)
2.3. Vaginal Opening
2.4. Hypothalamic Gene Expression
2.5. Sexual Behavior
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Animals and Treatments
4.3. Measurement of Anogenital Distance (AGD)
4.4. Vaginal Opening in Female Offspring
4.5. Hypothalamic mRNA Analysis
4.6. Behavioral Testing
4.7. Statistical Treatment
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharpe, R.M.; Skakkebaek, N.E. Testicular dysgenesis syndrome: Mechanistic insights and potential new downstream effects. Fertil. Steril. 2018, 89 (Suppl. 2), e33–e38. [Google Scholar] [CrossRef]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [CrossRef]
- Emmen, J.M.; McLuskey, A.; Adham, I.M.; Engel, W.; Verhoef-Post, M.; Themmen, A.P.; Grootegoed, J.A.; Brinkmann, A.O. Involvement of insulin-like factor 3 (Insl3) in diethylstilbestrol-induced cryptorchidism. Endocrinology 2000, 141, 846–849. [Google Scholar] [CrossRef]
- McKinnell, C.; Sharpe, R.M.; Mahood, K.; Hallmark, N.; Scott, H.; Ivell, R.; Staub, C.; Jegou, B.; Haag, F.; Koch-Nolte, F.; et al. Expression of Insulin-like factor 3 (Insl3) protein in the rat testis during fetal and postnatal development and in relation to cryptorchidism induced by in utero exposure to Di (n-butyl) phthalate. Endocrinology 2005, 146, 4536–4544. [Google Scholar] [CrossRef]
- Howdeshell, K.L.; Wilson, V.S.; Furr, J.; Lambright, C.R.; Rider, C.V.; Blystone, C.R.; Hotchkiss, A.K.; Gray, L.E., Jr. A mixture of five phthalate esters inhibits fetal testicular testosterone production in the Sprague-Dawley rat in a cumulative, dose-additive manner. Toxicol. Sci. 2008, 105, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Henley, D.V.; Korach, K.S. Endocrine-disrupting chemicals use distinct mechanisms of action to modulate endocrine system function. Endocrinology 2006, 147 (Suppl. 6), S25–S32. [Google Scholar] [CrossRef] [Green Version]
- Majdic, G.; Sharpe, R.M.; O’Shaugnessy, P.J.; Saunders, P.T. Expression of cytochrome P450 17alpha-hydroxylase/C17-20 lyase in the fetal rat testis is reduced by maternal exposure to exogenous estrogens. Endocrinology 1996, 137, 1063–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haavisto, T.; Adamsson, N.A.; Myllymäki, S.A.; Toppari, J.; Paranko, J. Effects of 4-tert-octylphenol, 4-tert-butylphenol, and diethylstilbestrol on prenatal testosterone surge in the rat. Reprod. Toxicol. 2003, 17, 593–605. [Google Scholar] [CrossRef]
- Carruthers, C.M.; Foster, P.M. Critical window of male reproductive tract development in rats following gestational exposure to di-n-butyl phthalate. Birth Defects Res. B Dev. Reprod. Toxicol. 2005, 74, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Quadros, P.S.; Pfau, J.L.; Goldstein, A.Y.N.; De Vries, G.J.; Wagner, C.K. Sex Differences in Progesterone Receptor Expression: A Potential Mechanism for Estradiol-Mediated Sexual Differentiation. Endocrinology 2002, 143, 3727–3739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, M.; Shirai, M.; Tamura, A.; Kobayashi, T.; Kohara, S.; Murakami, M.; Arishima, K. Effects of maternal exposure to a low dose of diethylstilbestrol on sexual dimorphic nucleus volume and male reproductive system in rat offspring. J. Toxicol. Sci. 2005, 30, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Keller, M.; Vandenberg, L.N.; Charlier, T.D. The parental brain and behavior: A _target for endocrine disruption. Front. Neuroendocr. 2019, 54, 100765. [Google Scholar] [CrossRef] [PubMed]
- Patisaul, H.B.; Adewale, H.B. Long-term effects of environmental endocrine disruptors ion reproductive physiology and behavior. Front Behav. Neurosci. 2009, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Mhaouty-Kodja, S.; Naulé, L.; Capela, D. Sexual Behavior: From Hormonal Regulation to Endocrine Disruption. Neuroendocrinology 2018, 107, 400–416. [Google Scholar] [CrossRef]
- Wehrenberg, U.; Ivell, R.; Jansen, M.; Von Goedecke, S.; Walther, N. Two orphan receptors binding to a common site are involved in the regulation of the oxytocin gene in the bovine ovary. Proc. Natl. Acad. Sci. USA 1994, 91, 1440–1444. [Google Scholar] [CrossRef] [Green Version]
- Stedronsky, K.; Telgmann, R.; Tillmann, G.; Walther, N.; Ivell, R. The Affinity and Activity of the Multiple Hormone Response Element in the Proximal Promoter of the Human Oxytocin Gene. J. Neuroendocr. 2002, 14, 472–485. [Google Scholar] [CrossRef]
- Tsukahara, S. Sex Differences and the Roles of Sex Steroids in Apoptosis of Sexually Dimorphic Nuclei of the Preoptic Area in Postnatal Rats. J. Neuroendocr. 2009, 21, 370–376. [Google Scholar] [CrossRef]
- Döhler, K.D.; Coquelin, A.; Davis, F.; Hines, M.; Shryne, J.E.; Gorski, R.A. Pre- and postnatal influence of testosterone propionate and diethylstilbestrol on differentiation of the sexually dimorphic nucleus of the preoptic area in male and female rats. Brain Res. 1984, 302, 291–295. [Google Scholar] [CrossRef]
- Tanaka, M.; Ohtani-Kaneko, R.; Yokosuka, M.; Watanabe, C. Low-dose perinatal diethylstilbestrol exposure affected behaviors and hypothalamic estrogen receptor-α-positive cells in the mouse. Neurotoxicol. Teratol. 2004, 26, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Nagai, A.; Ikeda, M.A.; Hayashi, S. Sexually dimorphic and estrogen-dependent expression of estrogen receptor β in the ventromedial hypothalamus during rat postnatal development. Endocrinology 2003, 144, 5098–5104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühnemann, S.; Brown, T.J.; Hochberg, R.B.; MacLusky, N.J. Sex Differences in the Development of Estrogen Receptors in the Rat Brain. Horm. Behav. 1994, 28, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, Y. Gonadal Steroid Action and Brain Sex Differentiation in the Rat. J. Neuroendocr. 2009, 21, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Yokosuka, M.; Okamura, H.; Hayashi, S. Postnatal development and sex difference in neurons containing estrogen receptor- immunoreactivity in the preoptic brain, the dieneephalon, and the amygdala in the rat. J. Comp. Neurol. 1997, 389, 81–93. [Google Scholar] [CrossRef]
- Tena-Sempere, M.; Barreiro, M.L.; González, L.C.; Pinilla, L.; Aguilar, E. Neonatal imprinting and regulation of estrogen receptor alpha and beta mRNA expression by estrogen in the pituitary and hypothalamus of the male rat. Neuroendocrinology 2001, 73, 12–25. [Google Scholar] [CrossRef]
- Orikasa, C.; Mizuno, K.; Sakuma, Y.; Hayashi, S. Exogenous estrogen acts differently on production of estrogen receptor in the preoptic area and the mediobasal hypothalamic nuclei in the newborn rat. Neurosci. Res. 1996, 25, 247–254. [Google Scholar] [CrossRef]
- Bodo, C.; Rissman, E.F. New roles for estrogen receptor β in behavior and neuroendocrinology. Neuroendocrinology 2006, 27, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Choleris, E.; Gustafsson, J.A.; Korach, K.S.; Muglia, L.J.; Pfaff, D.W.; Ogawa, S. An estrogen-dependent four-gene micronet regulating social recognition: A study with oxytocin and estrogen receptor-α and -ß knockout mice. Proc. Natl. Acad. Sci. USA 2003, 100, 6192–6197. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, M.M. Estrogen modulation of oxytocin and its relation to behavior. Adv. Exp. Med. Biol. 1995, 395, 235–245. [Google Scholar]
- Baskerville, T.A.; Douglas, A.J. Interactions between dopamine and oxytocin in the control of sexual behavior. Prog. Brain Res. 2008, 170, 277–290. [Google Scholar]
- Pedersen, C.; Boccia, M. Vasopressin interactions with oxytocin in the control of female sexual behavior. Neuroscience 2006, 139, 843–851. [Google Scholar] [CrossRef]
- Pak, T.R.; Chung, W.C.J.; Hinds, L.R.; Handa, R.J. Estrogen Receptor-β Mediates Dihydrotestosterone-Induced Stimulation of the Arginine Vasopressin Promoter in Neuronal Cells. Endocrinology 2007, 148, 3371–3382. [Google Scholar] [CrossRef]
- Lee, H.-C.; Yamanouchi, K.; Nishihara, M. Effects of Perinatal Exposure to Phthalate/Adipate Esters on Hypothalamic Gene Expression and Sexual Behavior in Rats. J. Reprod. Dev. 2006, 52, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhuang, M.; Li, T.; Shi, N. Neurobehavioral toxicity study of dibutyl phthalate on rats following in utero and lactational exposure. J. Appl. Toxicol. 2009, 29, 603–611. [Google Scholar] [CrossRef]
- Boberg, J.; Christiansen, S.; Axelstad, M.; Kledal, T.S.; Vinggaard, A.M.; Dalgaard, M.; Nellemann, C.L.; Hass, U. Reproductive and behavioral effects of diisononyl phthalate (DINP) in perinatally exposed rats. Reprod. Toxicol. 2011, 31, 200–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swan, S.H.; Liu, F.; Hines, M.; Kruse, R.L.; Wang, C.; Redmon, J.B.; Sparks, A.; Weiss, B. Prenatal phthalate exposure and reduced masculine play in boys. Int. J. Androl. 2010, 33, 259–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engel, S.M.; Miodovnik, A.; Canfield, R.L.; Zhu, C.; Silva, M.J.; Calafat, A.M.; Wolff, M.S. Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environ. Health Perspect. 2010, 118, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, H.; Miyoshi, N.; Miyamoto, Y.; Souda, M.; Umekita, Y.; Yasuda, N.; Yoshida, H. Effects of exposure period and dose of diethylstilbestrol on pregnancy in rats. J. Vet. Med. Sci. 2009, 71, 1309–1315. [Google Scholar] [CrossRef] [Green Version]
- Behrens, G.H.G.; Petersen, P.M.; Grotmol, T.; Sorensen, D.R.; Torjesen, P.; Tretli, S.; Haugen, T.B. Reproductive function in male rats after brief in utero eposure to diethylstilbestrol. Int. J. Androl. 2000, 23, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Hossaini, A.; Dalgaard, M.; Vinggaard, A.M.; Frandsen, H.; Larsen, J.J. In Utero Reproductive Study in Rats Exposed to Nonylphenol. Reprod. Toxicol. 2001, 15, 537–543. [Google Scholar] [CrossRef]
- Odum, J.; Lefevre, P.A.; Tinwell, H.; Van Miller, J.P.; Joiner, R.L.; Chapin, R.E.; Wallis, N.T.; Ashby, J. Comparison of the edevelopmental and reproductive toxicity of diethylstilbestrol administered to rats in utero, lactationally, preweaning, or postweaning. Toxicol. Sci. 2002, 68, 147–163. [Google Scholar] [CrossRef] [Green Version]
- Rehbein, M.; Hillers, M.; Mohr, E.; Ivell, R.; Morley, S.; Schmale, H.; Richter, D. The neurohypophyseal hormones vasopressin and oxytocin. Precursor structure, synthesis and regulation. Biol. Chem. Hoppe-Seyler 1986, 367, 695–704. [Google Scholar] [CrossRef]
- Gioiosa, L.; Fissore, E.; Ghirardelli, G.; Parmigiani, S.; Palanza, P. Developmental exposure to low-dose estrogenic endocrine disruptors alters sex differences in exploration and emotional responses in mice. Horm. Behav. 2007, 52, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Patisaul, H.B. Endocrine Disruption of Vasopressin Systems and Related Behaviors. Front. Endocrinol. 2017, 8, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melis, M.R.; Argiolas, A. Central control of penile erection: A re-visitation of the role of oxytocin and its interaction with dopamine and glutamic acid in male rats. Neurosci. Biobehav. Rev. 2011, 35, 939–955. [Google Scholar] [CrossRef] [PubMed]
- Hardy, D.F.; DeBold, J.F. Effects of coital stimulation upon behavior of the female rat. J. Comp. Physiol. Psychol. 1972, 78, 400–408. [Google Scholar] [CrossRef]
- Demeneix, B.; Vandenberg, L.N.; Ivell, R.; Zoeller, R.T. Thresholds and Endocrine Disruptors: An Endocrine Society Policy Perspective. J. Endocr. Soc. 2020, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.E.; Myers, J.P.; Vandenberg, L.N. Nonmonotonic dose–response curves occur in dose ranges that are relevant to regulatory decision-making. Dose-Response 2018, 16, 1559325818798282. [Google Scholar] [CrossRef]
- Mahood, I.K.; McKinnell, C.; Walker, M.; Hallmark, N.; Scott, H.; Fisher, J.S.; Rivas, A.; Hartung, S.; Ivell, R.; Mason, J.I.; et al. Cellular origins of testicular dysgenesis in rats exposed in utero to di(n-butyl) phthalate. Int. J. Androl. 2006, 29, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Howdeshell, K.L.; Furr, J.; Lambright, C.R.; Rider, C.V.; Wilson, V.S.; Gray, E., Jr. Cumulative effects of dibutyl phthalate and diethylhexyl phthalate on male reproductive development: Altered fetal steroid hormones and genes. Toxicol. Sci. 2007, 99, 190–202. [Google Scholar] [CrossRef]
- Rider, C.V.; Furr, J.R.; Wilson, V.S.; Grey, L.E., Jr. Cumulative effects of in utero administration of mixtures of reproductive toxicants that disrupt common _target tissues via diverse mechanisms of toxicity. Int. J. Androl. 2010, 33, 443–462. [Google Scholar] [CrossRef] [Green Version]
- Foster, P.; Cattley, R.; Mylchreest, E. Effects of di-n-butyl phthalate (DBP) on male reproductive development in the rat: Implications for human risk assessment. Food Chem. Toxicol. 2000, 38, S97–S99. [Google Scholar] [CrossRef]
- EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP); Silano, V.; Baviera, J.M.B.; Bolognesi, C.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Lampi., E.; et al. Update of the Risk Assessment of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP) for Use in Food Contact Materials. 2019. Available online: https://doi-org.ezproxy.nottingham.ac.uk/10.2903/j.efsa.2019.5838 (accessed on 14 April 2021).
- Mao, W.; Song, Y.; Sui, H.; Cao, P.; Liu, Z. Analysis of individual and combined estrogenic effects of bisphenol, nonylphenol and diethylstilbestrol in immature rats with mathematical models. Environ. Health Prevent. Med. 2019, 24, 32. [Google Scholar] [CrossRef] [PubMed]
- Anand-Ivell, R.J.; Relan, V.; Balvers, M.; Coiffec-Dorval, I.; Fritsch, M.; Bathgate, R.A.; Ivell, R. Expression of the Insulin-Like Peptide 3 (INSL3) Hormone-Receptor (LGR8) System in the Testis1. Biol. Reprod. 2006, 74, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.D.; Sladek, R.; Greenwood, C.M.; Hudson, T.J. Control genes and variability: Absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res. 2002, 12, 292–297. [Google Scholar] [CrossRef] [Green Version]
Mounts | Lordosis | LQ | Locomotion | Kicking | Agonistic Behavior | |
---|---|---|---|---|---|---|
Mounts | ||||||
CON | 0.998 * | 0.401 | 0.734 * | 0.699 * | 0.032 | |
DBP | 0.936 * | 0.542 | 0.353 | −0.353 | −0.423 | |
DES | 0.977 * | 0.238 | 0.731 * | −0.337 | −0.388 | |
Lordosis | ||||||
CON | 0.426 | 0.749 * | 0.674 * | 0.005 | ||
DBP | 0.385 | 0.145 | −0.467 | −0.452 | ||
DES | 0.411 | 0.789 * | −0.417 | −0.465 | ||
LQ | ||||||
CON | 0.598 | 0.151 | 0.051 | |||
DBP | 0.475 | −0.183 | −0.319 | |||
DES | 0.566 | −0.825 * | −0.821 * | |||
Locomotion | ||||||
CON | 0.414 | −0.107 | ||||
DBP | −0.463 | −0.757 * | ||||
DES | −0.556 | −0.535 | ||||
Kicking | ||||||
CON | 0.527 | |||||
DBP | 0.538 | |||||
DES | 0.991 * |
Name | Accession Number | Forward (5′–3′) | Reverse (5′–3′) | Size (bp) | Annealing Temp. (°C) |
---|---|---|---|---|---|
Cyp19a1 | NM_017085 | cccctggacgaaagttctattg | cagcgaaaatcaaatcagttgc | 238 | 60 |
Esr1 | NM_012689 | gcgcaagtgttacgaagtgg | aagcctggcactctctttgc | 375 | 68 |
Esr2 | NM_012754 | ctcctttagcgacccattgc | cctggatccacacttgacca | 401 | 68 |
Oxt | NM_012996 | ctggatatgcgcaagtgtcttc | gaaggaagcgccctaaaggtat | 310 | 64 |
Avp | NM_016992 | gctacttccagaactgcccaag | cagccagctgtaccagcctaa | 393 | 64 |
Kiss1 | NM_181692 | cagctgctgcttctcctctg | ggcttgctctctgcataccg | 152 | 62 |
Gnrh1 | NM_012767 | gaacttcgaatgcactgtccac | gctgggtatcgaaatgcggaag | 211 | 60 |
Rps27a | NM_031113 | ccaggataaggaaggaattcctcctg | ccagcaccacattcatcagaagg | 297 | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hunter, D.; Heng, K.; Mann, N.; Anand-Ivell, R.; Ivell, R. Maternal Exposure to Dibutyl Phthalate (DBP) or Diethylstilbestrol (DES) Leads to Long-Term Changes in Hypothalamic Gene Expression and Sexual Behavior. Int. J. Mol. Sci. 2021, 22, 4163. https://doi.org/10.3390/ijms22084163
Hunter D, Heng K, Mann N, Anand-Ivell R, Ivell R. Maternal Exposure to Dibutyl Phthalate (DBP) or Diethylstilbestrol (DES) Leads to Long-Term Changes in Hypothalamic Gene Expression and Sexual Behavior. International Journal of Molecular Sciences. 2021; 22(8):4163. https://doi.org/10.3390/ijms22084163
Chicago/Turabian StyleHunter, Damien, Kee Heng, Navdeep Mann, Ravinder Anand-Ivell, and Richard Ivell. 2021. "Maternal Exposure to Dibutyl Phthalate (DBP) or Diethylstilbestrol (DES) Leads to Long-Term Changes in Hypothalamic Gene Expression and Sexual Behavior" International Journal of Molecular Sciences 22, no. 8: 4163. https://doi.org/10.3390/ijms22084163
APA StyleHunter, D., Heng, K., Mann, N., Anand-Ivell, R., & Ivell, R. (2021). Maternal Exposure to Dibutyl Phthalate (DBP) or Diethylstilbestrol (DES) Leads to Long-Term Changes in Hypothalamic Gene Expression and Sexual Behavior. International Journal of Molecular Sciences, 22(8), 4163. https://doi.org/10.3390/ijms22084163