Activity of Cytosolic Ascorbate Peroxidase (APX) from Panicum virgatum against Ascorbate and Phenylpropanoids
Abstract
:1. Introduction
2. Results
2.1. Enzyme Preparation and Spectral Properties
2.2. Overall Structure and Heme Environment of Apo-Form PviAPX
2.3. Ascorbate Complex Structure of PviAPX
2.4. Steady-State Kinetics of H2O2/Ascorbate
2.5. The Oxidation Reaction of PviAPX for Phenylpropanoids
2.6. Molecular Docking for Phenylpropanoids
3. Discussion
3.1. Potential Physiological Roles of Cytosolic APX
3.2. Two Independent Binding Sites of PviAPX
4. Materials and Methods
4.1. Recombinant Enzyme Expression and Purification
4.2. Crystallization and Structure Determination
4.3. Comparison of Activity among Different Phenylpropanoid Substrates of PviAPX
4.4. LC-MS for Determining the Products of H2O2-Dependent Oxidation of Phenylpropanoids by PviAPX
4.5. Steady-State Kinetics of PviAPX
4.6. Molecular Docking of PviAPX
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Van Breusegem, F.; Dat, J.F. Reactive Oxygen Species in Plant Cell Death. Plant Physiol. 2006, 141, 384–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, S.; Fartyal, D.; Agarwal, A.; Shukla, T.; James, D.; Kaul, T.; Negi, Y.K.; Arora, S.; Reddy, M.K. Abiotic Stress Tolerance in Plants: Myriad Roles of Ascorbate Peroxidase. Front. Plant Sci. 2017, 8, 581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, W. The effect of hydrogen peroxide on CO2 fixation of isolated intact chloroplasts. Biochim. Biophys. Acta (BBA) Bioenerg. 1976, 440, 476–482. [Google Scholar] [CrossRef]
- Charles, S.A.; Halliwell, B. Effect of hydrogen peroxide on spinach (Spinacia oleracea) chloroplast fructose bisphosphatase. Biochem. J. 1980, 189, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Smirnoff, N. Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free. Radic. Biol. Med. 2018, 122, 116–129. [Google Scholar] [CrossRef]
- Saxena, S.C.; Joshi, P.K.; Grimm, B.; Arora, S. Alleviation of ultraviolet-C-induced oxidative damage through overexpression of cytosolic ascorbate peroxidase. Biologia 2011, 66, 1052–1059. [Google Scholar] [CrossRef]
- Kwon, H.; Basran, J.; Casadei, C.M.; Fielding, A.J.; Schrader, T.E.; Ostermann, A.; Devos, J.M.; Aller, P.; Blakeley, M.P.; Moody, P.C.E.; et al. Direct visualization of a Fe(IV)–OH intermediate in a heme enzyme. Nat. Commun. 2016, 7, 13445. [Google Scholar] [CrossRef] [Green Version]
- Ledray, A.P.; Krest, C.M.; Yosca, T.H.; Mittra, K.; Green, M.T. Ascorbate Peroxidase Compound II Is an Iron(IV) Oxo Species. J. Am. Chem. Soc. 2020, 142, 20419–20425. [Google Scholar] [CrossRef]
- Sharp, K.H.; Mewies, M.; Moody, P.; Raven, E. Crystal structure of the ascorbate peroxidase–ascorbate complex. Nat. Struct. Mol. Biol. 2003, 10, 303–307. [Google Scholar] [CrossRef]
- Tolbert, B.M.; Ward, J.B. Dehydroascorbic Acid; ACS Publications: Washington, DC, USA, 1982. [Google Scholar]
- Zhang, B.; Lewis, J.A.; Vermerris, W.; Sattler, S.E.; Kang, C. A sorghum ascorbate peroxidase with four binding sites has activity against ascorbate and phenylpropanoids. Plant Physiol. 2022, kiac604. [Google Scholar] [CrossRef]
- Winkler, B.S.; Orselli, S.M.; Rex, T.S. The redox couple between glutathione and ascorbic acid: A chemical and physiological perspective. Free. Radic. Biol. Med. 1994, 17, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Kurata, T.; Nishikawa, Y. Chemical characteristics of dehydro-L-ascorbic acid. Biosci. Biotechnol. Biochem. 2000, 64, 1651–1655. [Google Scholar] [CrossRef] [PubMed]
- Carroll, V.N.; Truillet, C.; Shen, B.; Flavell, R.R.; Shao, X.; Evans, M.J.; VanBrocklin, H.F.; Scott, P.J.H.; Chin, F.T.; Wilson, D.M. [11C]Ascorbic and [11C]dehydroascorbic acid, an endogenous redox pair for sensing reactive oxygen species using positron emission tomography. Chem. Commun. 2016, 52, 4888–4890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heering, H.A.; Jansen, M.A.K.; Thorneley, R.N.F.; Smulevich, G. Cationic Ascorbate Peroxidase Isoenzyme II from Tea: Structural Insights into the Heme Pocket of a Unique Hybrid Peroxidase. Biochemistry 2001, 40, 10360–10370. [Google Scholar] [CrossRef]
- Raven, E.L. Peroxidase-Catalyzed Oxidation of Ascorbate Structural, Spectroscopic and Mechanistic Correlations in Ascorbate Peroxidase. Subcell. Biochem. 2000, 35, 317–349. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.; Escamilla-Trevino, L.; Song, L.; Rao, X.; Serrani-Yarce, J.C.; Palacios, M.D.; Engle, N.; Choudhury, F.K.; Tschaplinski, T.J.; Venables, B.J.; et al. 4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase. Nat. Commun. 2019, 10, 1994. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, Y.; Li, C.; Yin, B.; Liu, X.; Guo, X.; Zhang, C.; Liu, D.; Hwang, I.; Li, H.; et al. PtomtAPX is an autonomous lignification peroxidase during the earliest stage of secondary wall formation in Populus tomentosa Carr. Nat. Plants 2022, 8, 828–839. [Google Scholar] [CrossRef]
- Vogel, K.P.; Mitchell, R.B. Heterosis in Switchgrass: Biomass Yield in Swards. Crop Sci. 2008, 48, 2159–2164. [Google Scholar] [CrossRef] [Green Version]
- Saathoff, A.J.; Donze, T.; Palmer, N.A.; Bradshaw, J.; Heng-Moss, T.; Twigg, P.; Tobias, C.M.; Lagrimini, M.; Sarath, G. Towards uncovering the roles of switchgrass peroxidases in plant processes. Front. Plant Sci. 2013, 4, 202. [Google Scholar] [CrossRef] [Green Version]
- Passardi, F.; Longet, D.; Penel, C.; Dunand, C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry 2004, 65, 1879–1893. [Google Scholar] [CrossRef]
- Dien, B.S.; Sarath, G.; Pedersen, J.F.; Sattler, S.E.; Chen, H.; Funnell-Harris, D.L.; Nichols, N.N.; Cotta, M.A. Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor (L). Moench) lines with reduced lignin contents. BioEnergy Res. 2009, 2, 153–164. [Google Scholar] [CrossRef]
- Vanholme, R.; Demedts, B.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin Biosynthesis and Structure. Plant Physiol. 2010, 153, 895–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Pérez, F.; Vivar, T.; Pomar, F.; Pedreño, M.A.; Novo-Uzal, E. Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana. J. Plant Physiol. 2015, 175, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Voxeur, A.; Wang, Y.; Sibout, R. Lignification: Different mechanisms for a versatile polymer. Curr. Opin. Plant Biol. 2015, 23, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.; Ralph, J.; Akiyama, T.; Flint, H.; Phillips, L.; Torr, K.; Nanayakkara, B.; Te Kiri, L. Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA: Shikimate hydroxycinnamoyltransferase in Pinus radiata. Proc. Natl. Acad. Sci. USA 2007, 104, 11856–11861. [Google Scholar] [CrossRef] [Green Version]
- Scully, E.D.; Donze-Reiner, T.; Wang, H.; Eickhoff, T.E.; Baxendale, F.; Twigg, P.; Kovacs, F.; Heng-Moss, T.; Sattler, S.E.; Sarath, G. Identification of an orthologous clade of peroxidases that respond to feeding by greenbugs (Schizaphis graminum) in C4 grasses. Funct. Plant Biol. 2016, 43, 1134–1148. [Google Scholar] [CrossRef] [Green Version]
- Donze-Reiner, T.; Palmer, N.A.; Scully, E.D.; Prochaska, T.J.; Koch, K.G.; Heng-Moss, T.; Bradshaw, J.D.; Twigg, P.; Amundsen, K.; Sattler, S.E.; et al. Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs. BMC Plant Biol. 2017, 17, 46. [Google Scholar] [CrossRef] [Green Version]
- Gill, U.S.; Sun, L.; Rustgi, S.; Tang, Y.; Wettstein, D.; Mysore, K.S. Transcriptome-based analyses of phosphite-mediated suppression of rust pathogens Puccinia emaculata and Phakopsora pachyrhizi and functional characterization of selected fungal _target genes. Plant J. 2018, 93, 894–904. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Pu, Y.; Yoo, C.G.; Gjersing, E.; Decker, S.R.; Doeppke, C.; Shollenberger, T.; Tschaplinski, T.J.; Engle, N.L.; Sykes, R.W.; et al. Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass. Biotechnol. Biofuels 2017, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Casler, M.D.; Vogel, K.P.; Lee, D.K.; Mitchell, R.B.; Adler, P.R.; Sulc, R.M.; Johnson, K.D.; Kallenbach, R.L.; Boe, A.R.; Mathison, R.D.; et al. 30 Years of Progress toward Increased Biomass Yield of Switchgrass and Big Bluestem. Crop Sci. 2018, 58, 1242–1254. [Google Scholar] [CrossRef]
- Mazarei, M.; Baxter, H.L.; Srivastava, A.; Li, G.; Xie, H.; Dumitrache, A.; Rodriguez, M., Jr.; Natzke, J.M.; Zhang, J.-Y.; Turner, G.B.; et al. Silencing Folylpolyglutamate Synthetase1 (FPGS1) in Switchgrass (Panicum virgatum L.) Improves Lignocellulosic Biofuel Production. Front. Plant Sci. 2020, 11, 843. [Google Scholar] [CrossRef] [PubMed]
- Borchers, A.; Pieler, T. Programming Pluripotent Precursor Cells Derived from Xenopus Embryos to Generate Specific Tissues and Organs. Genes 2010, 1, 413–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dien, B.S.; Jung, H.-J.G.; Vogel, K.P.; Casler, M.D.; Lamb, J.F.; Iten, L.; Mitchell, R.B.; Sarath, G. Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenergy 2006, 30, 880–891. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, N.; Saha, B.C.; Dien, B.; Hector, R.E.; Cotta, M.A. Production of butanol (a biofuel) from agricultural residues: Part I—Use of barley straw hydrolysate. Biomass Bioenergy 2010, 34, 559–565. [Google Scholar] [CrossRef]
- Serapiglia, M.J.; Mullen, C.A.; Boateng, A.A.; Dien, B.S.; Casler, M.D. Impact of Harvest Time and Cultivar on Conversion of Switchgrass to Bio-Oils via Fast Pyrolysis. BioEnergy Res. 2017, 10, 388–399. [Google Scholar] [CrossRef]
- Kovacs, F.A.; Sarath, G.; Woodworth, K.; Twigg, P.; Tobias, C. Abolishing activity against ascorbate in a cytosolic ascorbate peroxidase from switchgrass. Phytochemistry 2013, 94, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobias, C.; Twigg, P.; Hayden, D.; Sarath, G. EST sequencing and Microsatellite Discovery in Switchgrass. Mol. Genet. Biotechnol. 2005, 111, 956–964. [Google Scholar]
- Krissinel, E.; Henrick, K. Inference of Macromolecular Assemblies from Crystalline State. J. Mol. Biol. 2007, 372, 774–797. [Google Scholar] [CrossRef]
- Schuller, D.J.; Ban, N.; van Huystee, R.B.; McPherson, A.; Poulos, T.L. The crystal structure of peanut peroxidase. Structure 1996, 4, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef] [Green Version]
- Moural, T.W.; Lewis, K.M.; Barnaba, C.; Zhu, F.; Palmer, N.A.; Sarath, G.; Scully, E.D.; Jones, J.P.; Sattler, S.E.; Kang, C. Characterization of Class III Peroxidases from Switchgrass. Plant Physiol. 2017, 173, 417–433. [Google Scholar] [CrossRef]
- Marjamaa, K.; Kukkola, E.M.; Fagerstedt, K.V. The role of xylem class III peroxidases in lignification. J. Exp. Bot. 2009, 60, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kajita, S.; Kawai, S.; Katayama, Y.; Morohoshi, N. Down-regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. J. Plant Res. 2003, 116, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Rubio, M.C.; Alassimone, J.; Geldner, N. A Mechanism for Localized Lignin Deposition in the Endodermis. Cell 2013, 153, 402–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moody, P.; Raven, E.L. The Nature and Reactivity of Ferryl Heme in Compounds I and II. Acc. Chem. Res. 2018, 51, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Basran, J.; Devos, J.M.; Suardíaz, R.; van der Kamp, M.W.; Mulholland, A.J.; Schrader, T.E.; Ostermann, A.; Blakeley, M.P.; Moody, P.C.E.; et al. Visualizing the protons in a metalloenzyme electron proton transfer pathway. Proc. Natl. Acad. Sci. USA 2020, 117, 6484–6490. [Google Scholar] [CrossRef] [Green Version]
- Sharp, K.H.; Moody, P.C.E.; Brown, K.A.; Raven, E.L. Crystal Structure of the Ascorbate Peroxidase−Salicylhydroxamic Acid Complex. Biochemistry 2004, 43, 8644–8651. [Google Scholar] [CrossRef]
- Copeland, R.A. Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Prinz, H. Hill coefficients, dose–response curves and allosteric mechanisms. J. Chem. Biol. 2010, 3, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Hong, X.; Qi, F.; Wang, R.; Jia, Z.; Lin, F.; Yuan, M.; Xin, X.-F.; Liang, Y. Ascorbate peroxidase 1 allows monitoring of cytosolic accumulation of effector-triggered reactive oxygen species using a luminol-based assay. Plant Physiol. 2022, kiac551. [Google Scholar] [CrossRef]
- Shafi, A.; Chauhan, R.; Gill, T.; Swarnkar, M.K.; Sreenivasulu, Y.; Kumar, S.; Kumar, N.; Shankar, R.; Ahuja, P.S.; Singh, A.K. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol. Biol. 2015, 87, 615–631. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Zhang, M.; Yang, J.; Cui, J.; Hu, H.; Xu, J. CfAPX, a cytosolic ascorbate peroxidase gene from Cryptomeria fortunei, confers tolerance to abiotic stress in transgenic Arabidopsis. Plant Physiol. Biochem. 2022, 172, 167–179. [Google Scholar] [CrossRef]
- Kaur, S.; Prakash, P.; Bak, D.-H.; Hong, S.H.; Cho, C.; Chung, M.-S.; Kim, J.-H.; Lee, S.; Bai, H.-W.; Lee, S.Y.; et al. Regulation of Dual Activity of Ascorbate Peroxidase 1 from Arabidopsis thaliana by Conformational Changes and Posttranslational Modifications. Front. Plant Sci. 2021, 12, 678111. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, H.; Wang, Y.; Teng, R.-M.; Liu, J.; Lin, S.; Zhuang, J. Cytosolic ascorbate peroxidase 1 modulates ascorbic acid metabolism through cooperating with nitrogen regulatory protein P-II in tea plant under nitrogen deficiency stress. Genomics 2020, 112, 3497–3503. [Google Scholar] [CrossRef] [PubMed]
- Sarath, G.; Hou, G.; Baird, L.M.; Mitchell, R.B. Reactive oxygen species, ABA and nitric oxide interactions on the germination of warm-season C4-grasses. Planta 2007, 226, 697–708. [Google Scholar] [CrossRef] [Green Version]
- Palmer, N.A.; Donze-Reiner, T.; Horvath, D.; Heng-Moss, T.; Waters, B.; Tobias, C.; Sarath, G. Switchgrass (Panicum virgatum L) flag leaf transcriptomes reveal molecular signatures of leaf development, senescence, and mineral dynamics. Funct. Integr. Genom. 2014, 15, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, K.G.; Palmer, N.A.; Donze-Reiner, T.; Scully, E.D.; Seravalli, J.; Amundsen, K.; Twigg, P.; Louis, J.; Bradshaw, J.D.; Heng-Moss, T.M.; et al. Aphid-Responsive Defense Networks in Hybrid Switchgrass. Front. Plant Sci. 2020, 11, 1145. [Google Scholar] [CrossRef] [PubMed]
- Pingault, L.; Palmer, N.; Koch, K.; Heng-Moss, T.; Bradshaw, J.; Seravalli, J.; Twigg, P.; Louis, J.; Sarath, G. Differential Defense Responses of Upland and Lowland Switchgrass Cultivars to a Cereal Aphid Pest. Int. J. Mol. Sci. 2020, 21, 7966. [Google Scholar] [CrossRef] [PubMed]
- Sundaramoorthy, M.; Kishi, K.; Gold, M.H.; Poulos, T.L. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J. Biol. Chem. 1994, 269, 32759–32767. [Google Scholar] [CrossRef]
- Macdonald, I.K.; Badyal, S.K.; Ghamsari, L.; Moody, P.C.E.; Raven, E.L. Interaction of Ascorbate Peroxidase with Substrates: A Mechanistic and Structural Analysis. Biochemistry 2006, 45, 7808–7817. [Google Scholar] [CrossRef]
- Tsukamoto, K.; Itakura, H.; Sato, K.; Fukuyama, K.; Miura, S.; Takahashi, S.; Ikezawa, H.; Hosoya, T. Binding of Salicylhydroxamic Acid and Several Aromatic Donor Molecules to Arthromyces ramosus Peroxidase, Investigated by X-ray Crystallography, Optical Difference Spectroscopy, NMR Relaxation, Molecular Dynamics, and Kinetics, Biochemistry 1999, 38, 12558–12568. [Google Scholar] [CrossRef]
- Henriksen, A.; Schuller, D.J.; Meno, K.; Welinder, K.G.; Smith, A.T.; Gajhede, M. Structural Interactions between Horseradish Peroxidase C and the Substrate Benzhydroxamic Acid Determined by X-ray Crystallography, Biochemistry 1998, 37, 8054–8060. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, A.; Smith, A.T.; Gajhede, M. The Structures of the Horseradish Peroxidase C-Ferulic Acid Complex and the Ternary Complex with Cyanide Suggest How Peroxidases Oxidize Small Phenolic Substrates. J. Biol. Chem. 1999, 274, 35005–35011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakano, Y.; Asada, K. Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
Apo 8FF6 | Ascorbate Complex 8FF7 | |
---|---|---|
Wavelength (Å) | 1.000 | 1.000 |
Resolution range | 49.23–2.193 (2.273–2.194) | 49.36–2.494 (2.583–2.494) |
Space group | P 1 | P 1 |
Unit cell | 78.267, 80.176, 80.166 104.552, 101.969, 110.727 | 78.558, 79.984, 80.147 104.327, 111.174, 101.782 |
Unique reflections | 83,162 (7756) | 56,445 (4919) |
Multiplicity | 2.5 (2.3) | 3.3 (3.1) |
Completeness (%) | 97.17 (90.94) | 96.73 (84.05)) |
Mean I/sigma(I) | 6.45 (1.54) | 8.06 (1.82) |
Wilson B-factor | 28.34 | 43.51 |
R-merge | 0.1267 (0.5482) | 0.1139 (0.4706) |
CC1/2 | 0.98 (0.491) | 0.985 (0.802) |
R-work | 0.1880 (0.2545) | 0.1889 (0.2529) |
R-free | 0.2432 (0.3224) | 0.2596 (0.3238) |
Number of atoms | ||
Macromolecules and ligands | 12,785 | 12,084 |
Solvent | 911 | 282 |
RMS (bonds) | 0.008 | 0.010 |
RMS (angles) | 0.99 | 1.04 |
Ramachandran favored (%) | 97.65 | 95.70 |
Ramachandran outliers (%) | 0.00 | 0.07 |
Clash score | 12.77 | 17.26 |
Average B-factor | 33.03 | 49.58 |
Solvent | 35.33 | 44.24 |
Substrate | ∆G Binding (kcal mol−1) |
---|---|
p-Coumarate | −5.5 |
p-Coumaryl alcohol | −5.5 |
p-Coumaryl aldehyde | −5.3 |
Caffeate | −5.8 |
Caffeyl alcohol | −5.7 |
Caffeyl aldehyde | −5.4 * |
Sinapate | −5.8 |
Sinapyl alcohol | −5.6 |
Sinapyl aldehyde | −5.6 |
Ferulate | −5.7 |
Coniferyl alcohol | −5.7 |
Coniferyl aldehyde | −5.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Lewis, J.A.; Kovacs, F.; Sattler, S.E.; Sarath, G.; Kang, C. Activity of Cytosolic Ascorbate Peroxidase (APX) from Panicum virgatum against Ascorbate and Phenylpropanoids. Int. J. Mol. Sci. 2023, 24, 1778. https://doi.org/10.3390/ijms24021778
Zhang B, Lewis JA, Kovacs F, Sattler SE, Sarath G, Kang C. Activity of Cytosolic Ascorbate Peroxidase (APX) from Panicum virgatum against Ascorbate and Phenylpropanoids. International Journal of Molecular Sciences. 2023; 24(2):1778. https://doi.org/10.3390/ijms24021778
Chicago/Turabian StyleZhang, Bixia, Jacob A. Lewis, Frank Kovacs, Scott E. Sattler, Gautam Sarath, and ChulHee Kang. 2023. "Activity of Cytosolic Ascorbate Peroxidase (APX) from Panicum virgatum against Ascorbate and Phenylpropanoids" International Journal of Molecular Sciences 24, no. 2: 1778. https://doi.org/10.3390/ijms24021778
APA StyleZhang, B., Lewis, J. A., Kovacs, F., Sattler, S. E., Sarath, G., & Kang, C. (2023). Activity of Cytosolic Ascorbate Peroxidase (APX) from Panicum virgatum against Ascorbate and Phenylpropanoids. International Journal of Molecular Sciences, 24(2), 1778. https://doi.org/10.3390/ijms24021778