MicroRNAs Associated with Chronic Kidney Disease in the General Population and High-Risk Subgroups—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Search Strategy
2.3. Data Collection
2.4. Data Extraction, Assessment, and Synthesis
3. Results
3.1. Search Results
3.2. Characteristics of Included Studies
3.3. Dysregulated miRNAs in CKD
3.4. Dysregulated miRNAs in DKD
3.5. MicroRNAs Associated with Kidney Disease Subgroups
4. Discussion
Strength and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016–2140 for 195 countries and territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef] [PubMed]
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Essue, B.M.; Jha, V.; John, O.; Knight, J.; Jan, S. Universal health coverage and chronic kidney disease in India. Bull. World Health Organ. 2018, 96, 442. [Google Scholar] [CrossRef] [PubMed]
- Oguntola, S.O.; Hassan, M.O.; Duarte, R.; Vachiat, A.; Manga, P.; Naicker, S. Atherosclerotic vascular disease is more prevalent among black ESKD patients on long-term CAPD in South Africa. BMC Nephrol. 2019, 20, 1–10. [Google Scholar] [CrossRef]
- Li, P.; Garcia-Garcia, G.; Lui, S.-F.; Andreoli, S.; Fung, W.; Hradsky, A.; Kumaraswami, L.; Liakopoulos, V.; Rakhimova, Z.; Saadi, G.; et al. Kidney health for everyone everywhere–from prevention to detection and equitable access to care. Br. J. Med. Biol. Res. 2020, 53, 1–10. [Google Scholar]
- Lopez-Giacoman, S.; Madero, M. Biomarkers in chronic kidney disease, from kidney function to kidney damage. World J. Nephrol. 2015, 4, 57–73. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New creatinine-and cystatin C–based equations to estimate GFR without race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Bukabau, J.B.; Yayo, E.; Gnionsahé, A.; Monnet, D.; Pottel, H.; Cavalier, E.; Nkodila, A.; Makulo, J.R.R.; Mokoli, V.M.; Lepira, F.B.; et al. Performance of creatinine-or cystatin C–based equations to estimate glomerular filtration rate in sub-Saharan African populations. Kidney Int. 2019, 95, 1181–1189. [Google Scholar] [CrossRef]
- Fabian, J.; Kalyesubula, R.; Mkandawire, J.; Hansen, C.H.; Nitsch, D.; Musenge, E.; Nakanga, W.P.; Prynn, J.E.; Dreyer, G.; Snyman, T.; et al. Measurement of kidney function in Malawi, South Africa, and Uganda: A multicentre cohort study. Lancet Glob. Health 2022, 10, e1159–e1169. [Google Scholar] [CrossRef]
- Al-Rubeaan, K.; Siddiqui, K.; Al-Ghonaim, M.A.; Youssef, A.M.; Al-Sharqawi, A.H.; AlNaqeb, D. Assessment of the diagnostic value of different biomarkers in relation to various stages of diabetic nephropathy in type 2 diabetic patients. Sci. Rep. 2017, 7, 2684. [Google Scholar] [CrossRef]
- Levin, A.; Tonelli, M.; Bonventre, J.; Coresh, J.; Donner, J.A.; Fogo, A.B.; Fox, C.S.; Gansevoort, R.T.; Heerspink, H.J.L.; Jardine, M.; et al. Global kidney health 2017 and beyond: A roadmap for closing gaps in care, research, and policy. Lancet 2017, 390, 1888–1917. [Google Scholar] [CrossRef] [PubMed]
- Bonneau, E.; Neveu, B.; Kostantin, E.; Tsongalis, G.J.; De Guire, V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. Electron. J. Int. Fed. Clin. Chem. Lab. Med. 2019, 30, 114–127. [Google Scholar]
- Bartel, D.P. MicroRNAs: _target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, K.; Mi, Q.S.; Dong, Z. MicroRNAs in kidneys: Biogenesis, regulation, and pathophysiological roles. Am. J. Physiol.-Ren. Physiol. 2011, 300, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef]
- Chen, X.; Xie, D.; Zhao, Q.; You, Z.H. MicroRNAs and complex diseases: From experimental results to computational models. Brief Bioinform. 2019, 20, 515–539. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, G.; Zhou, X.; Song, X.; Gao, H.; Ma, C.; Chang, H.; Li, H.; Liu, F.F.; Lu, J.; et al. miR-1299 suppresses cell proliferation of hepatocellular carcinoma (HCC) by _targeting CDK6. Biomed. Pharm. 2016, 83, 792–797. [Google Scholar] [CrossRef]
- Amiri, A.; Tehran, M.M.; Asemi, Z.; Shafiee, A.; Hajighadimi, S.; Moradizarmehri, S.; Mirzaei, H.R.; Mirzaei, H. Role of resveratrol in modulating microRNAs in human diseases: From cancer to inflammatory disorder. Curr Med. Chem. 2019, 26, 360–376. [Google Scholar]
- Wang, J.; Wang, G.; Liang, Y.; Zhou, X. Expression profiling and clinical significance of plasma microRNAs in diabetic nephropathy. J. Diabetes Res. 2019, 2019, 5204394. [Google Scholar] [CrossRef]
- Liu, Y.; Usa, K.; Wang, F.; Liu, P.; Geurts, A.M.; Li, J.; Williams, A.M.; Regner, K.R.; Kong, Y.; Liu, H.; et al. MicroRNA-214-3p in the kidney contributes to the development of hypertension. J. Am. Soc. Nephrol. 2018, 29, 2518–2528. [Google Scholar] [CrossRef]
- Fourdinier, O.; Schepers, E.; Metzinger-Le Meuth, V.; Glorieux, G.; Liabeuf, S.; Verbeke, F.; Vanholder, R.; Brigant, B.; Pletinck, A.; Diouf, M.; et al. Serum levels of miR-126 and miR-223 and outcomes in chronic kidney disease patients. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fujii, R.; Yamada, H.; Munetsuna, E.; Yamazaki, M.; Ohashi, K.; Ishikawa, H.; Maeda, K.; Hagiwara, C.; Ando, Y.; Hashimoto, S.; et al. Associations of Circulating MicroRNAs (miR-17, miR-21, and miR-150) and Chronic Kidney Disease in a Japanese Population. J. Epidemiol. 2019, 30, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Motshwari, D.D.; Matshazi, D.M.; Erasmus, R.; Kengne, A.P.; Matsha, T.E.; George, C. MicroRNAs associated with chronic kidney disease in the general population and high-risk subgroups: Protocol for a systematic review and meta-analysis. BMJ Open 2022, 12, e057500. [Google Scholar] [CrossRef] [PubMed]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J.; Greene, T.; Marsh, J.; Stevens, L.A.; Kusek, J.W.; Van Lente, F.; Chronic Kidney Disease Epidemiology Collaboration. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin. Chem. 2007, 53, 766–772. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, I.I.I.A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Carmona, A.; Guerrero, F.; Jimenez, M.J.; Ariza, F.; Agüera, M.L.; Obrero, T.; Noci, V.; Muñoz-Castañeda, J.R.; Rodríguez, M.; Soriano, S.; et al. Inflammation, Senescence and MicroRNAs in Chronic Kidney Disease. Front. Cell Dev. Biol. 2020, 8, 739. [Google Scholar] [CrossRef]
- Chen, N.X.; Kiattisunthorn, K.; O’Neill, K.D.; Chen, X.; Moorthi, R.N.; Gattone, V.H.; Allen, M.R.; Moe, S.M. Decreased microRNA is involved in the vascular remodeling abnormalities in chronic kidney disease (CKD). PLoS ONE 2013, 8, e64558. [Google Scholar] [CrossRef]
- Donderski, R.; Szczepanek, J.; Naruszewicz, N.; Naruszewicz, R.; Tretyn, A.; Skoczylas-Makowska, N.; Tyloch, J.; Odrowąż-Sypniewska, G.; Manitius, J. Analysis of profibrogenic microRNAs (miRNAs) expression in urine and serum of chronic kidney disease (CKD) stage 1-4 patients and their relationship with proteinuria and kidney function. Int. Urol. Nephrol. 2021, 54, 937–947. [Google Scholar] [CrossRef]
- Eckersten, D.; Tsatsanis, C.; Giwercman, A.; Bruun, L.; Pihlsgård, M.; Christensson, A. MicroRNA-155 and Anti-Müllerian Hormone: New Potential Markers of Subfertility in Men with Chronic Kidney Disease. Nephron. Extra. 2017, 7, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Fujii, R.; Yamada, H.; Yamazaki, M.; Munetsuna, E.; Ando, Y.; Ohashi, K.; Ishikawa, H.; Shimoda, H.; Sakata, K.; Ogawa, A.; et al. Circulating microRNAs (miR-126, miR-197, and miR-223) are associated with chronic kidney disease among elderly survivors of the Great East Japan Earthquake. BMC Nephrol. 2019, 20, 474. [Google Scholar] [CrossRef] [PubMed]
- Fujii, R.; Yamada, H.; Tsuboi, Y.; Ando, Y.; Munetsuna, E.; Yamazaki, M.; Ohashi, K.; Ishikawa, H.; Ishihara, Y.; Hashimoto, S.; et al. Association between circulating microRNAs and changes in kidney function: A five-year prospective study among Japanese adults without CKD. Clin. Chim. Acta. 2021, 521, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Lange, T.; Artelt, N.; Kindt, F.; Stracke, S.; Rettig, R.; Lendeckel, U.; Chadjichristos, C.E.; Kavvadas, P.; Chatziantoniou, C.; Endlich, K.; et al. MiR-21 is up-regulated in urinary exosomes of chronic kidney disease patients and after glomerular injury. J. Cell Mol. Med. 2019, 23, 4839–4843. [Google Scholar] [CrossRef]
- Li, H.; Qiu, F.X.; Tian, F.; Shi, X.Z.; Gao, A.Q.; Song, L.; Liu, J. Changes of miR-155 expression in serum of uremic patients before and after treatment and risk factors analysis. Exp. Ther. Med. 2020, 20, 3352–3360. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, W.; Bai, Y.; Zhang, H.; Zhang, S.; He, L.; Zhou, W.; Zhang, D.; Xu, J. Identification of a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for chronic kidney disease using next-generation sequencing. J. Int. Med. Res. 2020, 48, 300060520969481. [Google Scholar] [CrossRef]
- Motshwari, D.D.; George, C.; Matshazi, D.M.; Weale, C.J.; Davids, S.F.G.; Erasmus, R.T.; Kengne, A.P.; Matsha, T.E. Novel Whole Blood MicroRNAs Predicting Chronic Kidney Disease in South Africans with Hypertension and Diabetes Mellitus. Appl. Sci. 2021, 11, 7674. [Google Scholar] [CrossRef]
- Muralidharan, J.; Ramezani, A.; Hubal, M.; Knoblach, S.; Shrivastav, S.; Karandish, S.; Scott, R.; Maxwell, N.; Ozturk, S.; Beddhu, S.; et al. Extracellular microRNA signature in chronic kidney disease. Am. J. Physiol.-Ren. Physiol. 2017, 312, F982–F991. [Google Scholar] [CrossRef]
- Rudnicki, M.; Perco, P.; DHaene, B.; Leierer, J.; Heinzel, A.; Mühlberger, I.; Schweibert, N.; Sunzenauer, J.; Regele, H.; Kronbichler, A.; et al. Renal microRNA- and RNA-profiles in progressive chronic kidney disease. Eur. J. Clin. Investig. 2016, 46, 213–226. [Google Scholar] [CrossRef]
- Sayilar, E.I.; Gullulu, M.; Tuncel, E.; Peynirci, H.; Alemdar, A.; Tunca, B.; Egeli, U.; Cecener, G.; Bayindir, M.; Cosgun, G. Biomarker Potential of Urine miR-451 at Different Stages of Diabetic Nephropathy. J. Diabetes Metab. 2016, 7, 650. [Google Scholar] [CrossRef]
- Shang, F.; Wang, S.-C.; Hsu, C.-Y.; Miao, Y.; Martin, M.; Yin, Y.; Wu, C.C.; Wang, Y.T.; Wu, G.; Chien, S.; et al. MicroRNA-92a Mediates Endothelial Dysfunction in CKD. J. Am. Soc. Nephrol. 2017, 28, 3251–3261. [Google Scholar] [CrossRef] [PubMed]
- Trojanowicz, B.; Imdahl, T.; Ulrich, C.; Fiedler, R.; Girndt, M. Circulating miR-421 _targeting Leucocytic Angiotensin Converting Enzyme 2 Is Elevated in Patients with Chronic Kidney Disease. Nephron 2019, 141, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Ulbing, M.; Kirsch, A.H.; Leber, B.; Lemesch, S.; Münzker, J.; Schweighofer, N.; Hofer, D.; Trummer, O.; Rosenkranz, A.R.; Müller, H.; et al. MicroRNAs 223-3p and 93-5p in patients with chronic kidney disease before and after renal transplantation. Bone 2017, 95, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, M.; Wahab, A.M.; El Sayed Zaki, M.; Motawea, M. MicroRNA-451 as an Early Predictor of Chronic Kidney Disease in Diabetic Nephropathy. Int. J. Nephrol. 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- Abdou, A.E.; Anani, H.A.A.; Ibrahim, H.F.; Ebrahem, E.E.; Seliem, N.; Youssef, E.M.I.; Ghoraba, N.M.; Hassan, A.S.; Ramadan, M.A.A.; Mahmoud, E.; et al. Urinary IgG, serum CX3CL1 and miRNA-152-3p: As predictors of nephropathy in Egyptian type 2 diabetic patients. Tissue Barriers. 2022, 10, 1994823. [Google Scholar] [CrossRef]
- Akhbari, M.; Biglari, A.; Shahrabi-Farahani, M.; Khalili, M.; Bandarian, F. Expression Level of Circulating miR-93 in Serum of Patients with Diabetic Nephropathy. TURKISH J. Endocrinol. Metab. 2018, 22, 78–84. [Google Scholar] [CrossRef]
- Akhbari, M.; Khalili, M.; Shahrabi-Farahani, M.; Biglari, A.; Bandarian, F. Expression Level of Circulating Cell Free miR-155 Gene in Serum of Patients with Diabetic Nephropathy. Clin. Lab. 2019, 65, 190209. [Google Scholar] [CrossRef]
- Al-Kafaji, G.; Al-Mahroos, G.; Al-Muhtaresh, H.A.; Skrypnyk, C.; Sabry, M.A.; Ramadan, A.R. Decreased expression of circulating microRNA-126 in patients with type 2 diabetic nephropathy: A potential blood-based biomarker. Exp. Ther. Med. 2016, 12, 815–822. [Google Scholar] [CrossRef]
- Al-Kafaji, G.; Al-Muhtaresh, H.A. Expression of microRNA-377 and microRNA-192 and their potential as blood-based biomarkers for early detection of type 2 diabetic nephropathy. Mol. Med. Rep. 2018, 18, 1171–1180. [Google Scholar] [CrossRef]
- Argyropoulos, C.; Wang, K.; McClarty, S.; Huang, D.; Bernardo, J.; Ellis, D.; Orchard, T.; Galas, D.; Johnson, J. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS ONE 2013, 8, e54662. [Google Scholar] [CrossRef]
- Assmann, T.S.; Recamonde-Mendoza, M.; Costa, A.R.; Puñales, M.; Tschiedel, B.; Canani, L.H.; Bauer, A.C.; Crispim, D. Circulating miRNAs in diabetic kidney disease: Case–control study and in silico analyses. Acta Diabetol. 2019, 56, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Barutta, F.; Tricarico, M.; Corbelli, A.; Annaratone, L.; Pinach, S.; Grimaldi, S.; Bruno, G.; Cimino, D.; Taverna, D.; Deregibus, M.C.; et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS ONE 2013, 8, e73798. [Google Scholar] [CrossRef] [PubMed]
- Beltrami, C.; Simpson, K.; Jesky, M.; Wonnacott, A.; Carrington, C.; Holmans, P.; Newbury, L.; Jenkins, R.; Ashdown, T.; Dayan, C.; et al. Association of Elevated Urinary miR-126, miR-155, and miR-29b with Diabetic Kidney Disease. Am. J. Pathol. 2018, 188, 1982–1992. [Google Scholar] [CrossRef] [PubMed]
- Cardenas-Gonzalez, M.; Srivastava, A.; Pavkovic, M.; Bijol, V.; Rennke, H.G.; Stillman, I.E.; Zhang, X.; Parikh, S.; Rovin, B.H.; Afkarian, M.; et al. Identification, confirmation, and replication of novel urinary microrna biomarkers in lupus nephritis and diabetic nephropathy. Clin. Chem. 2017, 63, 1515–1526. [Google Scholar] [CrossRef]
- Conserva, F.; Barozzino, M.; Pesce, F.; Divella, C.; Oranger, A.; Papale, M.; Sallustio, F.; Simone, S.; Laviola, L.; Giorgino, F.; et al. Urinary miRNA-27b-3p and miRNA-1228-3p correlate with the progression of Kidney Fibrosis in Diabetic Nephropathy. Sci. Rep. 2019, 9, 11357. [Google Scholar] [CrossRef] [PubMed]
- Delić, D.; Eisele, C.; Schmid, R.; Baum, P.; Wiech, F.; Gerl, M.; Zimdahl, H.; Pullen, S.S.; Urquhart, R. Urinary Exosomal miRNA Signature in Type II Diabetic Nephropathy Patients. PLoS ONE 2016, 11, e0150154. [Google Scholar] [CrossRef]
- Dieter, C.; Assmann, T.S.; Costa, A.R.; Canani, L.H.; de Souza, B.M.; Bauer, A.C.; Crispim, D. MiR-30e-5p and MiR-15a-5p Expressions in Plasma and Urine of Type 1 Diabetic Patients With Diabetic Kidney Disease. Front. Genet. 2019, 10, 563. [Google Scholar] [CrossRef]
- Eissa, S.; Matboli, M.; Aboushahba, R.; Bekhet, M.M.; Soliman, Y. Urinary exosomal microRNA panel unravels novel biomarkers for diagnosis of type 2 diabetic kidney disease. J. Diabetes Complicat. 2016, 30, 1585–1592. [Google Scholar] [CrossRef]
- Eissa, S.; Matboli, M.; Bekhet, M.M. Clinical verification of a novel urinary microRNA panal: 133b, -342 and -30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis. Biomed. Pharmacother. 2016, 83, 92–99. [Google Scholar] [CrossRef]
- Florijn, B.W.; Duijs, J.M.G.J.; Levels, J.H.; Dallinga-Thie, G.M.; Wang, Y.; Boing, A.N.; Yuana, Y.; Stam, W.; Limpens, R.W.A.L.; Au, Y.W.; et al. Diabetic Nephropathy Alters the Distribution of Circulating Angiogenic MicroRNAs Among Extracellular Vesicles, HDL, and Ago-2. Diabetes 2019, 68, 2287–2300. [Google Scholar] [CrossRef]
- Fouad, M.; Salem, I.; Elhefnawy, K.; Raafat, N.; Faisal, A. MicroRNA-21 as an Early Marker of Nephropathy in Patients with Type 1 Diabetes. Indian J. Nephrol. 2020, 30, 21–25. [Google Scholar] [PubMed]
- Guo, J.; Li, J.; Zhao, J.; Yang, S.; Wang, L.; Cheng, G.; Liu, D.; Xiao, J.; Liu, Z.; Zhao, Z. MiRNA-29c regulates the expression of inflammatory cytokines in diabetic nephropathy by _targeting tristetraprolin. Sci. Rep. 2017, 7, 2314. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Zhang, Y.; Jiao, T.; Li, Q.; Ding, X.; Zhang, D.; Cai, G.; Zhu, H. Urinary sediment microRNAs can be used as potential noninvasive biomarkers for diagnosis, reflecting the severity and prognosis of diabetic nephropathy. Nutr. Diabetes 2021, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Peng, F.; Xia, X.; Zhao, C.; Luo, Q.; Guan, W.; Li, Z.; Yu, X.; Huang, F. MiR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1. Diabetologia 2014, 57, 1726–1736. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Wang, J.; Zhang, L.; Sun, W.; Xu, X.; Zhang, K. Plasma miR-193a-3p can be a potential biomarker for the diagnosis of diabetic nephropathy. Ann. Clin. Biochem. 2021, 58, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Guan, M.; Zheng, Z.; Zhang, Q.; Tang, C.; Xu, W.; Xiao, Z.; Wang, L.; Xue, Y. miRNAs in Urine Extracellular Vesicles as Predictors of Early-Stage Diabetic Nephropathy. J. Diabetes Res. 2016, 2016, 7932765. [Google Scholar] [CrossRef] [PubMed]
- Khokhar, M.; Roy, D.; Bajpai, N.K.; Bohra, G.K.; Yadav, D.; Sharma, P.; Purohit, P. Metformin mediates MicroRNA-21 regulated circulating matrix metalloproteinase-9 in diabetic nephropathy: An in-silico and clinical study. Arch. Physiol. Biochem. 2021, 1–11. [Google Scholar] [CrossRef]
- Lin, M.; Song, D.; Zhang, S.; Li, P. Dysregulation of miR-638 in diabetic nephropathy and its role in inflammatory response. Diabetol. Metab. Syndr. 2021, 13, 122. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, S.; Luo, D.; Huang, S.; Wang, F.; Zhang, B.; Chen, Y.; Zheng, L.; Lu, J.; Li, S. Involvement of Circulating Exosomal MicroRNAs in Jian-Pi-Yi-Shen Formula Protection Against Adenine-Induced Chronic Kidney Disease. Front. Pharmacol. 2021, 11, 622658. [Google Scholar] [CrossRef]
- Ma, X.; Lu, C.; Lv, C.; Wu, C.; Wang, Q. The Expression of miR-192 and Its Significance in Diabetic Nephropathy Patients with Different Urine Albumin Creatinine Ratio. J. Diabetes Res. 2016, 2016, 6789402. [Google Scholar] [CrossRef]
- Milas, O.; Gadalean, F.; Vlad, A.; Dumitrascu, V.; Gluhovschi, C.; Gluhovschi, G.; Velciov, S.; Popescu, R.; Bob, F.; Matusz, P. Deregulated profiles of urinary microRNAs may explain podocyte injury and proximal tubule dysfunction in normoalbuminuric patients with type 2 diabetes mellitus. J. Investig. Med. Off. Publ. Am. Fed. Clin. Res. 2018, 66, 747–754. [Google Scholar] [CrossRef]
- Monjezi, A.; Khedri, A.; Zakerkish, M.; Mohammadzadeh, G. Resistin, TNF-α, and microRNA 124-3p expressions in peripheral blood mononuclear cells are associated with diabetic nephropathy. Int. J. Diabetes Dev. Ctries. 2022, 42, 62–69. [Google Scholar] [CrossRef]
- Motawi, T.K.; Shehata, N.I.; ElNokeety, M.M.; El-Emady, Y.F. Potential serum biomarkers for early detection of diabetic nephropathy. Diabetes Res. Clin. Pract. 2018, 136, 150–158. [Google Scholar] [CrossRef]
- Park, S.; Kim, O.-H.; Lee, K.; Park, I.B.; Kim, N.H.; Moon, S.; Im, J.; Sharma, S.P.; Oh, B.C.; Nam, S.; et al. Plasma and urinary extracellular vesicle microRNAs and their related pathways in diabetic kidney disease. Genomics 2022, 114, 110407. [Google Scholar] [CrossRef]
- Peng, H.; Zhong, M.; Zhao, W.; Wang, C.; Zhang, J.; Liu, X.; Li, Y.; Paudel, S.D.; Wang, Q.; Lou, T. Urinary miR-29 correlates with albuminuria and carotid intima-media thickness in type 2 diabetes patients. PLoS ONE 2013, 8, e82607. [Google Scholar] [CrossRef] [PubMed]
- Petrica, L.; Milas, O.; Vlad, M.; Vlad, A.; Gadalean, F.; Dumitrascu, V.; Velciov, S.; Gluhovschi, C.; Bob, F.; Ursoniu, S.; et al. Interleukins and miRNAs intervene in the early stages of diabetic kidney disease in Type 2 diabetes mellitus patients. Biomark Med. 2019, 13, 1577–1588. [Google Scholar] [CrossRef]
- Pezzolesi, M.G.; Satake, E.; McDonnell, K.P.; Major, M.; Smiles, A.M.; Krolewski, A.S. Circulating TGF-β1-Regulated miRNAs and the Risk of Rapid Progression to ESRD in Type 1 Diabetes. Diabetes 2015, 64, 3285–3293. [Google Scholar] [CrossRef]
- Prabu, P.; Rome, S.; Sathishkumar, C.; Gastebois, C.; Meugnier, E.; Mohan, V.; Balasubramanyam, M. MicroRNAs from urinary extracellular vesicles are non-invasive early biomarkers of diabetic nephropathy in type 2 diabetes patients with the “Asian Indian phenotype”. Diabetes Metab. 2019, 45, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Regmi, A.; Liu, G.; Zhong, X.; Hu, S.; Ma, R.; Gou, L.; Zafar, M.I.; Chen, L. Evaluation of Serum microRNAs in Patients with Diabetic Kidney Disease: A Nested Case-Controlled Study and Bioinformatics Analysis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 1699–1708. [Google Scholar] [CrossRef]
- Ren, H.W.; Ma, X.Y.; Shao, Y.; Han, J.Y.; Yang, M.; Wang, Q.Y. Correlation Between Serum miR-154-5p and Osteocalcin in Males and Postmenopausal Females of Type 2 Diabetes With Different Urinary Albumin Creatinine Ratios. Front. Endocrinol. 2019, 10, 542. [Google Scholar] [CrossRef]
- Ren, H.; Wu, C.; Shao, Y.; Liu, S.; Zhou, Y.; Wang, Q. Correlation between serum miR-154-5p and urinary albumin excretion rates in patients with type 2 diabetes mellitus: A cross-sectional cohort study. Front. Med. 2020, 14, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Roux, M.; Perret, C.; Feigerlova, E.; Mohand Oumoussa, B.; Saulnier, P.-J.; Proust, C.; Trégouët, D.A.; Hadjadj, S. Plasma levels of hsa-miR-152-3p are associated with diabetic nephropathy in patients with type 2 diabetes. Nephrol. Dial. Transpl. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2018, 33, 2201–2207. [Google Scholar] [CrossRef]
- Rovira-Llopis, S.; Escribano-Lopez, I.; Diaz-Morales, N.; Iannantuoni, F.; Lopez-Domenech, S.; Andújar, I.; Jover, A.; Pantoja, J.; Pallardo, L.M.; Bañuls, C.; et al. Downregulation of miR-31 in Diabetic Nephropathy and its Relationship with Inflammation. Cell Physiol. Biochem. Int. J. Exp. Cell Physiol. Biochem. Pharmacol. 2018, 50, 1005–1014. [Google Scholar] [CrossRef]
- Shao, Y.; Ren, H.; Lv, C.; Ma, X.; Wu, C.; Wang, Q. Changes of serum Mir-217 and the correlation with the severity in type 2 diabetes patients with different stages of diabetic kidney disease. Endocrine 2017, 55, 130–138. [Google Scholar] [CrossRef]
- Sham, S.Y.Z.; Ng, C.T.; Azwar, S.; Yip, W.K.; Abdullah, M.; Thevandran, K.; Osman, M.; Seow, H.F. Circulating miRNAs in Type 2 Diabetic Patients with and without Albuminuria in Malaysia. Kidney Blood Press Res. 2022, 47, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Ren, J.; Chen, H.; Liu, B. MicroRNA-140-5p ameliorates the high glucose-induced apoptosis and inflammation through suppressing TLR4/NF-κB signaling pathway in human renal tubular epithelial cells. BioSci. Rep. 2020, 40, BSR20192384. [Google Scholar] [CrossRef]
- Xiao, Y.; Guo, S.; Zhang, Y.; Bian, Z.; Jia, L.; Hu, Y.; Chen, J.; Yin, C.; Li, N.; Zhang, D.; et al. Diabetic nephropathy: Serum miR-9 confers a poor prognosis in and is associated with level changes of vascular endothelial growth factor and pigment epithelium-derived factor. Biotechnol. Lett. 2017, 39, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.X.; Fan, X.; Drummond, C.A.; Majumder, R.; Xie, Y.; Chen, T.; Liu, L.; Haller, S.T.; Brewster, P.S.; Dworkin, L.D.; et al. MicroRNA profiling in kidney disease: Plasma versus plasma-derived exosomes. Gene 2017, 627, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zang, J.; Maxwell, A.P.; Simpson, D.A.; McKay, G.J. Differential Expression of Urinary Exosomal MicroRNAs miR-21-5p and miR-30b-5p in Individuals with Diabetic Kidney Disease. Sci. Rep. 2019, 9, 10900. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, R.; He, J.; Yang, Q.; Wu, Y.; Huang, J.; Wu, B. Co-expression analysis among microRNAs, long non-coding RNAs, and messenger RNAs to understand the pathogenesis and progression of diabetic kidney disease at the genetic level. Methods 2017, 124, 46–56. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Zha, D.Q.; Wu, X.Y. Inhibition of miRNA-135a-5p ameliorates TGF-beta 1-induced human renal fibrosis by _targeting SIRT1 in diabetic nephropathy. Int. J. Mol. Med. 2020, 46, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shen, A.; Guo, F.; Song, Y.; Jing, N.; Ding, X.; Pan, M.; Zhang, H.; Wang, J.; Wu, L. Urinary Exosomal MiRNA-4534 as a Novel Diagnostic Biomarker for Diabetic Kidney Disease. Front. Endocrinol. 2020, 11, 590. [Google Scholar] [CrossRef]
- Zhou, J.; Peng, R.; Li, T.; Luo, X.; Peng, H.; Zha, H.; Yin, P.; Wen, L.; Zhang, Z. A potentially functional polymorphism in the regulatory region of let-7a-2 is associated with an increased risk for diabetic nephropathy. Gene 2013, 527, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Berillo, O.; Huo, K.-G.; Fraulob-Aquino, J.C.; Richer, C.; Briet, M.; Boutouyrie, P.; Lipman, M.L.; Sinnett, D.; Paradis, P.; Schiffrin, E.L. Circulating let-7g-5p and miR-191-5p are independent predictors of chronic kidney disease in hypertensive patients. Am. J. Hypertens. 2020, 33, 505–513. [Google Scholar] [CrossRef]
- Huang, Y.-Q.; Huang, C.; Li, J.; Zhang, B.; Feng, Y.-Q. The association of miR-29a with proteinuria in essential hypertension. J. Hum. Hypertens. 2018, 32, 775–780. [Google Scholar] [CrossRef]
- Huang, C.; Huang, Y.-Q. The correlation of circulating miR-29b and inflammatory markers with albuminuria in hypertensive patients. Clin. Exp. Hypertens. 2020, 42, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Nandakumar, P.; Tin, A.; Grove, M.L.; Ma, J.; Boerwinkle, E.; Coresh, J.; Chakravarti, A. MicroRNAs in the miR-17 and miR-15 families are downregulated in chronic kidney disease with hypertension. PLoS ONE 2017, 12, e0176734. [Google Scholar] [CrossRef] [PubMed]
- Perez-Hernandez, J.; Olivares, D.; Forner, M.J.; Ortega, A.; Solaz, E.; Martinez, F.; Chaves, F.J.; Redon, J.; Cortes, R. Urinary exosome miR-146a is a potential marker of albuminuria in essential hypertension. J. Transl. Med. 2018, 16, 228. [Google Scholar] [CrossRef]
- Perez-Hernandez, J.; Riffo-Campos, A.L.; Ortega, A.; Martinez-Arroyo, O.; Perez-Gil, D.; Olivares, D.; Solaz, E.; Martinez, F.; Martínez-Hervás, S.; Chaves, F.J.; et al. Urinary- and Plasma-Derived Exosomes Reveal a Distinct MicroRNA Signature Associated With Albuminuria in Hypertension. Hypertension 2021, 77, 960–971. [Google Scholar] [CrossRef]
- Fish, J.E.; Santoro, M.M.; Morton, S.U.; Yu, S.; Yeh, R.-F.; Wythe, J.D.; Ivey, K.N.; Bruneau, B.G.; Stainier, D.Y.R.; Srivastava, D. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 2008, 15, 272–284. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Y.-S.; Nguyen, P.; Wang, K.-C.; Weiss, A.; Kuo, Y.-C.; Chiu, J.-J.; Shyy, J.Y.; Chien, S. Regulation of vascular smooth muscle cell turnover by endothelial cell–secreted microRNA-126: Role of shear stress. Circ. Res. 2013, 113, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Prattichizzo, F.; Giuliani, A.; Ceka, A.; Rippo, M.R.; Bonfigli, A.R.; Testa, R.; Procopio, A.D.; Olivieri, F. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin. Epigenetics 2015, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Metzinger-Le Meuth, V.; Burtey, S.; Maitrias, P.; Massy, Z.A.; Metzinger, L. microRNAs in the pathophysiology of CKD-MBD: Biomarkers and innovative drugs. BBA-Mol. Basis Dis. 2017, 1863, 337–345. [Google Scholar] [CrossRef]
- Panizo, S.; Martínez-Arias, L.; Alonso-Montes, C.; Cannata, P.; Martín-Carro, B.; Fernández-Martín, J.L.; Naves-Díaz, M.; Carrillo-López, N.; Cannata-Andía, J.B. Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. Int. J. Mol. Sci. 2021, 22, 408. [Google Scholar] [CrossRef] [PubMed]
- Kölling, M.; Kaucsar, T.; Schauerte, C.; Hübner, A.; Dettling, A.; Park, J.-K.; Busch, M.; Wulff, X.; Meier, M.; Scherf, K.; et al. Therapeutic miR-21 Silencing Ameliorates Diabetic Kidney Disease in Mice. Mol. Ther. 2017, 25, 165–180. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, J.; Luo, J.; Yuan, Q.; Cao, H.; Su, W.; Zhou, Y.; Jiang, L.; Fang, L.; Dai, C. The feedback loop between miR-21, PDCD4 and AP-1 functions as a driving force for renal fibrogenesis. J. Cell Sci. 2018, 131, jcs202317. [Google Scholar] [CrossRef] [PubMed]
- Sun, I.O.; Lerman, L.O. Urinary microRNA in kidney disease: Utility and roles. Am. J. Physiol.-Ren. Physiol. 2019, 316, F785–F793. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Zhong, X.; Huang, X.R.; Meng, X.-M.; You, Y.; Chung, A.C.K.; Lan, H.Y. MicroRNA-29b Inhibits Diabetic Nephropathy in db/db Mice. Mol. Ther. 2014, 22, 842–853. [Google Scholar] [CrossRef]
- Zen, K.; Zhang, C. Circulating microRNAs: A novel class of biomarkers to diagnose and monitor human cancers. Med. Res. Rev. 2012, 32, 326–348. [Google Scholar] [CrossRef]
- Cui, C.; Cui, Q. The relationship of human tissue microRNAs with those from body fluids. Sci. Rep. 2020, 10, 5644. [Google Scholar] [CrossRef]
- Sakuma, H.; Hagiwara, S.; Kantharidis, P.; Gohda, T.; Suzuki, Y. Potential _targeting of Renal Fibrosis in Diabetic Kidney Disease Using MicroRNAs. Front. Pharmacol. 2020, 11, 587689. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Tan, K.; Luo, Q.; Bai, X. Dihydromyricetin promotes autophagy and attenuates renal interstitial fibrosis by regulating miR-155-5p/PTEN signaling in diabetic nephropathy. Bosn. J. Basic Med. Sci. 2020, 20, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Jia, J.; Shao, H. miR-30e _targets GLIPR-2 to modulate diabetic nephropathy: In vitro and in vivo experiments. J. Mol. Endocrinol. 2017, 59, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; You, Y.; Wang, J.; Qin, Y.; Huang, P.; Yang, F. MicroRNA-155 deficiency promotes nephrin acetylation and attenuates renal damage in hyperglycemia-induced nephropathy. Inflammation 2015, 38, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, Z.J.; Jia, Y.J.; Yang, Y.L.; Xue, Y.M. Role of p53/miR-155-5p/sirt1 loop in renal tubular injury of diabetic kidney disease. J. Transl. Med. 2018, 16, 146. [Google Scholar] [CrossRef]
- Krupa, A.; Jenkins, R.; Luo, D.D.; Lewis, A.; Phillips, A.; Fraser, D. Loss of MicroRNA-192 Promotes Fibrogenesis in Diabetic Nephropathy. J. Am. Soc. Nephrol. 2010, 21, 438–447. [Google Scholar] [CrossRef]
- Jenkins, R.H.; Martin, J.; Phillips, A.O.; Bowen, T.; Fraser, D.J. Pleiotropy of microRNA-192 in the kidney. Biochem. Soc. Trans. 2012, 40, 762–767. [Google Scholar] [CrossRef]
- Witwer, K.W. Circulating microRNA biomarker studies: Pitfalls and potential solutions. Clin. Chem. 2015, 61, 56–63. [Google Scholar] [CrossRef]
- Li, J.; Ma, L.; Yu, H.; Yao, Y.; Xu, Z.; Lin, W.; Wang, L.; Wang, X.; Yang, H. MicroRNAs as Potential Biomarkers for the Diagnosis of Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 782561. [Google Scholar] [CrossRef]
- Roberts, T.C.; Coenen-Stass, A.M.L.; Wood, M.J.A. Assessment of RT-qPCR normalization strategies for accurate quantification of extracellular microRNAs in murine serum. PLoS ONE 2014, 9, e89237. [Google Scholar] [CrossRef]
- Zampetaki, A.; Mayr, M. Analytical challenges and technical limitations in assessing circulating miRNAs. Thromb. Haemost. 2012, 108, 592–598. [Google Scholar] [PubMed]
Study | Country | Study Population [Cases] | Study Population [Control] | Quantification Method | Sample Type | microRNAs | Upregulated | Downregulated |
---|---|---|---|---|---|---|---|---|
Carmona, 2020 [28] | Spain | 45 | 10 | RT-qPCR | Serum | miR-126-3p, miR-191-5p, miR-223-3p, miR-363-3p, miR-495-3p | - | miR-126-3p, miR-191-5p, miR-223-3p |
Chen, 2013 [29] | United States of America | 110 | 8 | RT-qPCR | Serum | miR-125b, miR-145, miR-155 | - | miR-125b, miR-145, miR-155 |
Donderski, 2021 [30] | Poland | 45 | 17 | RT-qPCR | urine, serum | miR-155-5p, miR-214-3p, miR-200a-5p, miR-29a-5p, miR-21-5p, miR-93-5p, miR-196a-5p | Urine—miR-29-5p, miR-21-5p, miR-196a-5p. Serum—miR-155-5p, miR-214-3p and miR-200a-5p | Urine—miR-155-5p, miR-214-5p, miR-200a-5p, miR-93-5p |
Eckersten, 2017 [31] | Sweden | 30 | 18 | RT-qPCR | Serum | miR-155 | miR-155 | - |
Fourdinier, 2019 [21] | Belgium | 601 | 31 | RT-qPCR | Serum | miR-223, miR-126 | - | miR-223, miR-126 |
Fujii, 2019 [22] | Japan | 395 | 118 | RT-qPCR | Serum | miR-17, miR-21, miR-150 | - | - |
Fujii, 2019 [32] | Japan | 229 | 1156 | RT-qPCR | Serum | miR-126, miR-197, miR-223 | - | miR-126, miR-197, miR-223 |
Fujii, 2021 [33] | Japan | 29 | 140 | RT-qPCR | Serum | miR-126, miR-197, miR-21, miR-150, miR-17 | - | - |
Lange, 2019 [34] | Germany | 41 | 5 | RT-qPCR | urine exosomes | miR-21-5p, miR-30a-5p, miR-92a-3p | miR-21 | - |
Li, 2020 [35] | China | 116 | 127 | RT-qPCR | Serum | miR-155 | miR-155 | - |
Liu, 2020 [36] | China | 110 | 35 | NGS, RT-qPCR | serum | miR-483-5p, miR-363-3p | miR-483-5p | miR-363-3p |
Motshwari, 2021 [37] | South Africa | 171 | 740 | NGS, RT-qPCR | whole blood | miR-novel- chr1_36178, miR-novel-chr2_55842, miR-novel-chr7_76196, miR-novel-chr5_67265, miR-novel-chr13_13519, and miR-novel-chr15_18383 | All novel miRNAs | - |
Muralidharan, 2017 [38] | United States of America | 19 | 9 | Microarray, RT-qPCR | plasma and urine exosomes | Urine—miR-1281, miR-1825, miR-130a-3p, let-7a-5p Plasma—miR-1825p miR-1281, miR-423 | Urine—miR-1825, miR-1281. Plasma—miR-1825, miR-1281, miR-144-5p, miR-548ap-5p | Urine—miR-4525. Plasma—miR-423-5p, miR-3648 |
Rudnicki, 2016 [39] | Austria | 20 | 52 | RT-qPCR | Kidney biopsy | miR-30d, miR-140-3p, miR-532-3p, miR-194, miR-190, miR-204, miR-206 | miR-206, miR-532-3 | - |
Sayilar, 2016 [40] | Turkey | 30 | 15 | RT-qPCR | plasma, urine | miR-21, miR-124, miR-192, miR-195, miR-451 | Urine—miR-124 Plasma—miR-195, miR-451 | Urine—miR-195, miR-451 |
Shang, 2017 [41] | China | 208 | 37 | RT-qPCR | serum | miR-92a, miR-126, miR-155, miR-483 | miR-92a | - |
Trojanowicz, 2019 [42] | Germany | 48 | 23 | RT-qPCR | serum | miR-421 | miR-421 | - |
Ulbing, 2017 [43] | Austria | 137 | 36 | RT-qPCR | serum | miR-223-3p, miR-93-5p, miR-142-3p, miR-146a-5p | - | miR-223-3p, miR-93-5p, miR-142-3p |
Study | Country | Study Population (n) | Quantification Method | microRNAs | Sample Type | Upregulated | Downregulated | ||
---|---|---|---|---|---|---|---|---|---|
Healthy | Normoalbuminuria | Diabetic Kidney Disease | |||||||
Abdelsalam, 2020 [44] | Egypt | 30 | 30 | 60 | RT-qPCR | miR-451 | plasma | miR-451 | - |
urine | - | miR-451 | |||||||
Abdou, 2022 [45] | Egypt | 20 | 20 | 40 | RT-qPCR | miR-152-3p | serum | miR-152-3p | - |
Akhbari, 2018 [46] | Iran | 22 | 21 | 40 | RT-qPCR | miR-93 | serum | - | miR-93 |
Akhbari, 2019 [47] | Iran | 22 | - | 61 | RT-qPCR | miR-155 | cell-free serum | - | miR-155 |
Al-kafaji, 2016 [48] | Bahrain | 50 | 52 | 50 | RT-qPCR | miR-126 | peripheral whole blood | - | miR-126 |
Al-kafaji, 2018 [49] | Bahrain | 30 | 30 | 25 | RT-qPCR | miR-377, miR-192 | whole blood | miR-377 | miR-192 |
Argyropoulos, 2013 [50] | United States of America | - | 10 | 30 | RT-qPCR | 27 microRNAs | urine | miR-214-3p, miR-92b-5p, miR-765, miR-429, miR-373-5p, miR-1913, miR-638 | miR-323b-5p, miR-221-3p, miR-524-5p, miR-188-3p |
Assmann, 2019 [51] | Brazil | 20 | 33 | 54 | RT-qPCR | miR-16-5p, miR-21-3p, miR-29a-3p, miR-378a-5p, miR-503-5p | plasma | miR-21-3p, miR-378a-5p | miR-16-5p, miR-29a-3p |
Barutta, 2013 [52] | Italy | 10 | 12 | 12 | RT-qPCR | miR-130a, miR-424, miR-155, miR-145 | urine exosomes | miR-145, miR-130a | miR-424, miR-155 |
Beltrami, 2018 [53] | United Kingdom | 61 | 62 | 109 | MicroRNA array, RT-qPCR | miR-126-3p, miR-155-5p, miR-29b-3p | urine | miR-126-3p, miR-155-5p, miR-29b-3p | - |
Cardenas-Gonzalez, 2017 [54] | United States of America | 93 | 71 | 132 | RT-qPCR, miRNA in situ hybridization | miR-1915-3p, miR-2861, miR-4532, miR-4536-3p, miR-6747-3p | urine | miR-4536-3p, miR-6747-3p | miR-1915-3p, miR-2861, miR-4532 |
Conserva, 2019 [55] | Italy | 20 | - | 37 | Microarray, RT-qPCR | miR-27b-3p, miR-1228-3p | kidney biopsy, cell-free urine | - | miR-27b-3p, miR-1228-3p |
Delić, 2016 [56] | Germany | 14 | 14 | 13 | Microarray, RT-qPCR | miR-320c, miR-6068 | urine exosomes | miR-320c, miR-6068 | - |
Dieter, 2019 [57] | Brazil | - | 17 | 23 | RT-qPCR | miR-15a-5p, miR-30e-5p | plasma | - | miR-30e-5p |
urine | - | miR-30e-5p | |||||||
Eissa, 2016 [58] | Egypt | 56 | 60 | 116 | MicroRNA array, RT-qPCR | miR-15b, miR-34a, miR-636 | urine pellets, exosomes | miR-15b, miR-34a, miR-636 | - |
Eissa, 2016b [59] | Egypt | 54 | 56 | 110 | RT-qPCR | miR-133b, miR-342, miR-30a | urine exosomes | miR-133b, miR-342, miR-30a | - |
Florijn, 2019 [60] | Netherlands | 12 | - | 33 | RT-qPCR | miR-1, miR-21, miR-29a, miR-126, miR-132, miR-145, miR-152, miR-212, miR-223, miR-574, miR-660 | plasma endothelial vesicles | miR-21, miR-126 | - |
Plasma | miR-126 | ||||||||
high density lipoprotein fraction | - | miR-132 | |||||||
Apo-2 | miR-126, miR-145, miR-660 | - | |||||||
Fouad, 2020 [61] | Egypt | 100 | 120 | 120 | RT-qPCR | miR-21 | plasma | miR-21 | - |
Guo, 2017 [62] | China | 45 | 33 | 42 | Microarray, RT-qPCR | miR-29c | plasma | miR-29c | - |
urine | - | miR-29c | |||||||
kidney tissue | - | miR-29c | |||||||
Han, 2021 [63] | China | - | 5 | 6 | Microarray, RT-qPCR | miR-95-3p, miR-185-5p, miR-1246, miR-631 | urine sediment | miR-95-3p, miR-185-5p, miR-1246, miR-631 | - |
He, 2014 [64] | China | 6 | - | 6 | Microarray hybridisation, RT-qPCR | miR-15a, miR-17, miR-21, miR-30b, miR-126, miR-135a, miR-192, miR-377, miR-34a, miR-194-1, miR-205, miR-215 | serum | miR-15a, miR-17, miR-21, miR-30b, miR-126, miR-135a, miR-192, miR-377 | miR-34a, miR-194-1, miR-205, miR-215 |
kidney tissue | miR-135a | - | |||||||
Hong, 2021 [65] | China | 36 | 36 | 51 | Microarray, RT-qPCR | miR-193a-3p, miR-320c, miR-27a-3p | plasma | miR-193a-3p, miR-320c | - |
Jia, 2016 [66] | China | 10 | 30 | 50 | RT-qPCR | miR-192, miR-194, miR-215 | urine extracellular vesicles | miR-192, miR-194, miR-215 | - |
Khokhar, 2021 [67] | India | 36 | 38 | 35 | RT-qPCR | miR-21-5p | whole blood | miR-21-5p | - |
Lin, 2021 [68] | China | 30 | 36 | 32 | RT-qPCR | miR-638 | serum | miR-638 | |
Liu, 2021 [69] | China | 180 | 64 | 116 | RT-qPCR | miR-29a | serum | miR-29a | |
Ma, 2016 [70] | China | 127 | 157 | 307 | RT-qPCR | miR-192 | serum | - | miR-192 |
Milas, 2018 [71] | Romania | 11 | 26 | 42 | RT-qPCR | miR-21, miR-124, miR-192 | urine | miR-21, miR-124 | miR-192 |
Monjezi, 2022 [72] | Iran | 30 | 31 | RT-qPCR | miR-124-3p | peripheral blood mononuclear cells | miR-124-3p | ||
Motawi, 2018 [73] | Egypt | 25 | 25 | 25 | RT-qPCR | miR-130b | serum | - | miR-130b |
Park, 2022 [74] | Republic of Korea | 7 | - | 12 | NGS | miR-320b, miR-30d-5p, miR-30e-3p, miR-30c-5p, miR-190a-5p, miR-29c-5p, miR-98-3p, miR-331-3p, let-7a-3p, miR-106b-3p, miR-30b-5p, miR-99b-5p, let-7f-1-3p | plasma and urine extracellular vesicles | miR-320b | miR-30d-5p, miR-30e-3p, miR-30c-5p, miR-190a-5p, miR-29c-5p, miR-98-3p, miR-331-3p, let-7a-3p, miR-106b-3p, miR-30b-5p, miR-99b-5p, let-7f-1-3p |
Peng, 2013 [75] | China | - | 41 | 42 | RT-qPCR | miR-29a, miR-29b, miR-29c | urine supernatant | miR-29a | - |
Petrica, 2019 [76] | Romania | 11 | 36 | 81 | RT-qPCR | miR-125a, miR-126, miR-146a, miR-21p, miR-124, miR-192 | serum | miR-192, miR-21p | miR-124, miR-125a, miR-126, miR-146 |
urine | miR-21p, miR-124, miR-125a, miR-126 | miR-192, miR-146a | |||||||
Pezzolesi, 2015 [77] | United States of America | - | 40 | 76 | RT-qPCR | let-7b-5p, let-7c-5p, miR-21-5p, miR-29a-3p, miR-29c-3p | plasma | let-7b-5p, miR-21-5p | let-7c-5p, miR-29a-3p |
Prabu, 2019 [78] | India | 40 | 40 | 80 | RT-qPCR | let-7i-5p, miR-135b-5p, miR-15b-3p, miR-197-3p, miR-24-3p, miR-27b-3p | urine exosomes | let-7i-5p, miR-24-3p, miR-27b-3p, miR-30a-5p | miR-15b-3p |
Regmi, 2019 [79] | China | 25 | 50 | 42 | RT-qPCR | miR-20a, miR-99b, miR-122-5p, miR-486-5p | serum | miR-99b, miR-122 | miR-20a, miR-486 |
Ren, 2019 [80] | China | 280 | 273 | 465 | RT-qPCR | miR-154-5p | serum | miR-154-5p | - |
Ren, 2020 [81] | China | - | 136 | 254 | RT-qPCR | miR-154-5p | serum | miR-154-5p | - |
Roux, 2018 [82] | France | - | 73 | 73 | NGS, RT-qPCR | miR-362-5p, miR-152-3p, miR-196b-5p, miR-140-3p | plasma | miR-152-3p | - |
Rovira-Llopis, 2018 [83] | Spain | 24 | 13 | 13 | RT-qPCR | miR-31 | serum | - | miR-31 |
Shao, 2017 [84] | China | 195 | 186 | 309 | RT-qPCR | miR-217 | serum | miR-217 | - |
Sham, 2022 [85] | Malaysia | - | 15 | 26 | miS-cript miRNA qPCR array, RT-qPCR | miR-874-3p, miR-101-3p, miR-145-5p | serum | miR-874-3p, miR-101-3p | |
Su, 2020 [86] | China | 20 | - | 20 | MicroRNA array, RT-qPCR | miR-140-5p | peripheral blood, kidney tissue | - | miR-140-5p |
Wang, 2019 [19] | China | 40 | 40 | 66 | MicroRNA array, qPCR | miR-27a-3p, miR-30e, miR-33b, miR-50, miR-125b-5p, miR-150-5p, miR-155-5p, miR-296, miR-320e, miR-328, miR-484, miR-487, miR-550a-5p, miR-590-5p, miR-744, miR-885-5p, miR-933. miR-3196, let-7a-5p, let-7c-5p | plasma | miR-125b-5p, miR- 484, miR-550 | miR-30e, miR-155-5p, miR-320, let-7a-5p, miR-150-5p, miR-3196 |
Xiao, 2017 [87] | China | 35 | - | 140 | Real time PCR | miR-9 | serum | miR-9 | - |
Xie, 2017 [88] | China | - | 35 | 5 | MicroRNA array, qPCR | miR-362-3p, miR-877-3p, miR-15a-5p, miR-150-5p | urine exosomes | miR-362-3p, miR-877-3p, miR-150-5p | miR-15a-5p |
Zang, 2019 [89] | Ireland | 18 | 30 | 36 | MicroRNA arrays, RT-PCR | miR-21-5p, let-7e-5p, miR-23b-3p, miR-30b-5p, miR-125b-5p | urine sediment exosome | miR-21-5p | miR-30b-5p |
Zhang, 2017 [90] | China | 28 | 30 | 27 | Microarray, qPCR | miR-223-3p, miR-106b-5p, miR-103a-3p, miR-126-3p, miR-27a-3p, miR-29a-3p, miR-29c-3p, miR-425-5p, miR-93-5p, miR-1249-5p, miR-2276-3p, miR-1225-5p, miR-345-3p, miR-3679-5p, miR-4281, miR-4442 | plasma | - | miR-223-3p |
Zhang, 2020 [91] | China | - | 30 | 30 | RT-qPCR | miR-135a-5p | serum | miR-135a-5p | - |
Zhao, 2020 [92] | China | - | 17 | 17 | MicroRNA arrays, qRT-PCR | miR-4491, miR-2117, miR-4507, miR-5088-5p, miR-1587, miR-219a-3p, miR-5091, miR-498, miR-4687-3p, miR-516b-5p, mir-4534, miR-1275, miR-5007-3p, miR-4516 | urine exosomes | miR-4687-3p, miR-4534, miR-5007-3p | - |
Zhou, 2013 [93] | China | 62 | 104 | 108 | MicroRNA microarrays, real time RT-PCR | let-7a, let-7d, let-7f, miR-4429, miR-363 | whole blood | - | let-7a |
Study | Country | Study Population | Quantification Method | Sample Type | microRNAs | Upregulated | Downregulated | ||
---|---|---|---|---|---|---|---|---|---|
Healthy | Hypertensive | Hypertensive CKD | |||||||
Berillo, 2020 [94] | Canada | 15 | 31 | 16 | Hi-seq, RT-qPCR | platelet-poor plasma | let-7g-5p, miR-191-5p | - | let-7g-5p, miR-191-5p |
Huang, 2018 [95] | China | 0 | 50 | 100 | RT-qPCR | plasma | miR-29a | miR-29a | - |
Huang, 2020 [96] | China | 0 | 50 | 100 | RT-qPCR | plasma | miR-29b | miR-29b | - |
Nandakumar, 2017 [97] | United States of America | - | 15 | 15 | NGS | whole blood | miR-17-5p, miR-130a-3p, miR-15b-5p, miR-106b-3p, miR-106a-5p, miR-16-5p, miR-181a-5p, miR-1285-3p, miR-15a-5p, miR-29c-5p, miR-345-5p, miR-142-3p, miR-339-3p, miR-210-3p | - | miR-17-5p, miR-15a-5p, miR-15b-5p, miR-16-5 |
Perez-Hernandez, 2018 [98] | Spain | 20 | 28 | 24 | NGS, RT-qPCR | Urinary exosomes | miR-146a and miR-335 | - | miR-146a |
Perez-Hernandez, 2021 [99] | Spain | 15 | 56 | 61 | NGS, RT-qPCR | plasma and urine exosomes | miR-143-3p, miR-126-3p, miR-26a-5p, miR-144-3p, miR-191-5p, miR-220a-3p, miR-222-3p, miR-423-5p | Plasma exosome—miR-191-5p | Plasma exosome—miR-222-3p, miR-26a-5p, miR-126-3p |
MicroRNA | Study | Sample Type | Expression Pattern |
---|---|---|---|
CHRONIC KIDNEY DISEASE | |||
miR-126 | Carmona, 2020 [28] | Serum | Downregulated |
Fourdinier, 2019 [21] | Serum | Downregulated | |
Fujii, 2019b [32] | Serum | Downregulated | |
Shang, 2017 [41] | Serum, urine | No difference | |
miR-223 | Carmona, 2020 [28] | Serum | Downregulated |
Fourdinier, 2019 [21] | Serum | Downregulated | |
Fujii, 2019b [32] | Serum | Downregulated | |
Ulbing, 2017 [43] | Serum | Downregulated | |
miR-155 | Chen, 2013 [29] | Serum | Downregulated |
Donderski, 2021 [30] | Urine | Downregulated | |
Serum | Upregulated | ||
Eckersten, 2017 [31] | Serum | Upregulated | |
Shang, 2017 [41] | Serum, urine | No difference | |
miR-21 | Donderski, 2021 [30] | Urine | Upregulated |
Serum | Downregulated | ||
Lange, 2019 [34] | Urine exosomes | Upregulated | |
Sayilar, 2016 [40] | Urine, plasma | No difference | |
DIABETIC KIDNEY DISEASE | |||
miR-155 | Akhbari, 2019 [47] | Cell-free serum | Downregulated |
Barutta, 2013 [49] | Urinary exosomes | Downregulated in microalbuminuria | |
Beltrami, 2018 [53] | Urine | Upregulated | |
Wang, 2019 [19] | Plasma | Downregulated | |
miR-126 | Al-kafaji, 2016 [48] | Whole blood | Downregulated |
Beltrami, 2018 [53] | Urine | Upregulated | |
Florijn, 2019 [60] | Plasma exosomal vesicles | Upregulated | |
Plasma | Upregulated | ||
Plasma Ago | Upregulated | ||
Petrica, 2019 [76] | Urine | Upregulated | |
Serum | Downregulated | ||
He, 2014 [64] | Serum | Upregulated | |
miR-192 | Al-kafaji, 2018 [49] | Whole blood | Downregulated |
Jia, 2016 [66] | Urine extracellular vesicles | Upregulated in microalbuminuria and downregulated in macro albuminuria | |
Ma, 2016 [70] | Serum | Downregulated | |
Milas, 2018 [71] | Urine | Downregulated | |
Petrica, 2019 [76] | Urine | Upregulated | |
Serum | Upregulated | ||
He, 2014 [64] | Serum | Upregulated | |
miR-21 | Assmann, 2019 [51] | Plasma | Upregulated in macroalbuminuria |
Florijn, 2019 [60] | Plasma exosomal vesicles | Upregulated | |
Plasma | No difference | ||
Fouad, 2020 [61] | Plasma | Upregulated | |
Khokhar, 2021 [67] | Whole blood | Upregulated | |
Milas, 2018 [71] | Urine | Upregulated | |
Petrica, 2019 [76] | Serum | Upregulated | |
Urine | Upregulated | ||
Pezzolesi, 2015 [77] | Plasma | Upregulated in rapid progressors to ESKD | |
Zang, 2019 [89] | Urinary exosomes | Upregulated | |
He, 2014 [64] | Serum | Upregulated | |
miR-29b | Beltrami, 2018 [53] | Urine | Upregulated |
Peng, 2013 [75] | Urine supernatant | No difference | |
Argyropoulos, 2013 [50] | Urine | Upregulated | |
miR-15a-5p | He, 2014 [64] | Serum | Upregulated |
Xie, 2017 [88] | Urinary exosomes | No difference | |
Dieter, 2019 [57] | Urine and plasma | No difference | |
miR-29a | Assmann, 2019 [51] | Plasma | Downregulated in macroalbuminuria |
Peng, 2013 [75] | Urine supernatant | Upregulated | |
Pezzolesi, 2015 [77] | Plasma | Downregulated in fast progressors to ESKD | |
Liu, 2021 [69] | Serum | Upregulated | |
miR-29c | Guo, 2017 [62] | Plasma | Upregulated |
Urine sediments | Downregulated | ||
Kidney tissue | Downregulated | ||
Pezzolesi, 2015 [77] | Plasma | No difference | |
Peng, 2013 [75] | Urine supernatant | No difference | |
miR-124 | Milas, 2018 [71] | Urine | Upregulated |
Monjezi, 2022 [72] | Peripheral blood mononuclear cells | downregulated | |
Petrica, 2019 [76] | Serum | Downregulated | |
Urine | Upregulated | ||
Let-7a | Park, 2022 [74] | Plasma | Downregulated |
Urinary extracellular vesicles | Downregulated | ||
Wang, 2019 [19] | Plasma | Downregulated | |
Zhou, 2013 [93] | Whole blood | Downregulated | |
miR-30e | Dieter, 2019 [57] | Plasma | Downregulated |
Urine | Downregulated | ||
Park, 2022 [74] | Plasma | Downregulated | |
Urinary extracellular vesicles | Downregulated | ||
Wang, 2019 [19] | Plasma | Downregulated | |
miR-30b | He, 2014 [64] | Serum | Upregulated |
Park, 2022 [74] | Plasma | Downregulated | |
Urinary extracellular vesicles | Downregulated | ||
Zang, 2019 [89] | Urine sediment exosome | Downregulated |
Study | microRNA | Adjustment | Effect Estimate [OR (95%CI)] | Outcome |
---|---|---|---|---|
Fujii, 2019 [22] | miR-17 | sex, age, proteinuria, body mass index, systolic blood pressure, triglyceride, blood glucose, smoking status, alcohol consumption, exercise habit, and medication for non-communicable diseases | 0.42 (0.24 to 0.75); p = 0.004 | CKD |
miR-21 | 0.47 (0.26 to 0.85); p = 0.01 | |||
miR-150 | 0.49 (0.27 to 0.88); p = 0.02 | |||
Fujii, 2019b [32] | miR-126 | age, sex, blood glucose, body mass index, systolic blood pressure, smoking status, alcohol consumption, relocation frequency, degree of housing damage, current housing environment, and psychological condition | 0.67 (0.45 to 0.98); p = 0.04 | CKD |
miR-197 | 0.67 (0.46 to 0.99); p = 0.05 | |||
miR-223 | 0.53 (0.35 to 0.79); p = 0.002 | |||
Fujii, 2021 [33] | miR-126 | Sex, age, body mass index, blood glucose levels, systolic blood pressure, smoking status, alcohol intake, habitual exercise, proteinuria and baseline eGFR or blood urea nitrogen | 3.85 (1.01 to 16.8); p = 0.05 | CKD |
Huang, 2018 [95] | miR-29a | age, sex, SBP, fasting blood-glucose, body mass index, glomerular filtration rate, triglyceride, C-reactive protein, and TGF-β1 | 1.11 (1.08 to 1.37); p = 0.002 | Proteinuria |
Huang, 2020 [96] | miR-29b | age, gender, SBP, fasting blood-glucose, body mass index, glomerular filtration rate, low density lipoprotein cholesterol, C-reactive protein and TGF-β1 | 0.55 (0.35 to 0.79); p < 0.001 | Albuminuria |
Motshwari, 2021 [37] | miR-novel-chr2_55842 | age, gender, smoking status, drinking status, HTN, and DM status | 1.65 (1.33 to 2.05); p < 0.0001 | CKD |
miR-novel-chr7_76196 | 4.89 (2.48 to 9.64); p < 0.0001 | |||
miR-novel-chr5_67265 | 1.37 (1.17 to 1.60); p < 0.0001 | |||
miR-novel-chr13_13519 | 1.79 (1.40 to 2.28); p < 0.0001 | |||
miR-novel-chr1_36178 | 1.22 (1.10 to 1.37); p < 0.0001 | |||
miR-novel-chr15_18383 | 1.44 (1.09 to 1.89); p = 0.009 | |||
Al-kafaji, 2016 [48] | miR-126 | age, gender, BMI and blood pressure, fasting glucose, HbA1c, triglyceride, and LDL | 0.51 (0.37 to 0.71); p = 0.002 | DKD |
0.78 (0.70 to 0.95); p = 0.04 | Microalbuminuria | |||
0.43 (0.30 to 0.70); p = 0.03 | Macroalbuminuria | |||
Al-kafaji, 2018 [49] | miR-377 | age, sex, BMI, HbA1c, mean blood pressure, LDL, triglyceride and total cholesterol | 1.12 (0.98 to 1.22); p = 0.018 | DKD |
Cardenas-Gonzalez, 2017 [54] | miR-4536-3p | Not reported | 3.03 (1.95 to 4.72) | DKD |
Pezzolesi, 2015 [77] | let-7b-5p | Sex, age, HbA1c, duration of type 1 diabetes | 2.51 (1.42 to 4.43); p = 0.002 | ESKD |
miR-21-5p | 6.33 (1.75 to 22.92); p = 0.005 | |||
let-7c-5p | 0.23 (0.10 to 0.52); p = 0.0004 | |||
miR-29a-3p | 0.38 (0.20–0.74); p = 0.004 |
Study | microRNA | Adjustment | Unstandardized/Standardized β-Coefficient (95%CI) | Outcome |
---|---|---|---|---|
Chen, 2013 [29] | miR-125b | Not reported | Not reported | eGFR |
miR-145 | ||||
miR-155 | ||||
Donderski, 2021 [30] | miR-155-5p | Not reported | 0.32; p = 0.042 | eGFR |
Fourdinier, 2019 [21] | miR-223 | age, body mass index, diabetes, urea, calcium, phosphate, parathyroid hormone, platelet count, cholesterol, and low-density lipoprotein | 0.02 (0.01 to 0.03); p < 0.0001 | eGFR |
miR-126 | hypertension, body mass index, diabetes, urea, phosphate, parathyroid hormone, proteinuria, cholesterol, and low-density lipoprotein | 0.00 (0.000 to 0.001); p = 0.002 | eGFR | |
Fujii, 2019 [22] | miR-17 | sex, age, proteinuria, body mass index, systolic blood pressure, triglyceride, blood glucose, smoking status, alcohol consumption, exercise habit, and medication for non-communicable diseases | 0.121; p = 0.004 | eGFR |
miR-21 | 0.134; p = 0.002 | |||
miR-150 | 0.123; p = 0.004 | |||
Fujii, 2021 [33] | miR-126 | age, sex, smoking habits, alcohol intake, habitual exercise, BMI, SBP, glucose levels, proteinuria, and baseline eGFR | −3.18; p = 0.04 | eGFR |
Motshwari, 2021 [37] | miR-novel-chr2_55842 | age, gender, smoking status, drinking status, hypertension, and diabetes mellitus status | −2.70 (−4.82 to −0.57); p = 0.013 | eGFR |
miR-novel-chr7_76196 | −7.39 (−14.05 to −0.72); p = 0.030 | |||
Shang, 2017 [41] | miR-92a | age, sex, smoking, diabetes mellitus, coronary artery disease, and hyperlipidaemia | −0.684; p < 0.001 −0.548; p < 0.001 | eGFR |
Berillo, 2020 [94] | let-7g-5p | age, urinary albumin creatinine ratio, carotid distensibility, neutrophil and lymphocyte fractions, neutrophil number and neutrophil-to-lymphocyte ratio | 0.41; p < 0.001 | eGFR |
miR-191-5p | 0.30; p < 0.014 | |||
Eissa, 2016 [58] | miR-15b | Not reported | 0.452 (0.000 to 0.000); p < 0.001 | UACR |
miR-34a | −0.914 (0.000 to 0.000); p < 0.03 | |||
miR-636 | 0.889 (0.000 to 0.000); p < 0.02 | |||
Eissa, 2016b [59] | miR-133b | Not reported | 0.4 (0.395 to 1.855); p < 0.01 | eGFR |
Ma, 2016 [70] | miR-192 | Age, duration, body mass index, systolic and diastolic blood pressure, fasting blood glucose, postprandial blood glucose, HbA1C, fasting insulin, postprandial insulin, fasting C peptides, prandial C peptides, blood urea nitrogen, creatinine, low- and high-density lipoprotein cholesterol, triglycerides, cholesterol, TGF-β1, and fibronectin | Not reported | UACR |
Milas, 2018 [71] | miR-21 | lipid profile, HbA1c, and high-sensitive C-reactive protein | −0.007 (−0.011 to −0.003); p = 0.0001 | eGFR |
miR-124 | −0.007 (−0.011 to −0.003); p = 0.0001 | |||
miR-192 | 0.005 (0.002 to 0.008); p = 0.0001 | |||
miR-21 | −0.0005 (−0.0007 to −0.0002); p = 0.0001 | UACR | ||
miR-124 | −0.0005 (−0.0007 to −0.0002); p = 0.0001 | |||
Xiao, 2017 [87] | miR-9 | pigment epithelium-derived factor, vascular endothelial growth factor, low-density lipoprotein cholesterol, total cholesterol, fibrinogen, HbA1c, insulin resistance | 0.431; p = 0.023 | UAER |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motshwari, D.D.; Matshazi, D.M.; Erasmus, R.T.; Kengne, A.P.; Matsha, T.E.; George, C. MicroRNAs Associated with Chronic Kidney Disease in the General Population and High-Risk Subgroups—A Systematic Review. Int. J. Mol. Sci. 2023, 24, 1792. https://doi.org/10.3390/ijms24021792
Motshwari DD, Matshazi DM, Erasmus RT, Kengne AP, Matsha TE, George C. MicroRNAs Associated with Chronic Kidney Disease in the General Population and High-Risk Subgroups—A Systematic Review. International Journal of Molecular Sciences. 2023; 24(2):1792. https://doi.org/10.3390/ijms24021792
Chicago/Turabian StyleMotshwari, Dipuo D., Don M. Matshazi, Rajiv T. Erasmus, Andre P. Kengne, Tandi E. Matsha, and Cindy George. 2023. "MicroRNAs Associated with Chronic Kidney Disease in the General Population and High-Risk Subgroups—A Systematic Review" International Journal of Molecular Sciences 24, no. 2: 1792. https://doi.org/10.3390/ijms24021792
APA StyleMotshwari, D. D., Matshazi, D. M., Erasmus, R. T., Kengne, A. P., Matsha, T. E., & George, C. (2023). MicroRNAs Associated with Chronic Kidney Disease in the General Population and High-Risk Subgroups—A Systematic Review. International Journal of Molecular Sciences, 24(2), 1792. https://doi.org/10.3390/ijms24021792