SOX2 Expression Is an Independent Predictor of Oral Cancer Progression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Tissue Specimens
2.2. Tissue Microarray (TMA) Construction
2.3. Immunohistochemistry (IHC)
2.4. Statistical Analysis
3. Results
3.1. Clinicopathological Features and Follow-Up in Patients with Oral Epithelial Dysplasia
3.2. SOX2 Protein Expression in Oral Epithelial Dysplasia
3.3. Clinicopathological Features and Follow-Up in the Cohort of OSCC Patients
3.4. SOX2 Protein Expression and Its Relation with Clinicopathological Variables and Follow-Up
3.5. In Silico Analysis of SOX2 mRNA Expression and Copy Number Alterations using the Cancer Genome Atlas (TCGA) Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [Green Version]
- Fu, T.Y.; Hsieh, I.C.; Cheng, J.T.; Tsai, M.H.; Hou, Y.Y.; Lee, J.H.; Liou, H.H.; Huang, S.F.; Chen, H.C.; Yen, L.M.; et al. Association of OCT4, SOX2, and NANOG expression with oral squamous cell carcinoma progression. J. Oral Pathol. Med. 2016, 45, 89–95. [Google Scholar] [CrossRef]
- World Health Organization. Global Health Estimates (GHE) 2013: Global Deaths by Income Group, Cause and Year (2016–2060). Available online: https://www.who.int/healthinfo/global_burden_disease/projections/en/ (accessed on 23 June 2019).
- Chhetri, D.K.; Rawnsley, J.D.; Calcaterra, T.C. Carcinoma of the buccal mucosa. Otolaryngol. Head Neck Surg. 2000, 123, 566–571. [Google Scholar] [CrossRef]
- Yanik, E.L.; Katki, H.A.; Silverberg, M.J.; Manos, M.M.; Engels, E.A.; Chaturvedi, A.K. Leukoplakia, oral cavity cancer risk, and cancer survival in the U.S. elderly. Cancer Prev. Res. 2015, 8, 857–863. [Google Scholar] [CrossRef]
- Califano, J.; Westra, W.H.; Meininger, G.; Corio, R.; Koch, W.M.; Sidransky, D. Genetic progression and clonal relationship of recurrent premalignant head and neck lesions. Clin. Cancer Res. 2000, 6, 347–352. [Google Scholar] [PubMed]
- Costea, D.E.; Tsinkalovsky, O.; Vintermyr, O.K.; Johannessen, A.C.; Mackenzie, I.C. Cancer stem cells—New and potentially important _targets for the therapy of oral squamous cell carcinoma. Oral Dis. 2006, 12, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.; Mukhopadhyay, S.; Das, D.N.; Panda, P.K.; Bhutia, S.K. Relevance of cancer initiating/stem cells in carcinogenesis and therapy resistance in oral cancer. Oral Oncol. 2013, 49, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Teodorczyk, M.; Kleber, S.; Wollny, D.; Sefrin, J.P.; Aykut, B.; Mateos, A.; Herhaus, P.; Sancho-Martinez, I.; Hill, O.; Gieffers, C.; et al. CD95 promotes metastatic spread via Sck in pancreatic ductal adenocarcinoma. Cell Death Differ. 2015, 22, 1192–1202. [Google Scholar] [CrossRef] [PubMed]
- Hussenet, T.; Dali, S.; Exinger, J.; Monga, B.; Jost, B.; Dembelé, D.; Martinet, N.; Thibault, C.; Huelsken, J.; Brambilla, E.; et al. SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PLoS ONE 2010, 5, e8960. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Dalerba, P.; Cho, R.W.; Clarke, M.F. Cancer stem cells: Models and concepts. Annu. Rev. Med. 2007, 58, 267–284. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.H.; Zhang, C.P.; Ji, T. Expression of SOX2 in oral squamous cell carcinoma and the association with lymph node metastasis. Oncol. Lett. 2016, 11, 1973–1979. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.C.; Kang, H.J.; Kim, Y.S.; Choi, E.C. All-trans-retinoic acid inhibits growth of head and neck cancer stem cells by suppression of Wnt/β-catenin pathway. Eur. J. Cancer 2012, 48, 3310–3318. [Google Scholar] [CrossRef] [PubMed]
- Mithani, S.K.; Mydlarz, W.K.; Grumbione, F.L.; Smith, I.M.; Califano, J.A. Molecular genetics of premalignant oral lesions. Oral Dis. 2007, 13, 126–133. [Google Scholar] [CrossRef]
- Luiz, S.T.; Modolo, F.; Mozzer, I.; Dos Santos, E.C.; Nagashima, S.; Camargo Martins, A.P.; de Azevedo, M.L.V.; Azevedo Alanis, L.R.; Hardy, A.M.T.G.; de Moraes, R.S.; et al. Immunoexpression of SOX-2 in oral leukoplakia. Oral Dis. 2018, 24, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Michifuri, Y.; Hirohashi, Y.; Torigoe, T.; Miyazaki, A.; Kobayashi, J.; Sasaki, T.; Fujino, J.; Asanuma, H.; Tamura, Y.; Nakamori, K.; et al. High expression of ALDH1 and SOX2 diffuse staining pattern of oral squamous cell carcinomas correlates to lymph node metastasis. Pathol. Int. 2012, 62, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Yang, Y.; Xiao, X.; Wang, C.; Zhang, X.; Wang, L.; Zhang, X.; Li, W.; Zheng, G.; Wang, S.; et al. Sox2 nuclear expression is closely associated with poor prognosis in patients with histologically node-negative oral tongue squamous cell carcinoma. Oral Oncol. 2011, 47, 709–713. [Google Scholar] [CrossRef]
- Wilbertz, T.; Wagner, P.; Petersen, K.; Stiedl, A.C.; Scheble, V.J.; Maier, S.; Reischl, M.; Mikut, R.; Altorki, N.K.; Moch, H.; et al. SOX2 gene amplification and protein overexpression are associated with better outcome in squamous cell lung cancer. Mod. Pathol. 2011, 24, 944–953. [Google Scholar] [CrossRef] [Green Version]
- Züllig, L.; Roessle, M.; Weber, C.; Graf, N.; Haerle, S.K.; Jochum, W.; Stoeckli, S.J.; Moch, H.; Huber, G.F. High sex determining region Y-box 2 expression is a negative predictor of occult lymph node metastasis in early squamous cell carcinomas of the oral cavity. Eur. J. Cancer 2013, 49, 1915–1922. [Google Scholar] [CrossRef] [Green Version]
- de Vicente, J.C.; Rodríguez-Santamarta, T.; Rodrigo, J.P.; Allonca, E.; Vallina, A.; Singhania, A.; Donate-Pérez Del Molino, P.; García-Pedrero, J.M. The Emerging Role of NANOG as an Early Cancer Risk Biomarker in Patients with Oral Potentially Malignant Disorders. J. Clin. Med. 2019, 8, 1376. [Google Scholar] [CrossRef]
- Takata, T.; Slootweg, P.J. Tumors of the oral cavity and mobile tongue. In WHO Classification of Head and Neck Tumours, 4th ed.; International Agency for Research on Cancer (IARC); IARC: Lyon, France, 2017; pp. 105–131. [Google Scholar]
- Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517, 576–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Futtner, C.; Rock, J.R.; Xu, X.; Whitworth, W.; Hogan, B.L.; Onaitis, M.W. Evidence that SOX2 overexpression is oncogenic in the lung. PLoS ONE 2010, 5, e11022. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Qiao, B.; Zhao, T.; Hu, F.; Lam, A.K.; Tao, Q. Sox2 promotes tumor aggressiveness and epithelial-mesenchymal transition in tongue squamous cell carcinoma. Int. J. Mol. Med. 2018, 42, 1418–1426. [Google Scholar] [CrossRef] [PubMed]
- Arnold, K.; Sarkar, A.; Yram, M.A.; Polo, J.M.; Bronson, R.; Sengupta, S.; Seandel, M.; Geijsen, N.; Hochedlinger, K. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 2011, 9, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; He, B.; Li, X.; Sun, M.; Lam, A.K.; Qiao, B.; Qiu, W. Regulation of tumorigenesis in oral epithelial cells by defined reprogramming factors Oct4 and Sox2. Oncol. Rep. 2016, 36, 651–658. [Google Scholar] [CrossRef]
- Abbey, L.M.; Kaugars, G.E.; Gunsolley, J.C.; Burns, J.C.; Page, D.G.; Svirsky, J.A.; Eisenberg, E.; Krutchkoff, D.J.; Cushing, M. Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Med. 1995, 80, 188–191. [Google Scholar] [CrossRef]
- Freier, K.; Knoepfle, K.; Flechtenmacher, C.; Pungs, S.; Devens, F.; Toedt, G.; Hofele, C.; Joos, S.; Lichter, P.; Radlwimmer, B. Recurrent copy number gain of transcription factor SOX2 and corresponding high protein expression in oral squamous cell carcinoma. Genes Chromosomes Cancer 2010, 49, 9–16. [Google Scholar] [CrossRef]
- Hermsen, M.; Alonso Guervós, M.; Meijer, G.; van Diest, P.; Suárez Nieto, C.; Marcos, C.A.; Sampedro, A. Chromosomal changes in relation to clinical outcome in larynx and pharynx squamous cell carcinoma. Cell Oncol. 2005, 27, 191–198. [Google Scholar] [CrossRef]
- Järvinen, A.K.; Autio, R.; Kilpinen, S.; Saarela, M.; Leivo, I.; Grénman, R.; Mäkitie, A.A.; Monni, O. High-resolution copy number and gene expression microarray analyses of head and neck squamous cell carcinoma cell lines of tongue and larynx. Genes Chromosomes Cancer 2008, 47, 500–509. [Google Scholar] [CrossRef]
- Lin, S.C.; Liu, C.J.; Ko, S.Y.; Chang, H.C.; Liu, T.Y.; Chang, K.W. Copy number amplification of 3q26-27 oncogenes in microdissected oral squamous cell carcinoma and oral brushed samples from areca chewers. J. Pathol. 2005, 206, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Bora-Singhal, N.; Nguyen, J.; Schaal, C.; Perumal, D.; Singh, S.; Coppola, D.; Chellappan, S. YAP1 Regulates OCT4 Activity and SOX2 Expression to Facilitate Self-Renewal and Vascular Mimicry of Stem-Like Cells. Stem Cells 2015, 33, 1705–1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, K.M.; Dai, Y.; Vieweg, J.; Siemann, D.W. Hypoxia regulates SOX2 expression to promote prostate cancer cell invasion and sphere formation. Am. J. Cancer Res. 2016, 6, 1078–1088. [Google Scholar] [PubMed]
- de Vicente, J.C.; Santamarta, T.R.; Rodrigo, J.P.; García-Pedrero, J.M.; Allonca, E.; Blanco-Lorenzo, V. Expression of podoplanin in the invasion front of oral squamous cell carcinoma is not prognostic for survival. Virchows Arch. 2015, 466, 549–558. [Google Scholar] [CrossRef]
- Qiao, B.; He, B.; Cai, J.; Yang, W. The expression profile of Oct4 and Sox2 in the carcinogenesis of oral mucosa. Int. J. Clin. Exp. Pathol. 2013, 7, 28–37. [Google Scholar]
- Ye, X.; Wu, F.; Wu, C.; Wang, P.; Jung, K.; Gopal, K.; Ma, Y.; Li, L.; Lai, R. β-Catenin, a Sox2 binding partner, regulates the DNA binding and transcriptional activity of Sox2 in breast cancer cells. Cell Signal 2014, 26, 492–501. [Google Scholar] [CrossRef]
- Gen, Y.; Yasui, K.; Nishikawa, T.; Yoshikawa, T. SOX2 promotes tumor growth of esophageal squamous cell carcinoma through the AKT/mammalian _target of rapamycin complex 1 signaling pathway. Cancer Sci. 2013, 104, 810–816. [Google Scholar] [CrossRef]
- Thierauf, J.; Veit, J.A.; Hess, J. Epithelial-to-Mesenchymal Transition in the Pathogenesis and Therapy of Head and Neck Cancer. Cancers 2017, 3, 76. [Google Scholar] [CrossRef]
- He, S.; Chen, J.; Zhang, Y.; Zhang, M.; Yang, X.; Li, Y.; Sun, H.; Lin, L.; Fan, K.; Liang, L.; et al. Sequential EMT-MET induces neuronal conversion through Sox2. Cell Discov. 2017, 3, 17017. [Google Scholar] [CrossRef] [Green Version]
- Bass, A.J.; Watanabe, H.; Mermel, C.H.; Yu, S.; Perner, S.; Verhaak, R.G.; Kim, S.Y.; Wardwell, L.; Tamayo, P.; Gat-Viks, I.; et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009, 41, 1238–1242. [Google Scholar] [CrossRef]
- Ge, N.; Lin, H.X.; Xiao, X.S.; Guo, L.; Xu, H.M.; Wang, X.; Jin, T.; Cai, X.Y.; Liang, Y.; Hu, W.H.; et al. Prognostic significance of Oct4 and Sox2 expression in hypopharyngeal squamous cell carcinoma. J. Transl. Med. 2010, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, H.; Yang, Y.; Zhu, R.; Bai, J.; Peng, Z.; He, Y.; Chen, L.; Chen, W.; Fang, D.; et al. SOX2 in gastric carcinoma, but not Hath1, is related to patients’ clinicopathological features and prognosis. J. Gastrointest. Surg. 2010, 14, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
Characteristics | SOX2 > 10% Positive Nuclei Negative Positive | P | SOX2 any Positive Nuclei Negative Positive | P | ||
---|---|---|---|---|---|---|
Age (years), Mean (SD) | 62.93 (12.69) | 60.50 (13.20) | 0.72 | 61.00 (12.69) | 65.55 (12.35) | 0.34 |
Gender, number (%) | ||||||
• Female | 27 (93) | 2 (7) | 1.00 | 22 (76) | 7 (24) | 0.39 |
• Male | 24 (92) | 2 (8) | 17 (65) | 9 (35) | ||
Smoking, number (%) | ||||||
• Yes | 9 (90) | 1 (10) | 1.00 | 6 (60) | 4 (40) | 0.71 |
• No | 18 (86) | 3 (14) | 14 (67) | 7 (33) | ||
Ethanol intake, number (%) | ||||||
• Yes | 3 (75) | 1 (25) | 0.44 | 2 (50) | 2 (50) | 0.60 |
• No | 24 (89) | 3 (11) | 18 (67) | 9 (33) | ||
Epithelial dysplasia | ||||||
• Mild | 42 (100) | 0 (0) | 0.001 | 33 (79) | 9 (21) | 0.055 |
• Moderate | 5 (83) | 1 (17) | 3 (50) | 3 (50) | ||
• Severe | 4 (57) | 3 (43) | 3 (43) | 4 (57) | ||
Epithelial dysplasia | ||||||
• Low-grade | 42 (100) | 0 (0) | 0.002 | 33 (79) | 9 (21) | 0.02 |
• High-grade | 9 (69) | 4 (31) | 6 (46) | 7 (54) |
Variable | Number of Cases (%) | Progression to Carcinoma (%) | P * |
---|---|---|---|
Histopathological diagnosis | <0.001 | ||
• Low-grade dysplasia | 42 (76) | 2 (5) | |
• High-grade dysplasia | 13 (24) | 10 (77) | |
SOX2 > 10% positive nuclei | 0.02 | ||
• Negative | 51 (93) | 9 (18) | |
• Positive | 4 (7) | 3 (75) | |
SOX2 any positive nuclei | 0.01 | ||
• Negative | 39 (71) | 5 (13) | |
• Positive | 16 (29) | 7 (44) |
Variable | No. | Censored Patients (%) | Mean Cancer-Free Survival Time (95% CI) | P | Hazard Ratio | 95% CI |
---|---|---|---|---|---|---|
Epithelial Dysplasia | < 0.001 | 19.08 | 4.09–89.01 | |||
• High-grade | 13 | 3 (23) | 100.69 (54.14–147.24) | |||
• Low-grade | 42 | 40 (95) | 181.59 (170.21–192.98) | |||
SOX2 > 10% positive nuclei | 0.002 | 6.13 | 1.62–23.27 | |||
• Positive | 4 | 1 (25) | 69.00 (26.18–111.81) | |||
• Negative | 51 | 42 (82) | 191.80 (152.14–231.47) | |||
SOX2 any positive nuclei | 0.002 | 5.75 | 1.68–19.74 | |||
• Positive | 16 | 9 (56) | 90.40 (64.14–116.66) | |||
• Negative | 39 | 34 (87) | 203.22 (162.30–244.15) |
Variable | P | Hazard Ratio | 95% CI |
---|---|---|---|
Histology (high-grade vs. low-grade) | < 0.0001 | 21.88 | 4.13–116.07 |
SOX2 > 10% (positive vs. negative) | 0.196 | 3.0 | 0.57–15.89 |
SOX2 any (positive vs. negative) | 0.021 | 5.83 | 1.31–26.01 |
Variable | No. | Censored Patients (%) | Cancer-Free Survival Time (95% CI) | P | Hazard Ratio | 95% CI |
---|---|---|---|---|---|---|
SOX2 > 10% positive nuclei and nuclear NANOG | ||||||
• Both negative | 51 | 42 (84) | 191.80 (152.13–231.46) | 0.003 | Ref | |
• One positive | 2 | 1 (50) | 93.00 (32.01–153.98) | 3.72 | 0.46–29.98 | |
• Both positive | 2 | 0 (0) | 45.00 (8.00–97.92) | 9.06 | 1.91–43.00 | |
SOX2 > 10% positive nuclei and cytoplasmic NANOG | ||||||
• Both negative | 45 | 38 (84) | 171.10 (154.24–187.95) | < 0.0005 | Ref | |
• One positive | 7 | 5 (71) | 182.28 (101.53–263.03) | 1.63 | 0.30–8.71 | |
• Both positive | 3 | 0 (0) | 46.33 (15.66–76.99) | 10.89 | 2.74–43.22 | |
SOX2 any positive nuclei and cytoplasmic NANOG | < 0.0005 | |||||
• Both negative | 36 | 31 (86) | 175.49 (158.40–192.57) | Ref | ||
• One positive | 13 | 11 (85) | 215.99 (170.17–261.81) | 1.091 | 0.20–5.85 | |
• Both positive | 6 | 1 (17) | 44.50 (21.60–67.40) | 11.36 | 3.18–40.60 | |
SOX2 any positive nuclei and nuclear NANOG | < 0.0005 | |||||
• Both negative | 39 | 34 (87) | 203.22 (162.30–244.15) | Ref | ||
• One positive | 14 | 9 (64) | 97.76 (69.96–125.55) | 4.62 | 1.23–17.29 | |
• Both positive | 2 | 0 (0) | 45.00 (8.00–97.92) | 14.82 | 2.69–81.56 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Vicente, J.C.; Donate-Pérez del Molino, P.; Rodrigo, J.P.; Allonca, E.; Hermida-Prado, F.; Granda-Díaz, R.; Rodríguez Santamarta, T.; García-Pedrero, J.M. SOX2 Expression Is an Independent Predictor of Oral Cancer Progression. J. Clin. Med. 2019, 8, 1744. https://doi.org/10.3390/jcm8101744
de Vicente JC, Donate-Pérez del Molino P, Rodrigo JP, Allonca E, Hermida-Prado F, Granda-Díaz R, Rodríguez Santamarta T, García-Pedrero JM. SOX2 Expression Is an Independent Predictor of Oral Cancer Progression. Journal of Clinical Medicine. 2019; 8(10):1744. https://doi.org/10.3390/jcm8101744
Chicago/Turabian Stylede Vicente, Juan C., Paula Donate-Pérez del Molino, Juan P. Rodrigo, Eva Allonca, Francisco Hermida-Prado, Rocío Granda-Díaz, Tania Rodríguez Santamarta, and Juana M. García-Pedrero. 2019. "SOX2 Expression Is an Independent Predictor of Oral Cancer Progression" Journal of Clinical Medicine 8, no. 10: 1744. https://doi.org/10.3390/jcm8101744
APA Stylede Vicente, J. C., Donate-Pérez del Molino, P., Rodrigo, J. P., Allonca, E., Hermida-Prado, F., Granda-Díaz, R., Rodríguez Santamarta, T., & García-Pedrero, J. M. (2019). SOX2 Expression Is an Independent Predictor of Oral Cancer Progression. Journal of Clinical Medicine, 8(10), 1744. https://doi.org/10.3390/jcm8101744