Investigation of the Product of Random Matrices and Related Evolution Models
Abstract
:1. Introduction
2. The Product of Matrices
2.1. The Uncorrelated Matrices
2.2. The Relaxation Dynamics
2.3. The Identification of the Phase Transition in Higher Dimensions
2.4. Complex Eigenvalues Case
3. Investigation of Related Evolution Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Relaxation Dynamics for the Correlated Case
Appendix B. Numerical Algorithms
Appendix B.1. The First Algorithm
Appendix B.2. The Second Algorithm
References
- Furstenberg, H.; Kesten, H. Products of random matrices. Ann. Math. Statist. 1960, 31, 457–469. [Google Scholar] [CrossRef]
- Furstenberg, H. Noncommuting random products. Trans. Am. Math. Soc. 1963, 108, 377–428. [Google Scholar] [CrossRef]
- Bougerol, P.; Lacroix, J. Products of Random Matrices with Applications to Schrodinger Operators; Birhauser: Basel, Switzerland, 1985. [Google Scholar]
- Chamayou, J.F.; Letac, G. Explicit stationary distributions for compositions of random functions and products of random matrices. J. Theor. Prob. 1991, 4, 3–36. [Google Scholar] [CrossRef]
- Crisanti, A.; Paladin, G.; Vulpiani, A. Products of Random Matrices in Statistical Physics; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Comtet, A.; Luck, J.M.; Texier, C.; Tourigny, Y. The Lyapunov exponent of products of random 2 × 2 matrices close to the identity. J. Stat. Phys. 2013, 150, 13–65. [Google Scholar] [CrossRef]
- Comtet, A.; Texier, C.; Tourigny, Y. Lyapunov exponents, one-dimensional Anderson localization and products of random matrices. J. Phys. A 2013, 46, 254003. [Google Scholar] [CrossRef]
- Comtet, A.; Tourigny, Y. Impurity models and products of random matrices. arXiv 2016, arXiv:1601.01822. [Google Scholar]
- Ephraim, Y.; Merhav, N. Hidden Markov processes. IEEE Trans. Inform. Theory 2002, 48, 1518–1569. [Google Scholar] [CrossRef] [Green Version]
- Mamon, R.S.; Elliott, R.J. (Eds.) Hidden Markov Models in Finance: Further Developments and 147 Applications Volume II; Springer Nature: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Saakian, D.B. Exact solution of the hidden Markov processes. Phys. Rev. E 2017, 96, 052112. [Google Scholar] [CrossRef]
- Zuk, O.; Kanter, I.; Domany, E. The entropy of a binary hidden Markov process. J. Stat. Phys. 2005, 121, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Allahverdyan, A.E. Entropy of Hidden Markov Processes via Cycle Expansion. J. Stat. Phys. 2008, 133, 535. [Google Scholar] [CrossRef] [Green Version]
- Hufton, P.G.; Lin, Y.T.; Galla, T.; McKane, A.J. Intrinsic noise in systems with switching environments. Phys. Rev. E 2016, 93, 052119. [Google Scholar] [CrossRef] [Green Version]
- Mayer, A.; Mora, T.; Rivoire, O.; Walczak, A.M. Diversity of immune strategies explained by adaptation to pathogen statistics. Proc. Natl. Acad. Sci. USA 2016, 113, 8630. [Google Scholar] [CrossRef]
- Kussell, E.; Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 2005, 309, 2075–2078. [Google Scholar] [CrossRef] [Green Version]
- Skanata, A.; Kussell, E. Evolutionary Phase Transitions in Random Environments. Phys. Rev. Lett. 2016, 117, 038104. [Google Scholar] [CrossRef] [Green Version]
- Wienand, K.; Frey, E.; Mobilia, M. Evolution of a Fluctuating Population in a Randomly Switching Environment. Phys. Rev. Lett. 2017, 119, 158301. [Google Scholar] [CrossRef] [Green Version]
- Rivoire, O.; Leibler, S. The value of information for populations in varying environments. J. Stat. Phys. 2011, 142, 1124–1166. [Google Scholar] [CrossRef] [Green Version]
- Rivoire, O. Informations in models of evolutionary dynamics. J. Stat. Phys. 2016, 162, 1324–1352. [Google Scholar] [CrossRef] [Green Version]
- Saakian, D.B. Semianalytical solution of the random-product problem of matrices and discrete-time random evolution. Phys. Rev. E 2018, 98, 062115. [Google Scholar] [CrossRef]
- Snizhko, K.; Kumar, P.; Romito, A. Quantum Zeno effect appears in stages. Phys. Rev. Res. 2020, 2, 033512. [Google Scholar] [CrossRef]
- Poghosyan, R.; Saakian, D.B. Frontiers in Frontiers, Infinite Series of Singularities in the Correlated Random Matrices Product. Front. Phys. 2021. [Google Scholar] [CrossRef]
- Nilsson, M.; Snoad, N. Error Thresholds for Quasispecies on Dynamic Fitness Landscapes. Phys. Rev. Lett. 2000, 84, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crow, J.F.; Kimura, M. An Introduction to Population Genetics Theory; Harper and Row: New York, NY, USA, 1970. [Google Scholar]
- Baake, E.; Wagner, H. Mutation-selection models solved exactly with methods of statistical mechanics. Genet. Res. 2001, 78, 93–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saakian, D.B.; Hu, C.-K. Solvable biological evolution model with a parallel mutation-selection scheme. Phys. Rev. E 2004, 69, 046121. [Google Scholar] [CrossRef] [Green Version]
- Xie, R.; Marsili, M. A random energy approach to deep learning. J. Stat. Mech. Theory Exp. 2022, 7, 073404. [Google Scholar] [CrossRef]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, F.; Hendeby, G. Some Relations between Extended and Unscented Kalman Filters. IEEE Trans. Signal Process. 2012, 60, 555. [Google Scholar] [CrossRef] [Green Version]
- Galstyan, V.; Saakian, D.B. Quantifying the stochasticity of policy parameters in reinforcement learning problems. Phys. Rev. E 2023, 107, 034112. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mineo, H.; Suvorov, V.; Saakian, D.B. Investigation of the Product of Random Matrices and Related Evolution Models. Mathematics 2023, 11, 3430. https://doi.org/10.3390/math11153430
Mineo H, Suvorov V, Saakian DB. Investigation of the Product of Random Matrices and Related Evolution Models. Mathematics. 2023; 11(15):3430. https://doi.org/10.3390/math11153430
Chicago/Turabian StyleMineo, Hirobumi, Vladimir Suvorov, and David B. Saakian. 2023. "Investigation of the Product of Random Matrices and Related Evolution Models" Mathematics 11, no. 15: 3430. https://doi.org/10.3390/math11153430
APA StyleMineo, H., Suvorov, V., & Saakian, D. B. (2023). Investigation of the Product of Random Matrices and Related Evolution Models. Mathematics, 11(15), 3430. https://doi.org/10.3390/math11153430