Next Article in Journal
Linguistic Picture Fuzzy Dombi Aggregation Operators and Their Application in Multiple Attribute Group Decision Making Problem
Previous Article in Journal
Special Class of Second-Order Non-Differentiable Symmetric Duality Problems with (G,αf)-Pseudobonvexity Assumptions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Stability of Iterative Sequences with Error

by
Salwa Salman Abed
1,* and
Noor Saddam Taresh
2
1
Department of Mathematics, College of Education, Ibn Al-Haitham, University of Baghdad, Baghdad 10001, Iraq
2
Ministry of Higher Education and Scientific Research, Baghdad 10001, Iraq
*
Author to whom correspondence should be addressed.
Mathematics 2019, 7(8), 765; https://doi.org/10.3390/math7080765
Submission received: 12 June 2019 / Revised: 24 July 2019 / Accepted: 28 July 2019 / Published: 20 August 2019

Abstract

:
Iterative methods were employed to obtain solutions of linear and non-linear systems of equations, solutions of differential equations, and roots of equations. In this paper, it was proved that s-iteration with error and Picard–Mann iteration with error converge strongly to the unique fixed point of Lipschitzian strongly pseudo-contractive mapping. This convergence was almost F -stable and F -stable. Applications of these results have been given to the operator equations F x = f and x + F x = f , where F is a strongly accretive and accretive mappings of X into itself.
2010 Mathematics Subject classification:
47H10; 54H25

1. Introduction and Preliminaries

Consider a normed space X ,   F   : X X is a mapping, M is an iteration procedure and λ n , η n ( 0 , 1 ) , we present the following iterative sequences.
w 0 X ,
w n + 1 = M ( F ,   w n ) ,
is called s-iteration [1] if:
w n + 1 =   λ n F z n + ( 1 λ n ) Fw n , z n =   η n Fw n + ( 1 η n ) w n ,     n 0 .
x 0 X ,
x n + 1 = M ( F ,   x n )
is called Picard–Mann iteration [2] if:
x n + 1 = F y n y n = λ n F x n + ( 1 λ n ) x n ,   n 0 .
w 0 X ,
w n + 1 = M ( F ,   w n ) ,
is called s-iteration with errors if
w n + 1 =   λ n F z n + ( 1 λ n ) Fw n + a n , z n =   η n Fw n + ( 1 η n ) w n + c n ,     n 0 .
where n = 0 a n < ,   n = 0 c n < .
x 0 X ,
x n + 1 = M ( F ,   x n )
is called Picard–Mann iteration with errors if:
x n + 1 = F y n + a n y n = λ n F x n + ( 1 λ n ) x n ,   n 0 .
where n = 0 a n < .
Throughout this paper, we studied three cases: convergence, almost stability, and stability of schemes of sequences defined in Equations (3) and (4). In the following, we recall the needed definitions and lemmas.
Definition 1
([3]). Let x n + 1 = M ( F , x n ) be an arbitrary iteration procedure such that { x n } converges to a fixed point p of F . For a sequence { q n } suppose that
δ n = q n + 1   M ( F , x n ) , n 0 .
Then the iteration procedure is said to be F –stable if lim n δ n = 0 , implies to lim n q n =   p .
Definition 2
([4]). Let F , { x n   +   1 } ,   δ n , q n , and p be as shown in Definition 1. Then, the iteration procedure is said to be almost F-stable if n = 0 δ n < implies that lim n q n = p .
Definition 3
([5]). Let X be a normed space and F : X X be a mapping then for fixed m , 0 m < , F is said to be Lipschitzian if:
F x F y m   x y     x ,   y X .
Let X be the dual of X , a set valued mapping J : X 2 X is said to be the normalized duality mapping [5] if:
J ( x ) = { j X :   x ,   j = j x ,   j = x } ,     x X
where   ,   denotes the duality pairing, i.e.,   ,   : X × X K , x ,   j = j ( x ) .
It is known that a Banach space X is smooth if and only if the duality mapping J is single [5].
Definition 4
([6]). Let X be a normed space, F   : X X be a mapping. Then, F is called strongly pseudo-contractive if for all x , y X , the following inequality holds:
| | x   y | |   | | ( 1   +   r ) ( x   y )     rt ( F x   F y ) | |
r   > 0 and some t > 1.
Or equivalently [7], if there exist r = 1 l , where, l > 1 such that
F x F y , j ( x y ) r x y 2 , x , y X .
If t = 1 in inequality (6), then F is called pseudo-contractive.
Definition 5
([8]). A mapping F : X X is said to be
i-
Strongly accretive, if there is r > 0 such that for each x , y   X there exists j ( x y ) J ( x y )
F x F y , j ( x y ) r x y 2 .
ii-
Accretive, if r = 0 in Equation (7).
Or equivalently [9]
x y x y + r ( F x F y ) ,   for   som e   r > 0  
Proposition 1
([10]). The relation between (strong) pseudo-contractive mapping and (strong) accretive mapping is that: F is (strong) pseudo-contractive if and only if ( I F ) is (strong) accretive.
Lemma 1
([11]). Let { ρ n } be a non-negative sequence such that, ρ n + 1 ( 1 γ n ) ρ n + μ n , where γ n ( 0 , 1 ) , n , γ n = , and μ n = o ( γ n ) . Then lim n ρ n = 0   .
A general version of Lemma 1 is:
Lemma 2
([12]). Let { ξ n } be a non-negative sequence such that ξ n + 1 ( 1 γ n ) ξ n + b n + μ n ,   n 0 ,   where   γ n [ 0 , 1 ] , n , γ n = , and b n = o ( γ n ) , n = 0 μ n < . Then lim n ξ n = 0 .
Lemma 3
([13,14]). Let X   be a real Banach space, F : X X be a mapping
i-
If F is continuous and strongly pseudo-contractive, then F has a unique fixed point.
ii-
If F is continuous and strongly accretive, then the equation F x = f has a unique solution for any f X .
iii-
If F is continuous and accretive, then F is m-accretive and the equation x + F x = f has a unique solution for any f X .
For more details about previous preliminaries and to determine the important aspects of the convergence of iterative sequences, we recommend the book by C. Chidume [5] and the paper by B.E. Rhoades and L. Saliga [15].

2. Main Results

The following condition is needed:
( Δ 1 ): If λ n , η n ( 0 , 1 ) , r ( 0 , 1 ) and m > 0 , then
m ( ( m + 1 ) ( 1 + η n ) + λ n m 2 ( 2 + ( m 1 ) η n ) ) ( 2 r ) λ n ( 2 m + m ( m 1 ) η n ) r m e , where e ( 0 , m ) .
Theorem 1.
Let X be a real Banach space and F : X X be Lipschitzian strongly pseudo-contractive mapping with Lipschitz constant m . Suppose that { w n }   be in (3), lim n a n = lim n c n = 0   and ( Δ 1 ) is verified. Then:
1-
{ w n }   converges strongly to the unique fixed point   p .
2-
q n + 1 p δ n + a n + ( 1 λ n e 1 + λ n ) q n p + ( 3 m + m 2 ) c n ,   n 0 .
Proof. 
From Lemma 3, we obtain that F has a unique fixed point, and from Equations (3), (6), and Proposition 1 we have:
Fw n = w n + 1 + λ n Fw n λ n F z n a n = w n + 1 + λ n Fw n λ n F z n a n + 2 λ n w n + 1 2 λ n w n + 1 r λ n w n + 1 + r λ n w n + 1   λ n Fw n + 1 + λ n Fw n + 1     = ( 1 + λ n ) w n + 1 + λ n ( I F rI ) w n + 1 ( 1 r ) λ n Fw n + ( 2 r ) λ n 2 ( Fw n F z n ) + λ n ( Fw n + 1 F z n ) ( 1 + ( 2 r ) λ n ) a n
Let p be a fixed point of F:
p = ( 1 + λ n ) p + λ n ( I F r I ) p ( 1 r ) λ n p
Fw n p = ( 1 + λ n ) ( w n + 1 p ) + λ n [ ( I F r I ) w n + 1 ( I F r I ) p ] ( 1 r ) λ n ( Fw n p ) + ( 2 r ) λ n 2 ( Fw n F z n ) + λ n ( Fw n + 1 F z n ) ( 1 + ( 2 r ) λ n )
Fw n p ( 1 + λ n ) ( w n + 1 p ) + λ n 1 + λ n [ ( I F r I ) w n + 1 ( I F r I ) p ]   ( 1 r ) λ n Fw n p ( 2 r ) λ n 2 Fw n F z n λ n Fw n + 1 F z n 3 a n
Thus:
( 1 + λ n ) w n + 1 p ( 1 + ( 1 r ) λ n ) Fw n p + ( 2 r ) λ n 2 Fw n F z n + λ n Fw n + 1 F z n + 3 a n w n + 1 p 1 1 + λ n [ ( 1 + ( 1 r ) λ n ) Fw n p + ( 2 r ) λ n 2 Fw n F z n +   λ n Fw n + 1 F z n + 3 a n ] w n + 1 p 1 1 + λ n [ ( 1 + ( 1 r ) λ n ) m w n p + ( 2 r ) λ n 2 Fw n F z n + λ n Fw n + 1 F z n + 3 a n ]
Observe that
Fw n F z n Fw n p + p F z n m w n p + m z n p 2 m + m ( m 1 ) η n w n p + m c n
Fw n + 1 F z n m w n + 1 z n [ m ( m + 1 ) + λ n m ( 2 m + m ( m 1 ) η n w n p ) + η n m ( m + 1 ) ] w n p + m a n + m c n + λ n m 2 c n
By substituting Equations (14) and (13) in (12), we get:
w n + 1 p 1 1 + λ n [ ( 1 + ( 1 r ) λ n ) m w n p + λ n ( [ m ( m + 1 ) + λ n m ( 2 m + m ( m 1 ) η n ) + η n m ( m + 1 ) ] w n p + m a n + m c n + λ n m 2 c n ) +   ( 2 r ) λ n 2 ( ( 2 m + m ( m 1 ) η n w n p + m c n ) + 3 a n ] = 1 1 + λ n [ ( 1 + ( 1 r ) λ n ) m + λ n m ( m + 1 ) ( 1 + η n ) + 2 λ n 2 m 2 + λ n 2 m 2 ( m 1 ) η n + ( 2 r ) λ n 2 ( ( 2 m + m ( m 1 ) η n ] w n p + [ λ n 1 + λ n m + 3 1 + λ n ] a n + [ ( 2 r ) λ n 2 1 + λ n m + λ n 2 1 + λ n ( m 2 + m ) ] c n [ 1 λ n 1 + λ n [ m r m ( ( m + 1 ) ( 1 + η n ) + λ n m 2 ( 2 + ( m 1 ) η n ) ) + ( 2 r ) λ n ( ( 2 m + m ( m 1 ) η n ] w n p + [ m + 3 ] a n + [ 3 m + m 2 ] c n = [ 1 λ n e 1 + λ n w n p + [ m + 3 ] a n + [ 3 m + m 2 ] c n
Lemma 1 yied to lim n w n = p .
For part(2):
Let { q n } be a sequence in X , defined { δ n } by δ n = q n + 1 g n a n , where
g n = λ n F z n + ( 1 λ n ) Fq n , z n = η n Fq n + ( 1 η n ) q n + c n   , n 0 .
q n + 1 p q n + 1 g n a n + a n + g n p δ n + a n + g n p
Since:
Fq n = g n + λ n Fq n λ n F z n = ( 1 + λ n ) g n + λ n ( I F rI ) g n ( 2 r ) λ n g n + λ n Fq n + λ n ( F g n F z n ) = ( 1 + λ n ) g n + λ n ( I F rI ) g n ( 1 r ) λ n Fq n + ( 2 r ) λ n 2 ( Fq n F z n ) + λ n ( F g n F z n )
Thus:
p = ( 1 + λ n ) p + λ n ( I F rI ) p ( 1 r ) λ n p
Fq n p = ( 1 + λ n ) ( g n p ) + λ n [ ( I F rI ) g n ( I F rI ) p ] ( 1 r ) λ n ( F q n p ) + ( 2 r ) λ n 2 ( F q n F z n ) + λ n ( F g n F z n ) .
So that:
Fq n p ( 1 + λ n ) ( g n p ) + λ n 1 + λ n [ ( I F rI ) g n ( I F rI ) p ] ( 1 r ) λ n × Fq n p ( 2 r ) λ n 2 F q n F z n λ n F g n F z n ( 1 + λ n ) g n p ( 1 r ) λ n F q n p ( 2 r ) λ n 2 Fq n F z n λ n F g n F z n
Thus:
g n p 1 1 + λ n [ ( 1 + ( 1 r ) λ n ) Fq n p + ( 2 r ) λ n 2 Fq n F z n + λ n F g n F z n ] g n p 1 1 + λ n [ ( 1 + ( 1 r ) λ n ) m q n p + ( 2 r ) λ n 2 Fq n F z n + λ n F g n F z n ]
Observe that
Fq n F z n Fq n p + p F z n m q n p + m z n p 2 m + m ( m 1 ) η n q n p + m c n
F g n F z n m g n z n m [ Fq n q n + λ n Fq n F z n + η n q n Fq n + c n ]   [ m ( m + 1 ) + λ n m ( 2 m + m ( m 1 ) η n ) + η n m ( m + 1 ) ] q n p + m c n
By substituting Equations (20) and (19) in (18), we get:
g n p 1 1 + λ n [ ( 1 + ( 1 r ) λ n ) m q n p + λ n ( [ m ( m + 1 ) + λ n m ( 2 m + m ( m 1 ) η n ) + η n m ( m + 1 ) ] q n p + m c n + λ n m 2 c n ) + ( 2 r ) λ n 2 ( 2 m + m ( m 1 ) η n q n p + m c n ) ] = 1 1 + λ n [ ( 1 + ( 1 r ) λ n ) m + λ n m ( m + 1 ) ( 1 + η n ) + 2 λ n 2 m 2 + λ n 2 m 2 ( m 1 ) η n + ( 2 r ) λ n 2 ( ( 2 m + m ( m 1 ) η n ] q n p + [ ( 2 r ) λ n 2 1 + λ n m + λ n 2 1 + λ n ( m 2 + m ) ] c n [ 1 λ n 1 + λ n [ m r m ( ( m + 1 ) ( 1 + η n ) + λ n m 2 ( 2 + ( m 1 ) η n ) ) + ( 2 r ) λ n ( ( 2 m + m ( m 1 ) η n ] q n p + [ ( 2 r ) λ n 2 m + ( m 2 + m ) λ n 2 ] c n = [ 1 λ n e 1 + λ n q n p + [ 3 m + m 2 ] c n c n .
Substituting Equation (21) in (15) we obtain:
q n + 1 p q n + 1 g n a n + a n + g n p δ n + a n + g n p δ n + a n + [ 1 λ n e 1 + λ n ] q n p + [ 3 m + m 2 ] c n .
 □
Theorem 2.
Assume that X ,   F ,   p ,   m ,   { w n } ,   { z n } ,   { q n } ,   { λ n } ,   { η n } ,   and { δ n } be as in Theorem 1 and ( Δ 1 ) is satisfied. Then the sequence (3) is almost F-stable.
Proof. 
Assume that n = 0 δ n < . Then, we prove that lim n q n = p .
Now, using Equation (22) such that ξ n = q n p , γ n = λ n e 1 + λ n , b n = [ 3 m + m 2 ] c n + a n , and μ n = δ n , n 0 .
Note that lim n b n = 0 , thus Lemma (1.8) holds, such that lim n ξ n = 0 yields lim n q n = p .  □
Theorem 3.
Let X ,   F ,   p ,   m ,   { q n } ,   { λ n } ,   { η n } ,   { a n } ,   { c n } ,   and { δ n } be as in Theorem 1 and ( Δ 1 ) is satisfied. Then { w n } is F -stable.
Proof. 
Suppose that lim n δ n = 0 , then by applying Lemma 1 on (22) of Theorem 1, we obtain lim n q n = p .  □
Example 1.
Let X = ( 0 , 1 ] ) , F : X X by F x = x 2   , hence, the conditions in Equations (5) and (6) are satisfied as shown below.
F x F y = x 2 y 2 1 2 x   y F x F y , j ( x y ) r x y 2 ( F x F y ) ( x y ) | x 2 y 2 | | x y | = 1 2 x y 2
Now, put λ n = 1 2   ,   q n =   1 n   ,     n 0 ,   since lim n q n = 0 , to show that lim n δ n = p = 0 .
δ n = q n + 1 x n + 1 = q n + 1 Fq n + a n = 1 n + 1 q n 2 = 1 n + 1 ( 1 λ n ) 2 q n λ n 2 q n 2 = 1 n + 1 1 4 n 1 8 n lim n δ n = 0 .
Corollary 1.
Let   X ,   F ,   p ,   m ,   { q n } ,   { λ n } ,   { η n } ,   { a n } ,   { c n } ,   { δ n } be as in Theorem 1, and { w n } defined by Equation (1), then { w n } :
1. 
converges strongly to the unique fixed point p .
2. 
is almost F-stable
3. 
is F-stable.
To prove the next results, we replace the inequality in the condition ( Δ 1 ) by
( Δ 2 ) :   m ( 1 + m 2 + λ n ( 1 + m ) ) r m 2 e
Theorem 4.
Suppose that X is a real Banach space F : X X is Lipschitzian strongly pseudo-contractive mapping with Lipschitz constant m . For w 0 X ,   let { x n } be in Equation (4), lim n a n = 0   ( Δ 2 ) is satisfied. Then:
1-
{ x n } converges strongly to the unique fixed point   p .
2-
q n + 1 p δ n + [ 1 λ n e 1 + λ n ] q n p + a n ,   n 0 .
Proof. 
From Lemma 3, we obtained that F has a unique fixed point.
F y n = x n + 1 a n = x n + 1 + 2 λ n x n + 1 2 λ n x n + 1 r λ n x n + 1 + r λ n F x n + 1   λ n F x n + 1 + λ n F x n + 1 a n = ( 1 + λ n ) x n + 1 + λ n ( I F r I ) x n + 1 + λ n ( F x n + 1 F y n ) ( 1 r ) λ n F y n ( 1 + ( 2 r ) λ n ) a n
= ( 1 + λ n ) p + λ n ( I F r I ) p ( 1 r ) λ n p
So that:
F y n p = ( 1 + λ n ) ( x n + 1 p ) + λ n [ ( I F r I ) x n + 1 ( I F r I ) p ] ( 1 r ) λ n ( F y n p ) + λ n ( F x n + 1 F y n ) ( 1 + ( 2 r ) λ n ) a n F y n p ( 1 + λ n ) ( x n + 1 p ) + λ n 1 + λ n [ ( I F r I ) x n + 1 ( I F r I ) p ]   ( 1 r ) λ n F y n p λ n F x n + 1 F y n 3 a n  
Thus:
( 1 + λ n ) x n + 1 p ( 1 + ( 1 r ) λ n ) F y n p + λ n F x n + 1 F y n + 3 a n x n + 1 p 1 1 + λ n [ ( 1 + ( 1 r ) λ n ) F y n p + λ n F x n + 1 F y n + 3 a n ]
Observe that:
F y n p m [ ( 1 λ n ) x n p + λ n F x n p ] = m ( 1 λ n + m λ n ) x n p m 2 x n p
Since   1 m   yields   ( 1 λ n + m λ n ) m
F x n + 1 F y n m x n + 1 y n m [ F y n x n + λ n x n F x n + a n ]   = m [ ( 1 + m 2 + λ n ( 1 + m ) ) x n p + a n ]
By substituting Equations (27) and (26) in (25), we yielded:
x n + 1 p 1 1 + λ n [ [ ( 1 + ( 1 r ) λ n ) m 2 + λ n m [ ( 1 + m 2 + λ n ( 1 + m ) ) ] x n p + a n ] + 3 a n ] x n + 1 p = 1 1 + λ n [ ( 1 + ( 1 r ) λ n ) m 2 + λ n m ( ( 1 + m 2 + λ n ( 1 + m ) ) ] x n p + [ λ n 1 + λ n m + 3 1 + λ n ] a n [ 1 λ n 1 + λ n [ m 2 r m ( 1 + m 2 + λ n ( 1 + m ) ) ] x n p + [ m + 3 ] a n = [ 1 λ n e 1 + λ n x n p + [ m + 3 ] a n
By applying Lemma 1, we get lim n x n = p   .
For prove part (2):
Let { q n } X , defined { δ n } by δ n = q n + 1 g n a n , where
g n = F y n ,   y n = λ n Fq n + ( 1 λ n ) q n + c n   , n 0 . q n + 1 p q n + 1 g n a n + a n + g n p δ n + a n + g n p
Since:
F y n = g n = g n + 2 λ n g n 2 λ n g n r λ n g n + r λ n F g n   λ n F g n + λ n F g n = ( 1 + λ n ) g n + λ n ( I F r I ) g n ( 2 r ) λ n F y n + λ n F g n = ( 1 + λ n ) g n + λ n ( I F r I ) g n + λ n ( F g n F y n ) ( 1 r ) λ n F y n
= ( 1 + λ n ) p + λ n ( I F r I ) p ( 1 r ) λ n p
So that:
F y n p = ( 1 + λ n ) ( g n p ) + λ n [ ( I F r I ) g n ( I F r I ) p ] ( 1 r ) λ n ( F y n p ) + λ n ( F g n F y n )   F y n p ( 1 + λ n ) ( g n p ) + λ n 1 + λ n [ ( I F r I ) g n ( I F r I ) p ]   ( 1 r ) λ n F y n p λ n F g n F y n   ( 1 + λ n ) g n p ( 1 r ) λ n F y n p λ n F g n F y n  
This implies that:
g n p 1 1 + λ n [ ( 1 + ( 1 r ) λ n ) F y n p + λ n F g n F y n ]
Hence:
F y n p m [ ( 1 λ n ) q n p + λ n Fq n p ] = m ( 1 λ n + m λ n ) q n p m 2 q n p
Sin ce   1 m   yields   ( 1 λ n + m λ n ) m
F g n F y n m g n y n m [ F y n q n + λ n q n Fq n ]   = m [ ( 1 + m 2 + λ n ( 1 + m ) ) ] q n p
Substituting Equations (33) and (32) in (31) yielded that:
g n p 1 1 + λ n [ ( 1 + ( 1 r ) λ n ) m 2 + λ n m ( 1 + m 2 + λ n ( 1 + m ) ) ] q n p [ 1 λ n 1 + λ n [ m 2 r m ( 1 + m 2 + λ n ( 1 + m ) ) ] q n p = [ 1 λ n e 1 + λ n ] x n p
Substitute Equation (34) in (28), to obtain:
q n + 1 p δ n + [ 1 λ n e 1 + λ n ] q n p + a n .
 □
Theorem 5.
Assume that X ,   F ,   p , m ,   { x n } ,   { q n } ,   { λ n } ,   and { δ n } be as in Theorem 4 and the hypothesis that the condition ( Δ 2 ) is satisfied. Then { x n } in Equation (4) is almost F-stable.
Proof. 
Let n = 0 δ n < ,   to prove that lim n q n = p .
By using the conclusion of Equation (35) of Theorem 4 and an application of Lemma 1, we get lim n q n = p .  □
Theorem 6.
Let X ,   F ,   p , m ,   { q n } ,   { λ n } ,   { a n } , and { δ n } be as in Theorem 4 and ( Δ 2 ) is satisfied. Then { x n } in (2) is F -stable.
Proof. 
Suppose that lim n δ n = 0 . □
By expressing Equation (35) in the form ρ n + 1 ( 1 γ n ) ρ n + μ n , of Lemma 1,where γ n = λ n e 1 + λ n , ρ n = q n p and μ n =   δ n + a n , this implies to lim n q n = p .
Corollary 2.
Let   X ,   F ,   p ,   m ,   { q n } ,   { λ n } ,   { a n } ,     a n d   { δ n } be as in Theorem 4 and { x n } be in Equation (2).
Then { x n }   :
1. 
converges strongly to the unique fixed point p .
2. 
is almost F -stable.
3. 
is F -stable.

3. Applications

Theorem 7.
Let   X be a real Banach space and F : X X   be Lipschitzian strongly accretive mapping with Lipschitz constant m . Define S : X X by S x = f + x F x . Let { λ n } ,   { η n } ,   { a n } ,   a n d   { c n } as are in Theorem 1. For w 0 ,   f X ,
w n + 1 =   λ n S z n + ( 1 λ n ) S w n + a n ,   z n =   η n S w n + ( 1 η n ) w n + c n ,     n 0 .
Then { w n } :
1. 
converges strongly the unique solution p * of the equation F x = f .
2. 
is almost S -stable.
3. 
is S -stable.
Proof. 
The mapping S is Lipschitzian with a constant m * = 1 + m , and from Lemma 3 the equation F x = f has a unique solution p * , this implies that S has a unique fixed point p * .
From Equation (7) and Proposition (6), hence
( I S ) x ( I S ) y , j ( x y ) = F x F y , j ( x y ) r x y 2 , this implies S is strongly pseudo-contractive, therefore, the proof follows from Theorems 1–3. □
Corollary 3.
Let   X ,   F ,   S ,   p * ,   m ,   { q n } ,   { λ n } ,   { η n } ,   a n d { δ n } be as in Theorem 7 and { w n } defined by
w n + 1 =   λ n S z n + ( 1 λ n ) S w n , z n =   η n S w n + ( 1 η n ) w n ,     n 0 .
Then { w n } :
1. 
converges strongly to the unique solution p * of the equation F x = f .
2. 
is almost S -stable.
3. 
is S -stable.
Theorem 8.
Let   X be a real Banach space and F : X X be Lipschitzian accretive mapping with Lipschitz constant. Define S : X X by S x = f F x . Let { λ n } ,   { η n } ,   { a n } ,     a n d   { c n } as are in Theorem 1. For w 0 ,   f X ,
w n + 1 =   λ n S z n + ( 1 λ n ) S w n + a n , z n =   η n S w n + ( 1 η n ) w n + c n ,     n 0 .
Then { w n } :
1. 
converges strongly to the unique solution p *   of the equation x + F x = f .
2. 
is almost S -stable.
3. 
is S -stable.
Proof. 
From Lemma 3, hence, the equation x + F x = f has a unique fixed point p * , (i.e., S has a unique fixed point p * ). By using Equation (8), we obtained:
x y x y + r ( F x F y ) = x y + r ( S x S y )
Since:
S w n = w n + 1 + λ n S w n   λ n S z n a n = ( 1 + λ n ) w n + 1   λ n S w n + 1 + λ n ( S w n + 1 S z n ) S w n + λ n 2 ( S w n S z n )   ( 1 + λ n ) a n p * = ( 1 + λ n ) p *   λ n S p *
By using Equation (36), we obtained:
S w n p * ( 1 + λ n ) ( w n + 1 p * ) + λ n 1 + λ n ( S w n + 1 S p * )   λ n S w n + 1 S z n λ n 2 S w n S z n ( 1 + λ n ) a n ( 1 + λ n ) w n + 1 p * λ n 2 S w n S z n λ n S w n + 1 S z n ( 1 + λ n ) a n
This implies:
w n + 1 p * 1 1 + λ n S w n p * + λ n 1 + λ n S w n + 1 S z n + λ n 2 1 + λ n S w n S z n + a n
The proof completes by the same way as Theorems 1–3. □
Corollary 4.
Let   X ,   F ,   S ,   p * ,   m ,   { q n } ,   { λ n } ,   { η n } , { δ n } be as in Theorem 8 and { w n } defined by
w n + 1 =   λ n S z n + ( 1 λ n ) S w n , z n =   η n S w n + ( 1 η n ) w n ,     n 0 .
Then { w n } :
1. 
converges strongly to the unique solution p * of the equation x + F x = f .
2. 
is almost S -stable.
3. 
is S -stable.
Theorem 9.
Suppose that X is a real Banach space and F : X X is Lipschitzian strongly accretive mapping. Define S : X X by S x = f + x F x . Let { λ n }     a n d   { a n } ,   as are in Theorem 4. For x 0 ,   f X ,
x n + 1 = S y n + a n , y n = λ n S x n + ( 1 λ n ) x n ,   n 0 .
Then { x n }
1. 
converges strongly to the unique solution   p *   of the equation F x = f .
2. 
is almost S -stable.
3. 
is S -stable.
Proof. 
We can prove this the same way for Theorem 7. □
Corollary 5.
Let   X ,   F ,   S ,     p * ,   m ,   { q n } ,   { λ n } ,   a n d   { δ n } be as in Theorem 8 and { x n } defined by
x n + 1 = S y n , y n = λ n S x n + ( 1 λ n ) x n ,   n 0 .
Then { x n } :
1. 
converges strongly to the fixed point p * the unique solution of the equation F x = f .
2. 
is almost S -stable.
3. 
is S -stable.
Theorem 10.
Let   X be a real Banach space , F : X X is Lipschitzian accretive mapping with Lipschitz constant m . Define S : X X by S x = f F x . Let { λ n }     a n d   { a n } ,   be as in Theorem 4. For x 0 ,   f X ,
x n + 1 = S y n + a n , y n = λ n S x n + ( 1 λ n ) x n ,   n 0 .
Then { x n } :
1. 
converges strongly to the unique solution p *   of the equation x + F x = f .
2. 
is almost S -stable.
3. 
is S -stable.
Proof. 
The proof follows the same way as Theorem 8. □
Corollary 6.
Let   X ,   F ,   S ,   p * ,   m ,   { q n } ,   { λ n } ,   a n d { δ n } be as in Theorem 10 and { x n } defined by
x n + 1 = S y n , y n = λ n S x n + ( 1 λ n ) x n ,   n 0 .
Then { x n } :
1. 
converge strongly to the unique solution p * of the equation x + F x = f .
2. 
is almost S -stable.
3. 
is S -stable.

4. Conclusions

For real Banach spaces, very interesting results were proved which say that for a Lipschitzian strongly pseudo-contractive operator, the s-iteration with error and Picard–Mann iteration with error processes converge strongly to the unique fixed point of the operator (Theorems 1 and 4). Some applications were also given (Theorem 7).
Open Problem
Let B be a non-empty closed convex subset of a Banach space X and { T i , S i ,   i = 1 ,   2 , ,   k } be two families of total asymptotically quasi-nonexpansive self-mappings. Abed and Hasan [16] studied the convergence of the iterative sequence { w n } , defined as:
w 1 B w n + 1 = ( 1 α i n ) S i n w n + w i n T i n b i n b i n = ( 1 w i n ) S i n a n + w i n T i n b ( i 1 ) n b ( i 1 ) n = ( 1 α ( i 1 ) n ) S i 1 n w n + α ( i 1 ) n T i 1 n b ( i 2 ) n b 2 n = ( 1 w 2 n ) S 2 n a n + α 2 n T 2 n b 1 n b 1 n = ( 1 α 1 n ) S 1 n w n + α 1 n T 1 n b 0 n ,
where b 0 n = w n   a n d   { α n } n = 1 are sequences in (0, 1).
We suggest studying the stability of this iterative sequence.

Author Contributions

S.S.A. conceived of the presented idea. S.S.A. and N.S.T. developed the theory and performed the computations. N.S.T. verified the analytical methods. S.S.A. supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.

Funding

This research received no external funding.

Acknowledgments

The authors thank the referees for their valuable suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Agarwal, R.P.; O’Regan, D.; Sahu, D.R. Iterative Construction of Fixed Points of Nearly Asympototically Nonexpensive Mappings. J. Nonlinear Convex Anal. 2007, 8, 61–79. [Google Scholar]
  2. Khan, S.H. A Picard-Mann Hybird Iterative Process. Fixed Point Theory Appl. 2013, 2013, 69. [Google Scholar] [CrossRef]
  3. Harder, A.M.; Hicks, T.L. A Stable Iteration Procedure for Nonexpansive Mappings. Math. Jpn. 1988, 33, 687–692. [Google Scholar]
  4. Osilike, M.O. Stability of The Mann and Ishikawa Iteration procedures for Φ-Strong Pseudo-contractions and Nonlinear Equations of The Φ-Strongly Accretive Type. J. Math. Anal. Appl. 1998, 227, 319–334. [Google Scholar] [CrossRef]
  5. Chidume, C.E. Geometric Properties of Banach Spaces and Nonlinear Iterations; Lecture Notes in Mathematics; Springer-Verlag London Limited: London, UK, 2009; Volume 1965. [Google Scholar]
  6. Chidume, C.E.; Osilike, M.O. Nonlinear Accretive and Pseudo-Contractive Operator Equations in Banach Spaces. Nonlinear Anal. Theory Methods Appl. 1998, 31, 779–787. [Google Scholar] [CrossRef]
  7. Xu, Y.G. Ishikawa and Mann Iterative Process with Errors for Nonlinear Strongly Accretive Operator Equation. J. Math. Anal. Appl. 1998, 224, 91–101. [Google Scholar] [CrossRef]
  8. Chidume, C.E. Iterative Approximation of Fixed Points of Lipschitzian Strictly Pseudo-contractive Mappings. Proc. Am. Math. Soc. 1987, 99, 283–288. [Google Scholar] [CrossRef]
  9. Kato, T. Nonlinear Semigroups and Evolution Equations. J. Math. Soc. Jpn. 1967, 19, 509–519. [Google Scholar] [CrossRef]
  10. Browder, F.E. Nonlinear Mappings of Nonexpansive and Accretive Type in Banach Spaces. Bull. Am. Math. Soc. 1967, 73, 875–882. [Google Scholar] [CrossRef]
  11. Weng, X. Fixed Point Iteration for Local Strictly Pseudo-Contractive Mapping. Proc. Am. Math. Soc. 1991, 113, 727–731. [Google Scholar] [CrossRef]
  12. Browder, F.E. Nonlinear Operations and Nonlinear Equations of Evolution in Banach Spaces. Proc. Symp. Pure Math. Volume XVIII. Part 2, AMERICAN MATHEMATICAL SOCIETY, Island. Available online: http://www.ams.org/books/pspum/018.2/pspum018.2-endmatter.pdf (accessed on 1 July 2019).
  13. Deimling, K. Zeros of Accretive Operators. Mannuscripta Math. 1974, 13, 365–374. [Google Scholar] [CrossRef]
  14. Martin, R.H., Jr. A Global Existence Theorem for Autonomous Differential Equations in Banach Spaces. Proc. Am. Math. Soc. 1970, 26, 307–314. [Google Scholar] [CrossRef]
  15. Rhoades, B.E.; Saliga, L. Some Fixed Point Iteration Procedures. II. Nonlinear Anal. Forum 2001, 6, 193–217. [Google Scholar]
  16. Abed, S.S.; Hasan, Z.M. Multi-step Iteration Algorithm Via Two Finite Families of Total Asymptotically Quasi-Nonexpansive Maps. Adv. Sci. Technol. Eng. Syst. J. 2019, 4, 69–74. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Abed, S.S.; Taresh, N.S. On Stability of Iterative Sequences with Error. Mathematics 2019, 7, 765. https://doi.org/10.3390/math7080765

AMA Style

Abed SS, Taresh NS. On Stability of Iterative Sequences with Error. Mathematics. 2019; 7(8):765. https://doi.org/10.3390/math7080765

Chicago/Turabian Style

Abed, Salwa Salman, and Noor Saddam Taresh. 2019. "On Stability of Iterative Sequences with Error" Mathematics 7, no. 8: 765. https://doi.org/10.3390/math7080765

APA Style

Abed, S. S., & Taresh, N. S. (2019). On Stability of Iterative Sequences with Error. Mathematics, 7(8), 765. https://doi.org/10.3390/math7080765

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop
  NODES
admin 2
Association 2
Idea 2
idea 2
innovation 2
INTERN 30
Note 11
Project 1
twitter 1