Clinical Nutrition of Critically Ill Patients in the Context of the Latest ESPEN Guidelines
Abstract
:1. Introduction
2. Meta-Analyses and Clinical Studies Comparing PN and EN
3. Comparison of ESPEN Guidelines on Initiation of Clinical Nutrition for Intensive Care Patients and Other Patient Groups
4. Energy Demand
5. Amino Acids Composition and Demand
6. Immunomodulatory Nutrition
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elke, G.; van Zanten, A.R.; Lemieux, M.; McCall, M.; Jeejeebhoy, K.N.; Kott, M.; Jiang, X.; Day, A.G.; Heyland, D.K. Enteral versus parenteral nutrition in critically ill patients: An updated systematic review and meta-analysis of randomized controlled trials. Crit. Care 2016, 29, 117. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, K.; Cui, W.; Hong, Y.; Zhang, Z. The effect of enteral versus parenteral nutrition for critically ill patients: A systematic review and meta-analysis. J. Clin. Anesth. 2018, 51, 62–92. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [PubMed]
- Bozzetti, F.; Arends, J.; Lundholm, K.; Micklewright, A.; Zurcher, G.; Muscaritoli, M. ESPEN guidelines on parenteral nutrition: Non-surgical oncology. Clin. Nutr. 2009, 28, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; He, C.; Deng, L.; Liao, G. Enteral versus parenteral nutrition in critically ill patients with severe pancreatitis: A meta-analysis. Eur. J. Clin. Nutr. 2018, 72, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Harvey, S.E.; Parrott, F.; Harrison, D.A.; Sadique, M.Z.; Grieve, R.D.; Canter, R.R.; McLennan, B.K.; Tan, J.C.; Bear, D.E.; Segaran, E.; et al. A multicentre, randomized controlled trial comparing the clinical effectiveness and cost-effectiveness of early nutritional support via the parenteral versus the enteral route in critically ill patients (CALORIES). Health Technol. Assess. 2016, 20. [Google Scholar] [CrossRef] [PubMed]
- Reignier, J.; Boisrame-Helms, J.; Brisard, L.; Lascarrou, J.B.; Ait Hssain, A.; Anguel, N.; Argaud, L.; Asehnoune, K.; Asfar, P.; Bellec, F.; et al. NUTRIREA-2 Trial Investigators; Clinical Research in Intensive Care and Sepsis (CRICS) group. Enteral versus parenteral early nutrition in ventilated adults with shock: A randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet 2018, 391, 133–143. [Google Scholar] [CrossRef]
- Lewis, S.R.; Schofield-Robinson, O.J.; Alderson, P.; Smith, A.F. Enteral versus parenteral nutrition and enteral versus a combination of enteral and parenteral nutrition for adults in the intensive care unit. Cochrane Database Syst. Rev. 2018. [Google Scholar] [CrossRef]
- Shi, J.; Wei, L.; Huang, R.; Liao, L. Effect of combined parenteral and enteral nutrition versus enteral nutrition alone for critically ill patients: A systematic review and meta-analysis. Medicine (Baltimore) 2018, 97, e11874. [Google Scholar] [CrossRef]
- Rice, T.W.; Wheeler, A.P.; Thompson, B.T.; Steingrub, J.; Hite, R.D.; Moss, M.; Morris, A.; Dong, N.; Rock, P. Initial trophic vs full enteral feeding in patients with acute lung injury: The EDEN randomized trial. JAMA 2012, 307, 795–803. [Google Scholar]
- Casaer, M.P.; Mesotten, D.; Hermans, G.; Wouters, P.J.; Schetz, M.; Meyfroidt, G.; Van Cromphaut, S.; Ingels, C.; Meersseman, P.; Muller, J.; et al. Early versus late parenteral nutrition in critically ill adults. N. Engl. J. Med. 2011, 365, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Gomes, F.; Schuetz, P.; Bounoure, L.; Austin, P.; Ballesteros-Pomar, M.; Cederholm, T.; Fletcher, J.; Laviano, A.; Norman, K.; Poulia, K.A.; et al. ESPEN guidelines on nutritional support for polymorbid internal medicine patients. Clin. Nutr. 2018, 37, 336–353. [Google Scholar] [CrossRef] [PubMed]
- Braga, M.; Ljungqvist, O.; Soeters, P.; Fearon, K.; Weimann, A.; Bozzetti, F. ESPEN guidelines on parenteral nutrition: Surgery. Clin. Nutr. 2009, 28, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef]
- Gianotti, L.; Meier, R.; Lobo, D.N.; Bassi, C.; Dejong, C.H.; Ockenga, J.; Irtun, O.; MacFie, J. ESPEN guidelines on parenteral nutrition: Pancreas. Clin. Nutr. 2009, 28, 428–435. [Google Scholar] [CrossRef]
- Cano, N.J.; Aparicio, M.; Brunori, G.; Carrero, J.J.; Cianciaruso, B.; Fiaccadori, E.; Lindholm, B.; Teplan, V.; Fouque, D.; Guarnieri, G.; et al. ESPEN guidelines on parenteral nutrition: Adult renal failure. Clin. Nutr. 2009, 28, 401–414. [Google Scholar] [CrossRef]
- Plauth, M.; Cabré, E.; Campillo, B.; Kondrup, J.; Marchesini, G.; Schütz, T.; Shenkin, A.; Wendon, J. ESPEN guidelines on parenteral nutrition: Hepatology. Clin. Nutr. 2009, 28, 436–444. [Google Scholar] [CrossRef]
- Van Gossum, A.; Cabre, E.; Hébuterne, X.; Jeppesen, P.; Krznaric, Z.; Messing, B.; Powell-Tuck, J.; Staun, M.; Nightingale, J. ESPEN guidelines on parenteral nutrition: Gastroenterology. Clin. Nutr. 2009, 28, 415–427. [Google Scholar] [CrossRef]
- Staun, M.; Pironi, L.; Bozzetti, F.; Baxter, J.; Forbes, A.; Joly, F.; Jeppesen, P.; Moreno, J.; Hébuterne, X.; Pertkiewicz, M.; et al. ESPEN guidelines on parenteral nutrition: Home parenteral nutrition (HPN) in adult patients. Clin. Nutr. 2009, 28, 467–479. [Google Scholar] [CrossRef]
- Singer, P.; Berger, M.M.; Van den Berghe, G.; Biolo, G.; Calder, P.; Forbes, A.; Griffiths, R.; Kreyman, G.; Leverve, X.; Pichard, C. ESPEN Guidelines on Parenteral Nutrition: Intensive care. Clin. Nutr. 2009, 28, 387–400. [Google Scholar] [CrossRef]
- Heyland, D.K.; Dhaliwal, R.; Drover, J.W.; Gramlich, L.; Dodek, P.; Canadian Critical Care Clinical Practice Guidelines Committee. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J. Parenter. Enteral. Nutr. 2003, 27, 355–373. [Google Scholar] [CrossRef] [PubMed]
- Martindale, R.G.; McClave, S.A.; Vanek, V.W.; McCarthy, M.; Roberts, P.; Taylor, B.; Ochoa, J.B.; Napolitano, L.; Cresci, G. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: Executive summary. Crit. Care Med. 2009, 37, 1757–1761. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Arriaza, A.; Esposito, M.; Coss-Bu, J.A. Is indirect calorimetry a necessity or a luxury in the pediatric intensive care unit? J. Parenter. Enter. Nutr. 2012, 36, 177–182. [Google Scholar] [CrossRef] [PubMed]
- De Waele, E.; Spapen, H.; Honore, P.M.; Mattens, S.; Van Gorp, V.; Diltoer, M.; Huyghens, L. Introducing a new generation indirect calorimeter for estimating energy requirements in adult intensive care unit patients: Feasibility, practical considerations, and comparison with a mathematical equation. J. Crit. Care 2013, 28. [Google Scholar] [CrossRef] [PubMed]
- Oshima, T.; Berger, M.M.; De Waele, E.; Guttormsen, A.B.; Heidegger, C.P.; Hiesmayr, M.; Singer, P.; Wernerman, J.; Pichard, C. Indirect calorimetry in nutritional therapy. A position paper by the ICALIC study group. Clin. Nutr. 2017, 36, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Heshka, S.; Gallagher, D.; Boozer, C.N.; Kotler, D.P.; Heymsfield, S.B. Resting energy expenditure-fat-free mass relationship: New insights provided by body composition modeling. Am. J. Physiol. Endocrinol. Metab. 2000, 279, 539–545. [Google Scholar] [CrossRef]
- Tatucu-Babet, O.A.; Ridley, E.J.; Tierney, A.C. Prevalence of underprescription or overprescription of energy needs in critically ill mechanically ventilated adults as determined by indirect calorimetry: A systematic literature review. J. Parenter. Enter. Nutr. 2016, 40, 212–225. [Google Scholar] [CrossRef]
- Harris, J.A.; Benedict, F.G. Biometric study of human basal metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef]
- Owen, O.E.; Holup, J.L.; Dalessio, D.A.; Craig, E.S.; Polansky, M.; Smalley, J.K.; Kavle, E.C.; Bushman, M.C.; Owen, L.R.; Mozzoli, M.A.; et al. A reappraisal ofthe caloric requirements of men. Am. J. Clin. Nutr. 1987, 46, 875–885. [Google Scholar] [CrossRef]
- Owen, O.E.; Kavle, E.; Owen, R.S.; Polansky, M.; Caprio, S.; Mozzoli, M.A.; Kendrick, Z.V.; Bushman, M.C.; Boden, G. Areappraisal of caloric requirements in healthy women. Am. J. Clin. Nutr. 1986, 44, 1–19. [Google Scholar] [CrossRef]
- Food and Agricultural Organization/World Health Organization/United Nations University. Energy and Protein Requirements; Report of a Joint FAO/WHO/UNU Expert Consultation World Health Organization Technical Report Series 724; WHO: Geneva, Switzerland, 1985; p. 14. [Google Scholar]
- Mifflin, M.D.; Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Frankenfield, D.J.; Roth-Yousey, L.; Compher, C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: A systematic review. Am. Diet. Assoc. 2005, 105, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Frankenfield, D.C.; Rowe, W.A.; Smith, J.S.; Cooney, R.N. Validation of several established equations for resting metabolic rate in obese and nonobese people. J. Am. Diet. Assoc. 2003, 103, 1152–1159. [Google Scholar] [CrossRef]
- Copeland, E.M., 3rd; Jonathan, E. Rhoads lecture. Intravenous hyperalimentation and cancer. A historical perspective. JPEN J. Parenter. Enter. Nutr. 1986, 10, 337–342. [Google Scholar] [CrossRef]
- Stroud, M. Protein and the critically ill; do we know what to give? Proc. Nutr. Soc. 2007, 66, 378–383. [Google Scholar] [CrossRef] [Green Version]
- Schuetz, P. “Eat your lunch!”—Controversies in the nutrition of the acutely, non-critically ill medical inpatient. Swiss Med. Wkly. 2015, 145, 14132. [Google Scholar] [CrossRef]
- Druml, W.; Heinzel, G.; Kleinberger, G. Amino acid kinetics in patients with sepsis. Am. J. Clin. Nutr. 2001, 73, 908–913. [Google Scholar] [CrossRef]
- Preiser, J.C.; Ichai, C.; Orban, J.C.; Groeneveld, A.B. Metabolic response to the stress of critical illness. Br. J. Anaesth. 2014, 113, 945–954. [Google Scholar] [CrossRef] [Green Version]
- Oudemans-Van Straaten, H.M.; Bosman, R.J.; Treskes, M.; van der Spoel, H.J.; Zandstra, D.F. Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med. 2001, 27, 84–90. [Google Scholar] [CrossRef]
- Preiser, J.C.; van Zanten, A.R.; Berger, M.M.; Biolo, G.; Casaer, M.P.; Doig, G.S.; Griffiths, R.D.; Heyland, D.K.; Hiesmayr, M.; Iapichino, G.; et al. Metabolic and nutritional support of critically ill patients: Consensus and controversies. Crit. Care 2015, 19, 35. [Google Scholar] [CrossRef] [Green Version]
- Rodas, P.C.; Rooyackers, O.; Hebert, C.; Norberg, Å.; Wernerman, J. Glutamine and glutathione at ICU admission in relation to outcome. Clin. Sci. 2012, 122, 591–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreymann, G.; DeLegge, M.H.; Luft, G.; Hise, M.E.; Zaloga, G.P. The ratio of energy expenditure to nitrogen loss in diverse patient groups-a systematic review. Clin. Nutr. 2012, 31, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.R.; Goodenough, R.D.; Burke, J.F.; Wolfe, M.H. Response of protein and urea kinetics in burn patients to different levels of protein intake. Ann. Surg. 1983, 197, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.H.; Wildbore, M.; Wolfe, R.R. Whole body protein kinetics in severely septic patients. The response to glucose infusion and total parenteral nutrition. Ann. Surg. 1987, 205, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Doig, G.S.; Simpson, F.; Bellomo, R.; Heighes, P.T.; Sweetman, E.A.; Chesher, D.; Pollock, C.; Davies, A.; Botha, J.; Harrigan, P.; et al. Intravenous amino acid therapy for kidney function in critically ill patients: A randomized controlled trial. Intensive Care Med. 2015, 41, 1197–1208. [Google Scholar] [CrossRef]
- Thiessen, S.E.; Derde, S.; Derese, I.; Dufour, T.; Vega, C.A.; Langouche, L.; Goossens, C.; Peersman, N.; Vermeersch, P.; Vander Perre, S.; et al. Role of glucagon in catabolism and muscle wasting of critical illness and modulation by nutrition. Am. J. Respir. Crit. Care Med. 2017, 196, 1131–1143. [Google Scholar] [CrossRef]
- Henneberg, S.; Sjölin, J.; Jernström, H. Over-feeding as a cause of fever in intensive care patients. Clin. Nutr. 1991, 10, 266–271. [Google Scholar] [CrossRef]
- Bender, D.A. The metabolism of “surplus” amino acids. Br. J. Nutr. 2012, 108, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Bharti, S.J.; Kumar, V.; Garg, R.; Mishra, S.; Bhatnagar, S. Comparative evaluation of forced air warming and infusion of amino acid-enriched solution on intraoperative hypothermia in patients undergoing head and neck cancer surgeries: A prospective randomized study. Saudi J. Anaesth. 2019, 13, 318–324. [Google Scholar] [CrossRef]
- Ferrie, S.; Allman-Farinelli, M.; Daley, M.; Smith, K. Protein requirements in the critically ill: A randomized controlled trial using parenteral nutrition. JPEN Parenter. Enter. 2016, 40, 795–805. [Google Scholar] [CrossRef]
- Gunst, J.; Vanhorebeek, I.; Thiessen, S.E.; Smith, K. Amino acid supplements in critically ill patients. Pharmacol. Res. 2018, 130, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Deretic, V.; Saitoh, T.; Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 2013, 13, 722–737. [Google Scholar] [CrossRef] [PubMed]
- Derde, S.; Vanhorebeek, I.; Güiza, F.; Derese, I.; Gunst, J.; Fahrenkrog, B.; Martinet, W.; Vervenne, H.; Ververs, E.J.; Larsson, L.; et al. Early parenteral nutrition evokes a phenotype of autophagy deficiency in liver and skeletal muscle of critically ill rabbits. Endocrinology 2012, 153, 2267–2276. [Google Scholar] [CrossRef] [PubMed]
- Rennie, M.J.; Bohe, J.; Wolfe, R.R. Latency, duration and dose response relationships of amino acid effects on human muscle protein synthesis. J. Nutr. 2002, 132, 3225–3227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunst, J.; Vanhorebeek, I.; Casaer, M.P.; Hermans, G.; Wouters, P.J.; Dubois, J.; Claes, K.; Schetz, M.; Van den Berghe, G. Impact of early parenteral nutrition on metabolism and kidney injury. J. Am. Soc. Nephrol. 2013, 24, 995–1005. [Google Scholar] [CrossRef] [Green Version]
- Casaer, M.P.; Van den Berghe, G. Nutrition in the acute phase of critical illness. N. Engl. J. Med. 2014, 370, 1227–1236. [Google Scholar] [CrossRef]
- Vermeulen, M.A.; van Stijn, M.F.; Visser, M.; Lemmens, S.M.; Houdijk, A.P.; van Leeuwen, P.A.; Oudemans-van Straaten, H.M. Taurine concentrations decrease in critically ill patients with shock given enteral nutrition. JPEN J. Parenter. Enteral. Nutr. 2016, 40, 264–272. [Google Scholar] [CrossRef]
- Wijnands, K.A.; Castermans, T.M.; Hommen, M.P.; Meesters, D.M.; Poeze, M. Arginine and citrulline and the immune response in sepsis. Nutrients 2015, 7, 1426–1463. [Google Scholar] [CrossRef] [Green Version]
- Kłęk, S.; Jankowski, M.; Kruszewski, W.J.; Fijuth, J.; Kapała, A.; Kabata, P.; Wysocki, P.; Krzakowski, M.; Rutkowski, P. Clinical nutrition in oncology: Polish recommendations. Oncol. Clin. Pract. 2015, 11, 172–188. [Google Scholar]
- Oehler, R.; Pusch, E.; Dungel, P.; Zellner, M.; Eliasen, M.M.; Brabec, M.; Roth, E. Glutamine depletion impairs cellular stress response in human leucocytes. Br. J. Nutr. 2002, 87, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Oldani, M.; Sandini, M.; Nespoli, L.; Coppola, S.; Bernasconi, D.P.; Gianotti, L. Glutamine supplementation in intensive care patients: A meta-analysis of randomized clinical trials. Medicine 2015, 94, 1319. [Google Scholar] [CrossRef] [PubMed]
- Mottaghi, A.; Yeganeh, M.Z.; Golzarand, M.; Jambarsang, S.; Mirmiran, P. Efficacy of glutamine-enriched enteral feeding formulae in critically ill patients: A systematic review and meta-analysis of randomized controlled trials. Asia Pac. J. Clin. Nutr. 2016, 25, 504–512. [Google Scholar] [PubMed]
- Heyland, D.K.; Elke, G.; Cook, D.; Berger, M.M.; Wischmeyer, P.E.; Albert, M.; Muscedere, J.; Jones, G.; Day, A.G.; Canadian Critical Care Trials Group. Glutamine and antioxidants in the critically ill patient: A post hoc analysis of a large-scale randomized trial. JPEN Parenter. Enter. 2015, 39, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Kapila, S.; Saba, M.; Lin, C.H.; Bawle, E.V. Arginine deficiency induced hyperammonemia in a home total parenteral nutrition dependent patient: A case report. J. Parenter. Enteral. Nutr. 2001, 25, 286–288. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Lai, H.S.; Huang, S.M.; Chang, C.J.; Wang, S.T.; Chen, W.J. Hyperammonemic encephalopathy due to essential amino acid hyperalimentation. J. Formos. Med. Assoc. 1994, 93, 486–491. [Google Scholar]
- Wischmeyer, P.E. The glutamine debate in surgery and critical care. Curr. Opin. Crit. Care 2019, 25, 322–328. [Google Scholar] [CrossRef]
- Hess, J.R.; Greenberg, N.A. The role of nucleotides in the immune and gastrointestinal systems: Potential clinical applications. Nutr. Clin. Pract. 2012, 27, 281–294. [Google Scholar] [CrossRef]
- Wischmeyer, P.E. Alternative lipid emulsions as a new standard of care for total parenteral nutrition: Finally available in the United States? Crit. Care Med. 2015, 43, 230–231. [Google Scholar] [CrossRef]
- Palmer, A.J.; Ho, C.K.; Ajibola, O.; Avenell, A. The role of ω-3 fatty acid supplemented parenteral nutrition in critical illness in adults: A systematic review and meta-analysis. Crit. Care Med. 2013, 41, 307–316. [Google Scholar] [CrossRef]
- Honeywell, S.; Zelig, R.; Rigassio Radler, D. Impact of Intravenous Lipid Emulsions Containing Fish Oil on Clinical Outcomes in Critically Ill Surgical Patients: A Literature Review. Nutr. Clin. Pract. 2019, 34, 112–122. [Google Scholar] [CrossRef] [Green Version]
ESPEN Guidelines | Indications/Initiation of Clinical Nutrition | Daily Energy Demand | Daily Amino Acids Demand | Daily Glucose Demand | Daily Lipids Demand |
---|---|---|---|---|---|
Intensive care Singer et al., 2019 [3] | Clinical nutrition should be considered for each patient remaining in the ICU for more than 48 h. EN must be implemented within 48 h, if oral intake is not possible. PN should be implemented within 3–7 days in the case of contraindications to EN. | 20–25 kcal/kg bw | 1.3 g/kg bw | Max. 5.0 mg/kg bw/min | Max. 1.5 g/kg bw |
Surgery Braga et al., 2009 [13] | PN should be implemented in patients who are unable to receive and/or absorb diets administered orally or enterally for at least 7 days. | 25 kcal/kg ideal bw; in conditions of severe stress 30 kcal/kg ideal bw | 1.5 g/kg ideal bw or about 20% of EE | The energy ratio: amino acids:glucose:lipids 20:30:50 or glucose:lipids 50:50, 60:40, or 70:30 | |
Gastroenterology Van Gossum et al., 2009 [18] | Clinical nutrition is necessary for the first 7–10 days after surgery. | 0.85–1.5 × REE 25–33 kcal/kg bw | 1.0–1.5 g/kg bw | No recommendation | Max. 1.0 g/kg bw |
The energy ratio: glucose:lipids 66:33 | |||||
Non-surgical oncology Bozzetti et al., 2009 [4] | Short-term PN is usually required. PN should be implemented when oral or enteral administration does not ensure min. 60% of energy demand in 10 days. | 20–25 kcal/kg bw for inpatients; 25–30 kcal/kg bw for outpatients | No recommendation The most commonly used doses are in the range of 1.0 g/kg bw to 1.2–2.0 g/kg bw | No recommendation Patients with insulin resistance The energy ratio: glucose:lipids 50:50 | |
Geriatrics Volkert et al., 2018 [14] | If EN is indicated, it should be implemented as soon as possible. PN should be implemented if it is anticipated that oral and EN administration will be impossible for more than 3 days or <50% of supply over 7 days. | 30 kcal/kg bw Oral nutritional support should provide min. 400 kcal including min. 30 g of protein | Min. 1.0 g/kg bw | No recommendation | |
Polymorbid internal medicine patients Gomes et al., 2017 [12] | EN or PN should be implemented within 48 h. | EE 27 kcal/kg actual bw (>65 years) REE 18–20 kcal/kg bw REE 30 kcal/kg bw in severe malnutrition | Min. 1.0 g/kg bw | No recommendation | |
HPN Staun et al., 2009 [19] | HPN is indicated in patients who can stay at home and who are unable to receive and/or absorb diets administered orally or enterally and there is a risk of death due to malnutrition. HPN is not recommended for patients with the expected short period of survival. | 20–35 kcal/kg bw | 0.8–1.0 g/kg bw | Max. 7.0 mg/kg bw/min | 1.0 g/kg bw in HPN >6 months |
100–150 kcal non-protein energy/g of nitrogen The energy ratio: glucose:lipids 60:40 | |||||
Hepatology Plauth et al., 2009 [17] | PN should be implemented if oral or EN administration is not possible for more than 3 days. In patients with alcoholic liver disease, PN should be implemented without delay if oral nutrition or EN is not sufficient. | 1.3 × REE | 1.2–1.5 g/kg bw 0.8–1.2 g/kg bw in acute liver failure | 2.0–3.0 g/kg bw | 0.8–1.2 g/kg bw |
50%–60% of non-protein energy in patients with alcoholic liver disease | |||||
Renal failure Cano et al., 2009 [16] | In acute renal failure, PN is indicated if oral or EN nutrition is not possible. EN should be implemented in patients showing high protein loss and who intake less than 20 kcal/kg bw/day. | 30–40 kcal/kg bw 30–35 kcal/kg bw in patients with chronic renal failure | 1.1–1.5 g/kg bw | No recommendation | |
Pancreatitis Gianotti et al., 2009 [15] | EN and PN are indicated in malnourished patients or when the period of famine is anticipated for more than 5–7 days. If EN is indicated, they should be implemented as soon as possible. PN should be implemented only when EN is impossible. | Nonprotein energy: 25–30 kcal/kg bw | No recommendation Note: parenteral amino acids do not affect the function and secretion of the pancreatitis. | No recommendation Note: parenteral carbohydrates do not affect the function and secretion of the pancreas. | 0.8–1.5 g/kg bw |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gostyńska, A.; Stawny, M.; Dettlaff, K.; Jelińska, A. Clinical Nutrition of Critically Ill Patients in the Context of the Latest ESPEN Guidelines. Medicina 2019, 55, 770. https://doi.org/10.3390/medicina55120770
Gostyńska A, Stawny M, Dettlaff K, Jelińska A. Clinical Nutrition of Critically Ill Patients in the Context of the Latest ESPEN Guidelines. Medicina. 2019; 55(12):770. https://doi.org/10.3390/medicina55120770
Chicago/Turabian StyleGostyńska, Aleksandra, Maciej Stawny, Katarzyna Dettlaff, and Anna Jelińska. 2019. "Clinical Nutrition of Critically Ill Patients in the Context of the Latest ESPEN Guidelines" Medicina 55, no. 12: 770. https://doi.org/10.3390/medicina55120770
APA StyleGostyńska, A., Stawny, M., Dettlaff, K., & Jelińska, A. (2019). Clinical Nutrition of Critically Ill Patients in the Context of the Latest ESPEN Guidelines. Medicina, 55(12), 770. https://doi.org/10.3390/medicina55120770