Insight into the Postbiotic Potential of the Autochthonous Bacteriocin-Producing Enterococcus faecium BGZLM1-5 in the Reduction in the Abundance of Listeria monocytogenes ATCC19111 in a Milk Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Whole Genome Sequencing, Standard Analytical Procedures, and Data Submission
2.3. Genotypic Characterization for Safety and Probiotic-Related Traits
2.4. Gene Expression Analysis by Reverse-Transcription Quantitative PCR
2.5. Antimicrobial Activity of Enterococcus faecium BGZLM1-5
2.6. Preparation of Enterococcus faecium BGZLM1-5 Postbiotic
2.7. Growth Kinetics and Antimicrobial Activity of Live Enterococcus faecium BGZLM1-5
2.8. Effects of Different Temperatures and pH Values on Antimicrobial Activity of Enterococcus faecium BGZLM1-5
2.9. Purification of Antimicrobial Compound
2.10. Effects of Bacteriocin-Containing Supernatant and Partially Purified Bacteriocin Produced by Enterococcus faecium BGZLM1-5 on Abundance of Listeria Monocytogenes ATCC19111 in Milk Model
2.11. Statistical Analysis
3. Results
3.1. Enterococcus faecium BGZLM1-5 Was Predicted as a Non-Human Pathogen
3.2. Enterococcus faecium BGZLM1-5 Contains Gene Clusters Predicted to Encode the Production of Four Antimicrobial Peptides
3.3. Analysis of Bacteriocin Gene Expression of Enterococcus faecium BGZLM1-5
3.4. Antimicrobial Potential of Enterococcus faecium BGZLM1-5
3.5. Kinetics of Bacteriocin Production
3.6. Bacteriocin-Containing Supernatant of Enterococcus faecium BGZLM1-5 Retains Activity at a Variety of Temperatures and pH Levels
3.7. Partial Purification and Determination of Molecular Weight of Enterococcus faecium BGZLM1-5 Bacteriocin
3.8. Application of Bacteriocin-Containing Supernatant and Partially Purified Bacteriocin of Enterococcus faecium BGZLM1-5 Effectively Reduces Abundance of Listeria monocytogenes ATCC19111 in a Milk Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Camargo, A.C.; Woodward, J.J.; Call, D.R.; Nero, L.A. Listeria monocytogenes in Food-Processing Facilities, Food Contamination, and Human Listeriosis: The Brazilian Scenario. Foodborne Pathog. Dis. 2017, 14, 623–636. [Google Scholar] [CrossRef] [PubMed]
- Mansouri-Najand, L.; Kianpour, M.; Sami, M.; Jajarmi, M. Prevalence of Listeria monocytogenes in Raw Milk in Kerman, Iran. Vet. Res. Forum Int. Q. J. 2015, 6, 223–226. [Google Scholar]
- Popović, N.; Djokić, J.; Brdarić, E.; Dinić, M.; Terzić-Vidojević, A.; Golić, N.; Veljović, K. The Influence of Heat-Killed Enterococcus faecium BGPAS1-3 on the Tight Junction Protein Expression and Immune Function in Differentiated Caco-2 Cells Infected With Listeria monocytogenes ATCC 19111. Front. Microbiol. 2019, 10, 412. [Google Scholar] [CrossRef] [PubMed]
- Martín, I.; Rodríguez, A.; Alía, A.; Martínez, R.; Córdoba, J.J. Selection and Characterization of Lactic Acid Bacteria with Activity against Listeria monocytogenes from Traditional RTE Ripened Foods. LWT 2022, 163, 113579. [Google Scholar] [CrossRef]
- Schittler, L.; Perin, L.M.; de Lima Marques, J.; Lando, V.; Todorov, S.D.; Nero, L.A.; da Silva, W.P. Isolation of Enterococcus faecium, Characterization of Its Antimicrobial Metabolites and Viability in Probiotic Minas Frescal Cheese. J. Food Sci. Technol. 2019, 56, 5128–5137. [Google Scholar] [CrossRef]
- Qiao, X.; Du, R.; Wang, Y.; Han, Y.; Zhou, Z. Isolation, Characterisation and Fermentation Optimisation of Bacteriocin-Producing Enterococcus faecium. Waste Biomass Valorization 2020, 11, 3173–3181. [Google Scholar] [CrossRef]
- Todorov, S.D.; Weeks, R.; Popov, I.; Franco, B.D.G.D.M.; Chikindas, M.L. In Vitro Anti-Candida albicans Mode of Action of Enterococcus mundtii and Enterococcus faecium. Microorganisms 2023, 11, 602. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Franz, C.M.A.P.; van Belkum, M.J.; Holzapfel, W.H.; Abriouel, H.; Gálvez, A. Diversity of Enterococcal Bacteriocins and Their Grouping in a New Classification Scheme. FEMS Microbiol. Rev. 2007, 31, 293–310. [Google Scholar] [CrossRef]
- Kasimin, M.E.; Shamsuddin, S.; Molujin, A.M.; Sabullah, M.K.; Gansau, J.A.; Jawan, R. Enterocin: Promising Biopreservative Produced by Enterococcus Sp. Microorganisms 2022, 10, 684. [Google Scholar] [CrossRef]
- Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Front. Microbiol. 2018, 9, 594. [Google Scholar] [CrossRef] [PubMed]
- Anumudu, C.; Hart, A.; Miri, T.; Onyeaka, H. Recent Advances in the Application of the Antimicrobial Peptide Nisin in the Inactivation of Spore-Forming Bacteria in Foods. Molecules 2021, 26, 5552. [Google Scholar] [CrossRef] [PubMed]
- Terzic-Vidojevic, A.; Vukasinovic, M.; Veljovic, K.; Ostojic, M.; Topisirovic, L. Characterization of Microflora in Homemade Semi-Hard White Zlatar Cheese. Int. J. Food Microbiol. 2007, 114, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Veljovic, K.; Fira, D.; Terzic-Vidojevic, A.; Abriouel, H.; Galvez, A.; Topisirovic, L. Evaluation of Antimicrobial and Proteolytic Activity of Enterococci Isolated from Fermented Products. Eur. Food Res. Technol. 2009, 230, 63–70. [Google Scholar] [CrossRef]
- Jovcic, B.; Lepsanovic, Z.; Suljagic, V.; Rackov, G.; Begovic, J.; Topisirovic, L.; Kojic, M. Emergence of NDM-1 Metallo-β-Lactamase in Pseudomonas aeruginosa Clinical Isolates from Serbia. Antimicrob. Agents Chemother. 2011, 55, 3929–3931. [Google Scholar] [CrossRef]
- Novovic, K.; Mihajlovic, S.; Vasiljevic, Z.; Filipic, B.; Begovic, J.; Jovcic, B. Carbapenem-Resistant Acinetobacter baumannii from Serbia: Revision of CarO Classification. PLoS ONE 2015, 10, e0122793. [Google Scholar] [CrossRef]
- Veljović, K.; Popović, N.; Vidojević, A.T.; Tolinački, M.; Mihajlović, S.; Jovčić, B.; Kojić, M. Environmental Waters as a Source of Antibiotic-Resistant Enterococcus Species in Belgrade, Serbia. Environ. Monit. Assess. 2015, 187, 599. [Google Scholar] [CrossRef]
- Novović, K.; Trudić, A.; Brkić, S.; Vasiljević, Z.; Kojić, M.; Medić, D.; Ćirković, I.; Jovčić, B. Molecular Epidemiology of Colistin-Resistant, Carbapenemase-Producing Klebsiella pneumoniae in Serbia from 2013 to 2016. Antimicrob. Agents Chemother. 2017, 61, e02550-16. [Google Scholar] [CrossRef]
- Parish, J.H. Genetic Manipulation of Streptomyces—A Laboratory Manual: By D A Hopwood, M J Bibb, K F Chater; T Kieser CJ Bruton, H M Kieser, D J Lydiate, C P Smith, J M Ward and H Schrempf. Pp 356. The John Innes Foundation, Norwich, UK and Cold Spring Harbour Laboratory. 1985. $25 ISBN 0-7084-0336-0. Biochem. Educ. 1986, 14, 196. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. J. Comput. Mol. Cell Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast Metagenomic Sequence Classification Using Exact Alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and Accurate Long-Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.-Y.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-Depth Characterization and Visualization of Bacterial Genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef]
- Enuh, B.M.; Gedikli, S.; Aytar Çelik, P.; Çabuk, A. Genome Sequence and Probiotic Potential of Newly Isolated Enterococcus durans Strain MN187066. Lett. Appl. Microbiol. 2023, 76, ovad035. [Google Scholar] [CrossRef]
- van Heel, A.J.; de Jong, A.; Song, C.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4: A User-Friendly Web Server to Thoroughly Mine RiPPs and Bacteriocins. Nucleic Acids Res. 2018, 46, W278–W281. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Veljović, K.; Terzić-Vidojević, A.; Tolinački, M.; Kojić, M.; Topisirović, L. Molecular Analysis of Enterolysin a and entL Gene Cluster from Natural Isolate Enterococcus faecalis BGPT1-10P. Genetika 2013, 45, 479–492. [Google Scholar] [CrossRef]
- Valenzuela, A.S.; ben Omar, N.; Abriouel, H.; López, R.L.; Veljovic, K.; Cañamero, M.M.; Topisirovic, M.K.L.; Gálvez, A. Virulence Factors, Antibiotic Resistance, and Bacteriocins in Enterococci from Artisan Foods of Animal Origin. Food Control 2009, 20, 381–385. [Google Scholar] [CrossRef]
- Chen, X.; Song, Y.Q.; Xu, H.Y.; Menghe, B.L.G.; Zhang, H.P.; Sun, Z.H. Genetic Relationships among Enterococcus faecalis Isolates from Different Sources as Revealed by Multilocus Sequence Typing. J. Dairy Sci. 2015, 98, 5183–5193. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zhang, Y.; Lu, H.-M.; Li, D.-T.; Zhang, Z.-L.; Tang, Z.-X.; Shi, L.-E. Antimicrobial Activity and Safety Evaluation of Enterococcus faecium KQ 2.6 Isolated from Peacock Feces. BMC Biotechnol. 2015, 15, 30. [Google Scholar] [CrossRef] [PubMed]
- Abanoz, H.S.; Kunduhoglu, B. Antimicrobial Activity of a Bacteriocin Produced by Enterococcus faecalis KT11 against Some Pathogens and Antibiotic-Resistant Bacteria. Korean J. Food Sci. Anim. Resour. 2018, 38, 1064–1079. [Google Scholar] [CrossRef]
- Miljkovic, M.; Jovanovic, S.; O’Connor, P.M.; Mirkovic, N.; Jovcic, B.; Filipic, B.; Dinic, M.; Studholme, D.J.; Fira, D.; Cotter, P.D.; et al. Brevibacillus laterosporus Strains BGSP7, BGSP9, and BGSP11 Isolated from Silage Produce Broad Spectrum Multi-Antimicrobials. PLoS ONE 2019, 14, e0216773. [Google Scholar] [CrossRef]
- Schägger, H.; von Jagow, G. Tricine-Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis for the Separation of Proteins in the Range from 1 to 100 kDa. Anal. Biochem. 1987, 166, 368–379. [Google Scholar] [CrossRef]
- Rodriguez, J.L.; Gaya, P.; Medina, M.; Nuñez, M. Bactericidal Effect of Enterocin 4 on Listeria monocytogenes in a Model Dairy System. J. Food Prot. 1997, 60, 28–32. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Chen, X.; Qu, C. Review Controlling Listeria monocytogenes in Ready-to-Eat Meat and Poultry Products: An Overview of Outbreaks, Current Legislations, Challenges, and Future Prospects. Trends Food Sci. Technol. 2021, 116, 24–35. [Google Scholar] [CrossRef]
- Wu, S.T.; Burnett, J.; Wang, J.; Hammons, S.R.; Veenhuizen, D.R.; Oliver, H.F. Infrastructure, Sanitation, and Management Practices Impact Listeria monocytogenes Prevalence in Retail Grocery Produce Environments. Food Control 2020, 109, 106911. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Gorris, L.G.M.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A Review of Listeria monocytogenes: An Update on Outbreaks, Virulence, Dose-Response, Ecology, and Risk Assessments. Food Control 2017, 75, 1–13. [Google Scholar] [CrossRef]
- Verma, D.K.; Thakur, M.; Singh, S.; Tripathy, S.; Gupta, A.K.; Baranwal, D.; Patel, A.R.; Shah, N.; Utama, G.L.; Niamah, A.K.; et al. Bacteriocins as Antimicrobial and Preservative Agents in Food: Biosynthesis, Separation and Application. Food Biosci. 2022, 46, 101594. [Google Scholar] [CrossRef]
- Shi, C.; Maktabdar, M. Lactic Acid Bacteria as Biopreservation Against Spoilage Molds in Dairy Products—A Review. Front. Microbiol. 2021, 12, 819684. [Google Scholar] [CrossRef] [PubMed]
- Terzić-Vidojević, A.; Veljović, K.; Popović, N.; Tolinački, M.; Golić, N. Enterococci from Raw-Milk Cheeses: Current Knowledge on Safety, Technological, and Probiotic Concerns. Foods 2021, 10, 2753. [Google Scholar] [CrossRef] [PubMed]
- Popović, N.; Dinić, M.; Tolinački, M.; Mihajlović, S.; Terzić-Vidojević, A.; Bojić, S.; Djokić, J.; Golić, N.; Veljović, K. New Insight into Biofilm Formation Ability, the Presence of Virulence Genes and Probiotic Potential of Enterococcus Sp. Dairy Isolates. Front. Microbiol. 2018, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Zhou, D.; Chen, H.; Li, N.; Zheng, L.; Fang, Y.; Xu, Y.; Jiang, Q.; Liang, W. Analysis of Genetic Structure and Function of Clustered Regularly Interspaced Short Palindromic Repeats Loci in 110 Enterococcus Strains. Front. Microbiol. 2023, 14, 1177841. [Google Scholar] [CrossRef]
- Qin, X.; Galloway-Peña, J.R.; Sillanpaa, J.; Roh, J.H.; Nallapareddy, S.R.; Chowdhury, S.; Bourgogne, A.; Choudhury, T.; Muzny, D.M.; Buhay, C.J.; et al. Complete Genome Sequence of Enterococcus faecium Strain TX16 and Comparative Genomic Analysis of Enterococcus faecium Genomes. BMC Microbiol. 2012, 12, 135. [Google Scholar] [CrossRef]
- Gorrie, C.; Higgs, C.; Carter, G.; Stinear, T.P.; Howden, B. Genomics of Vancomycin-Resistant Enterococcus faecium. Microb. Genom. 2019, 5, e000283. [Google Scholar] [CrossRef]
- Perez, R.H.; Himeno, K.; Ishibashi, N.; Masuda, Y.; Zendo, T.; Fujita, K.; Wilaipun, P.; Leelawatcharamas, V.; Nakayama, J.; Sonomoto, K. Monitoring of the Multiple Bacteriocin Production by Enterococcus faecium NKR-5-3 through a Developed Liquid Chromatography and Mass Spectrometry-Based Quantification System. J. Biosci. Bioeng. 2012, 114, 490–496. [Google Scholar] [CrossRef]
- Negash, A.W.; Tsehai, B.A. Current Applications of Bacteriocin. Int. J. Microbiol. 2020, 2020, 4374891. [Google Scholar] [CrossRef]
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef]
- Aspri, M.; O’Connor, P.M.; Field, D.; Cotter, P.D.; Ross, P.; Hill, C.; Papademas, P. Application of Bacteriocin-Producing Enterococcus faecium Isolated from Donkey Milk, in the Bio-Control of Listeria monocytogenes in Fresh Whey Cheese. Int. Dairy J. 2017, 73, 1–9. [Google Scholar] [CrossRef]
- Yang, J.-M.; Moon, G.-S. Partial Characterization of an Anti-Listerial Bacteriocin from Enterococcus faecium CJNU 2524. Food Sci. Anim. Resour. 2021, 41, 164–171. [Google Scholar] [CrossRef]
- Ferreira, A.E.; Canal, N.; Morales, D.; Fuentefria, D.B.; Corção, G. Characterization of Enterocins Produced by Enterococcus mundtii Isolated from Humans Feces. Braz. Arch. Biol. Technol. 2007, 50, 249–258. [Google Scholar] [CrossRef]
- Fugaban, J.I.I.; Vazquez Bucheli, J.E.; Holzapfel, W.H.; Todorov, S.D. Characterization of Partially Purified Bacteriocins Produced by Enterococcus faecium Strains Isolated from Soybean Paste Active Against Listeria spp. and Vancomycin-Resistant Enterococci. Microorganisms 2021, 9, 1085. [Google Scholar] [CrossRef] [PubMed]
- Chakchouk-Mtibaa, A.; Elleuch, L.; Smaoui, S.; Najah, S.; Sellem, I.; Abdelkafi, S.; Mellouli, L. An Antilisterial Bacteriocin BacFL31 Produced by Enterococcus faecium FL31 with a Novel Structure Containing Hydroxyproline Residues. Anaerobe 2014, 27, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Griffiths, M.W.; Wu, P.; Wang, H.; Zhang, X.; Li, P. Enterococcus faecium LM-2, a Multi-Bacteriocinogenic Strain Naturally Occurring in “Byaslag”, a Traditional Cheese of Inner Mongolia in China. Food Control 2011, 22, 283–289. [Google Scholar] [CrossRef]
- Sameli, N.; Skandamis, P.N.; Samelis, J. Application of Enterococcus faecium KE82, an Enterocin A-B-P–Producing Strain, as an Adjunct Culture Enhances Inactivation of Listeria monocytogenes during Traditional Protected Designation of Origin Galotyri Processing. J. Food Prot. 2021, 84, 87–98. [Google Scholar] [CrossRef]
- Toplu, M.S.; Tuncer, B.Ö. Evaluation of the Functional Properties and Safety of Enterocin-Producing Enterococcus faecium BT29.11 Isolated from Turkish Beyaz Cheese and Its Inhibitory Activity against Listeria monocytogenes in UHT Whole Milk: English. Ital. J. Food Sci. 2023, 35, 54–70. [Google Scholar] [CrossRef]
- Vandera, E.; Lianou, A.; Kakouri, A.; Feng, J.; Koukkou, A.-I.; Samelis, J. Enhanced Control of Listeria monocytogenes by Enterococcus faecium KE82, a Multiple Enterocin-Producing Strain, in Different Milk Environments. J. Food Prot. 2017, 80, 74–85. [Google Scholar] [CrossRef]
Indicator Strain | Reference | Activity |
---|---|---|
Bacillus cereus ATCC11778 | ATCC ** | - |
Bacillus subtilis subsp. spizizenii ATCC6633 | ATCC | - |
Escherichia coli ATCC25922 | ATCC | - |
Listeria monocytogenes ATCC19111 | ATCC | + * |
Listeria ivanovii ATCC19119 | ATCC | + * |
Listeria innocua ATCC33090 | ATCC | + * |
Proteus mirabilis ATCC12453 | ATCC | + |
Pseudomonas aeruginosa MMA83 | [15] | - |
Salmonella enterica subsp. enterica serovar Typhimurium ATCC14028 | ATCC | - |
Staphylococcus aureus ATCC25923 | ATCC | - |
Staphylococcus epidermidis ATCC12228 | ATCC | - |
Yersinia enterocolitica ATCC27729 | ATCC | - |
Escherichia coli H7:0157 ATCC35150 | ATCC | - |
Proteus mirabilis TR4 | [16] | + |
Enterococcus faecium DDE4 | [17] | + * |
Streptococcus pyogenes A2941 | Labodijagnostika, Belgrade, Serbia | - |
Klebsiella pneumoniae Ni9 | [18] | - |
Aeromonas veronii ASII-1 | [16] | + |
Acinetobacter baumannii 6077/12 | [16] | - |
Morganella morganii ASIII-2 | [16] | + |
Salmonella enterica serovar Enteritidis E657/7 | Veterinary Institute, Novi Sad, Serbia | - |
Providencia alcalifaciens AAI-1 | [16] | - |
Primer Name | Sequence 5′-3′ | Reference |
---|---|---|
EntlA_Fw | GGACAACAATTCGGGAACACT | [29] |
EntlA_Rw | GCCAAGTAAAGGTAGAATAAA | |
EntL50_Fw | TGGGAGCAATCGCAAAATTAG | [30] |
EntL50_Rw | ATTGCCCATCCTTCTCCAAT | |
Bac31_Fw | AGCAACTTATTATGGAAATGGTG | This study |
Bac31_Rev | AACGGATCCTTTCTATCTAGGAGCCC | This study |
Bac32_Fw | ATTCACCCCTTCTGTTTCATTTTCTC | This study |
Bac32_Rev | TTTAAGCTTACTAAATGTAGTAATAATATTTGGC | This study |
RecA_Fw | TTCTTTAGCGTTAGATGTTG | [31] |
RecA_Rw | CCTTCTTGGGAAATACCTT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popović, N.; Stevanović, D.; Radojević, D.; Veljović, K.; Đokić, J.; Golić, N.; Terzić-Vidojević, A. Insight into the Postbiotic Potential of the Autochthonous Bacteriocin-Producing Enterococcus faecium BGZLM1-5 in the Reduction in the Abundance of Listeria monocytogenes ATCC19111 in a Milk Model. Microorganisms 2023, 11, 2844. https://doi.org/10.3390/microorganisms11122844
Popović N, Stevanović D, Radojević D, Veljović K, Đokić J, Golić N, Terzić-Vidojević A. Insight into the Postbiotic Potential of the Autochthonous Bacteriocin-Producing Enterococcus faecium BGZLM1-5 in the Reduction in the Abundance of Listeria monocytogenes ATCC19111 in a Milk Model. Microorganisms. 2023; 11(12):2844. https://doi.org/10.3390/microorganisms11122844
Chicago/Turabian StylePopović, Nikola, Dušan Stevanović, Dušan Radojević, Katarina Veljović, Jelena Đokić, Nataša Golić, and Amarela Terzić-Vidojević. 2023. "Insight into the Postbiotic Potential of the Autochthonous Bacteriocin-Producing Enterococcus faecium BGZLM1-5 in the Reduction in the Abundance of Listeria monocytogenes ATCC19111 in a Milk Model" Microorganisms 11, no. 12: 2844. https://doi.org/10.3390/microorganisms11122844
APA StylePopović, N., Stevanović, D., Radojević, D., Veljović, K., Đokić, J., Golić, N., & Terzić-Vidojević, A. (2023). Insight into the Postbiotic Potential of the Autochthonous Bacteriocin-Producing Enterococcus faecium BGZLM1-5 in the Reduction in the Abundance of Listeria monocytogenes ATCC19111 in a Milk Model. Microorganisms, 11(12), 2844. https://doi.org/10.3390/microorganisms11122844