Phytochemical Study and Anti-inflammatory, Antidiabetic and Free Radical Scavenger Evaluations of Krameria pauciflora Methanol Extract †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Anti-inflammatory Assay
2.2. Antidiabetic Assay
2.3. Free Radical Scavenger Determination
DPPH | ABTS | |
---|---|---|
KPME | 46.09 ± 2.20 | 46.09 ± 2.19 |
KPME-D | 248.4 ± 1.04 | 248.4 ± 1.48 |
KPME-E | 70.70 ± 1.01 | 70.71 ± 1.01 |
Trolox | 39.14 ± 1.04 | 38.81 ± 1.03 |
2.4. Identification of Compounds
3. Experimental
3.1. Plant Material
3.2. Preparations and Extraction Procedures
3.3. Chemicals and Drugs
3.4. Animals
3.5. In Vivo Anti-Inflammatory Assay (Carrageenan-Induced Paw Oedema)
3.6. In Vivo Antidiabetic Assay
3.7. In Vitro Antiradical Scavenger Activity
3.8. Phytochemical Analysis. Purification and Identification of Compounds
3.9. Statistics
4. Conclusions
Supplementary Materials
Acknowledgements
- Sample Availability: Not available.
References and Notes
- Schmid-Schönbein, G.W. Analysis of Inflammation. Annu. Rev. Biomed. Eng. 2006, 8, 93–151. [Google Scholar] [CrossRef]
- Duncan, B.B.; Schmidt, M.I.; Pankow, J.S.; Ballantyne, C.M.; Couper, D.; Vigo, A.; Hoogeveen, R.; Olsom, A.R.; Heiss, G. Low-grade systemic inflammation and the development of type 2 diabetes. Diabetes 2003, 52, 1799–1805. [Google Scholar] [CrossRef]
- Kayak, B.S.; Roberts, L. Relationship between inflammatory markers, metabolic and anthropometric variables in the Caribbean type 2 diabetic patients with and without microvascular complications. J. Inflammation (London) 2006, 3, 17–23. [Google Scholar]
- Solinas, G.; Vilcu, C.; Neels, J.G.; Bandyopadhyay, G.K.; Luo, J.L.; Naugler, W.; Grivennikov, S.; Wynshaw-Boris, A.; Scadeng, M.; Olefky, J.M.; et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab. 2007, 6, 386–397. [Google Scholar] [CrossRef]
- Diabetes Facts, 2011 Update; World Health Organization: Geneva, Switzerland, 2011.
- Xie, W.; Du, L. Diabetes is an inflammatory disease: Evidence from traditional Chinese medicines. Diabetes Obes. Metab. 2011, 13, 289–301. [Google Scholar] [CrossRef]
- Arcari, D.P.; Bartchewsky, W., Jr.; dos-Santos, T.W.; Oliveira, K.A.; DeOliveira, C.C.; Gotardo, É.M.; Pedrazzoli, J., Jr.; Gambero, A.; Ferraz, L.F.; Carvahlo, P.O.; et al. Anti-inflammatoy effects of yerba maté extract (Ilex paraguatiensis) ameliorate insulin resistance in mice with hight fat diet-induced obesity. Mol. Cell. Endocrinol. 2011, 335, 110–115. [Google Scholar] [CrossRef]
- Villarreal, Q.J.A.; Carranza, P.M.A. Krameriaceae. In Flora del Bajío y Regiones Adyacentes, 1st; León, R.V., Medina, R., Chiang, C.F., Franckre, B.O.F., Sousa, S.M., García, M.A.J., Eds.; Instituto de Biología, Universidad Nacional Autónoma de México: Mexico City, Mexico, 1999; pp. 1–10. [Google Scholar]
- Simpson, B.B. The past and the present uses of rhatany (Krameria, Krameriaceae). Econ. Bot. 1991, 45, 397–409. [Google Scholar] [CrossRef]
- Djipa, C.; Delme, M.; Quetin-Leclercq, J. Antimicrobial activity of bark extracts of Syzygium jambos (L.) Alston (Myrtaceae). J. Ethnopharmacol. 2000, 71, 307–313. [Google Scholar] [CrossRef]
- Achenbach, H.; Utz, W.; Usubillaga, A.; Rodríguez, H. Lignans from Krameria ixina. Phytochemistry 1991, 30, 3753–3757. [Google Scholar] [CrossRef]
- Achenbach, H.; Utz, W.; Sánchez, H.; Guajardo, T.E.M.; Verde, S.J.; Domínguez, X.A. Neolignans, nor-neolignans and other compounds from roots of Krameria grayi. Phytochemistry 1995, 39, 413–415. [Google Scholar]
- Domínguez, X.A.; Sánchez, H.; Espinoza, B.G.C.; Verde, S.J.; Achenbach, H.; Utz, W. Lignans and nor-neolignans from Krameria interior. Phytochemistry 1990, 29, 2651–2653. [Google Scholar]
- Silva, S.A.; De Castro, J.C.; Da Silva, T.G.; Da-Cuhna, E.V.; Barbosa-Filho, J.M.; Da Silva, M.S. Krametosan, a new trinorlignan from the roots of Krameria tomentosa. Nat. Prod. Lett. 2001, 15, 323–329. [Google Scholar] [CrossRef]
- Alonso-Castro, A.J.; Villarreal, M.L.; Salazar-Olivo, L.A.; Gomez-Sanchez, M.; Dominguez, F.; Garcia-Carranca, A. Mexican medicinal plants used for cancer treatment: Pharmacological, phytochemical and ethnobotanical studies. J. Ethnopharmacol. 2011, 133, 945–972. [Google Scholar] [CrossRef]
- Maldonado, E.; Díaz-Arumir, H.; Toscano, R.A.; Martínez, M. Lupane triterpenes with a δ-lactone at ring E, from Lippia mexicana. J. Nat. Prod. 2010, 73, 1969–1972. [Google Scholar] [CrossRef]
- Akihisa, T.; Yasukawa, K.; Yamaura, M.; Ukiya, M.; Kimura, Y.; Shimizu, N.; Arai, K. Triterpene alcohol and sterol ferulates from rice bran and their anti-inflammatory effects. J. Agric. Food Chem. 2000, 48, 2313–2319. [Google Scholar] [CrossRef]
- Kikuchi, T.; Akihisa, T.; Tokuda, H.; Ukiya, M.; Watanabe, K.; Nishino, H. Cancer chemopreventive effects of cycloartane-type and related triterpenoids in in vitro and in vivo models. J. Nat. Prod. 2007, 70, 918–922. [Google Scholar] [CrossRef]
- Nagao, T.; Meguno, S.; Hase, T.; Otzuka, K.; Komikado, M.; Tokimitsu, I.; Yamamoto, T.; Yamamoto, K. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity 2008, 17, 310–317. [Google Scholar]
- Yuk, J.E.; Woo, J.S.; Yun, C.Y.; Lee, J.S.; Kim, J.H.; Song, G.Y.; Yang, E.J.; Hur, I.K.; Kim, I.S. Effects of lactose-β-sitosterol and β-sitosterol on ovalbumin-induced lung inflammation in actively sensitized mice. Int. Immunopharmacol. 2007, 7, 1517–1527. [Google Scholar] [CrossRef]
- Bouic, P.J.; Lamprecht, J.H. Plant sterols and sterolins: A review of their immune-modulating properties. Altern. Med. Rev. 1999, 4, 170–177. [Google Scholar]
- Lee, E.; Ryu, G.R.; Ko, S.H.; Ahn, Y.B.; Yoon, K.H.; Ha, H.; Song, K.H. Antioxidant treatment may protect pancreatic beta cells throught the attenuation of islet fibrosis in animal model of type 2 diabetes. Biochem. Biophys. Res. Comun. 2011, 414, 397–402. [Google Scholar] [CrossRef]
- Facino, R.M.; Carini, M.; Aldini, G.; De Angelis, L. A rapid screening by liquid chromatography/mass spectrometry and fast-atom bombardment tandem mass spectrometry of phenolic constituents with radical scavenging activity from Krameria triandra roots. Rapid Commun. Mass. Spectrom. 1997, 11, 1303–1308. [Google Scholar]
- Morris, C.J. Carrageenen-induced paw edema in the rat and mouse. In Inflammation Protocols, 1st; Winyard, P.G., Willoughby, D.A., Eds.; Humana Press: New Jersey, NJ, USA, 2003; pp. 115–121. [Google Scholar]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Agrawal, P.K. Carbon-13 NMR of Flavonoids; Elsevier: Amsterdam, The Netherlands, 1989; pp. 444–446. [Google Scholar]
- Faizi, S.; Ali, M.; Saleem, R.; Irfanullah; Bibi, S. Complete 1H and 13C NMR assignments of stigma-5-en-3-O-β-glucoside and its acetyl derivative. Magn. Reson. Chem. 2001, 39, 399–405. [Google Scholar]
- Ageta, H.; Arai, Y. Fern constituents: Cycloartane triterpenoids and allied compounds from Polypodium formosanum and P. Niponicum. Phytochemistry 1984, 23, 2875–2884. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ramírez-Cisneros, M.Á.; Rios, M.Y.; Déciga-Campos, M.; Aguilar-Guadarrama, A.B. Phytochemical Study and Anti-inflammatory, Antidiabetic and Free Radical Scavenger Evaluations of Krameria pauciflora Methanol Extract. Molecules 2012, 17, 861-872. https://doi.org/10.3390/molecules17010861
Ramírez-Cisneros MÁ, Rios MY, Déciga-Campos M, Aguilar-Guadarrama AB. Phytochemical Study and Anti-inflammatory, Antidiabetic and Free Radical Scavenger Evaluations of Krameria pauciflora Methanol Extract. Molecules. 2012; 17(1):861-872. https://doi.org/10.3390/molecules17010861
Chicago/Turabian StyleRamírez-Cisneros, M. Ángeles, María Yolanda Rios, Myrna Déciga-Campos, and A. Berenice Aguilar-Guadarrama. 2012. "Phytochemical Study and Anti-inflammatory, Antidiabetic and Free Radical Scavenger Evaluations of Krameria pauciflora Methanol Extract" Molecules 17, no. 1: 861-872. https://doi.org/10.3390/molecules17010861
APA StyleRamírez-Cisneros, M. Á., Rios, M. Y., Déciga-Campos, M., & Aguilar-Guadarrama, A. B. (2012). Phytochemical Study and Anti-inflammatory, Antidiabetic and Free Radical Scavenger Evaluations of Krameria pauciflora Methanol Extract. Molecules, 17(1), 861-872. https://doi.org/10.3390/molecules17010861