Antioxidant Effect of Stryphnodendron rotundifolium Martius Extracts from Cariri-Ceará State (Brazil): Potential Involvement in Its Therapeutic Use
Abstract
:1. Introduction
2. Results
2.1. Total Phenolic Content and HPLC/DAD Analyses
Compounds | Hydroalcoholic bark | Aqueous leaves | Aqueous bark | |||
---|---|---|---|---|---|---|
mg/g | % | mg/g | % | mg/g | % | |
Gallic acid | 210.8 ± 0.27 | 21.08 | 56.5 ± 0.09 | 5.65 | 89.3 ± 0.10 | 8.93 |
Catechin | 160.4 ± 0.06 | 16.04 | 11.9 ± 0.27 | 1.19 | 50.7 ± 0.32 | 5.07 |
Caffeic acid | 51.5 ± 0.18 | 5.15 | 3.2 ± 0.16 | 0.32 | 4.8 ± 0.05 | 0.48 |
Rutin | 102.5 ± 0.34 | 10.25 | 31.2 ± 0.04 | 3.12 | 20.9 ± 0.17 | 2.09 |
2.2. Effects of S. rotundifolium on Iron Sulfate-Induced TBARS Production
TBARS | DPPH | Iron chelation | Deoxyribosedegradation | ||
---|---|---|---|---|---|
Basal | Fe2+ | ||||
HAB | 0.24 ± 0.02 | 7.00 ± 1.04 *** | 5.43 ± 0.73 *** | >200 | >100 |
AB | 1.97 ± 0.44 | 13.58 ± 2.00 *** | 12.00 ± 2.67 *** | >200 | >100 |
AL | 4.58 ± 1.73 | 60.00 ± 7.64 | 46.33 ± 12.35 | >200 | >100 |
2.3. Deoxyribose Degradation
2.4. DPPH
2.5. Iron Chelation Assay
3. Discussion
4. Experimental
4.1. Plant Material and Extracts Preparation
4.2. Chemicals
4.3. Animals
4.4. Tissue Preparation
4.5. TBARS
4.6. Deoxyribose Degradation
4.7. DPPH Radical Scavenging
4.8. Iron Chelation Assay
4.9. Phenolics Content
4.10. HPLC/DAD Analysis
4.11. Statistical Analysis
5. Conclusions
Acknowledgements
References and Notes
- Halliwell, B. Free radicals, antioxidants and human diseases: Curiosity, cause or consequences. Lancet 1994, 334, 721–724. [Google Scholar]
- Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.J.; Valko, M. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar]
- Jomova, K.; Vondrakova, D.; Lawson, M.; Valko, M. Metals, oxidative stress and neurodegenerative disorders. Mol. Cell. Biochem. 2010, 345, 91–104. [Google Scholar]
- Kumar, N.; Kant, R.; Maurya, P.K. Concentration-dependent effect of (−)epicatechin in hypertensive patients. Phytother. Res. 2010, 24, 1433–1436. [Google Scholar] [CrossRef]
- Giorgio, M.; Trinei, M.; Migliaccio, E.; Pier, G.P. Hydrogen peroxide: A metabolic by-product or a common mediator of ageing signals? Nat. Rev. Mol. Cell Biol. 2007, 9, 722–728. [Google Scholar]
- Cui, K.; Luo, X.L.; Xu, K.Y.; Murthy, M.R.V. Role of oxidative stress in neurodegeneration: Recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2004, 28, 771–799. [Google Scholar] [CrossRef]
- Evans, D.A; Hirsch, J.B.; Dushenkov, S. Phenolics, inflammation and nutrigenomics. J. Sci. Food Agric. 2006, 86, 2503–2509. [Google Scholar] [CrossRef]
- Silva, C.G.; Herdeiro, R.S.; Mathias, C.J.; Panek, A.D.; Silveira, C.S.; Rodrigues, V.P.; Rennó, M.N.; Falcão, D.Q.; Cerqueira, D.M.; Minto, A.B.M. Evaluation of antioxidant activity of Brazilian plants. Pharm. Res. 2005, 52, 229–233. [Google Scholar] [CrossRef]
- Rodrigues, F.F.G.; Cabral, B.S.; Coutinho, H.D.M.; Cardoso, A.L.H.; Campos, A.R.; Costa, J.G.M. Antiulcer and antimicrobial activities of Stryphnodendron rotundifolium Mart. Pharmacogn. Mag. 2008, 4, 193–196. [Google Scholar]
- Costa, J.G.M.; Campos, A.R.; Brito, S.A.; Pereira, C.K.B.; Souza, E.O.; Rodrigues, F.F.G. Biological screening of Araripe basin medicinal plants using Artemia salina Leach and pathogenic bacteria. Pharmacogn. Mag. 2010, 6, 331–334. [Google Scholar] [CrossRef]
- Santos, S.C.; Costa, W.F.; Ribeiro, J.P.; Guimarães, D.O.; Ferria, P.H.; Ferreira, H.D.; Seraphin, J.C. Tannin composition of barbatimão species. Fitoterapia 2002, 73, 292–299. [Google Scholar] [CrossRef]
- Vasconcelos, M.C.A.; Rodovalho, N.C.M.; Pott, A.; Pott, V.J.; Ferreira, A.M.T.; Arruda, A.L.A.; Marques, M.C.S.; Castilho, R.O.; Bueno, N.R. Avaliação das atividades biológicas das sementes de Stryphnodendron obovatum Benth. (Leguminosae). Rev. Bras. Farmacogn. 2004, 14, 121–127. [Google Scholar] [CrossRef]
- Lopes, G.C.; Sanches, A.C.C.; Nakamura, C.V.; Dias Filho, B.P.; Hernandes, L.; Mello, J.C.P. Influence of extracts of Stryphnodendron polyphyllum Mart. and Stryphnodendron obovatum Benth on the cicatrisation of cutaneous wounds in rats. J. Ethnopharmacol. 2005, 99, 265–272. [Google Scholar] [CrossRef]
- Souza, T.M.; Severi, J.A.; Silva, V.Y.A.; Santos, E.; Pietro, R.C.L.R. Bioprospecção de atividade antioxidante e antomicrobiana da casca de Stryphnodendron adstringens (Mart.) Coville (Leguminosae-Mimosoidae). Rev. Ciênc Farm Básica Apl. 2007, 28, 221–226. [Google Scholar]
- Albernaz, L.C.; Paula, J.E.; Romero, G.A.S.; Silva, M.R.R.; Grellier, F.; Mambue, L.; Espindola, L.S. Investigation of plant extracts in traditional medicine of the Brazilian Cerrado against protozoans and yeasts. J. Ethnopharmacol. 2010, 131, 116–121. [Google Scholar] [CrossRef]
- Filho, P.R.S.; Ferreira, L.A.; Gouvêa, C.M.C.P. Protective action against chemical-induced genotoxicity and free radical scavenging activities ofstryphnodendron adstringens (“barbatimão”) leaf extracts Braz. J. Pharmacogn. 2011, 21, 1000–1005. [Google Scholar]
- Hernandes, L.; da Silva Pereira, L.M.; Palazzo, F.; de Mello, J.C.P. Wound-healing evaluation of ointment from stryphnodendron adstringens (barbatimão) in rat skin Braz. J. Pharm. Sci. 2010, 46, 431–436. [Google Scholar]
- Oliveira, D.R.; Brito-Junior, F.E.; Bento, E.N.; Matias, E.F.; Sousa, A.C.; Costa, J.G.; Coutinho, H.D.; Kerntopf, M.R.; Menezes, I.R. Antibacterial and modulatory effect of Stryphnodendron rotundifolium. Pharm. Biol. 2011, 49, 1265–1270. [Google Scholar] [CrossRef]
- Madureira, A.M.; Ramalhete, C.; Mulhovo, S.; Duarte, A.; Ferreira, M.J. Antibacterial activity of some African medicinal plants used traditionally against infectious diseases. Pharm. Biol. 2011. [Google Scholar]
- Mello, J.P.; Petereit, F.; Nahrstedt, A. Flavan-3-ols and prodelphinidins from Stryphnodendron adstringens. Phytochemistry 1996, 41, 807–813. [Google Scholar]
- Isler, A.C.; Lopes, G.C.; Cardoso, M.L.C.; Mello, J.C.P.; Marques, L.C. Development and validation of a LC-Method for the determination of phenols in a pharmaceutical formulation containing extracts from Stryphnodendron adstringens. Quim. Nova 2010, 33, 1126–1129. [Google Scholar] [CrossRef]
- Brandão, M.G.L.; Zanetti, N.N.S.; Oliveira, P.; Grael, C.F.F.; Santos, A.C.P.; Monte-Mór, R.L.M. Brazilian medicinal plants described by 19th century European naturalists and in the official pharmacopoeia. J. Ethnopharmacol. 2008, 120, 141–148. [Google Scholar] [CrossRef]
- Kipen, H.; Rich, D.; Huang, W.; Zhu, T.; Wang, G.; Hu, M.; Lu, S.; Ohman-Strickland, P.; Zhu, P.; Wang, Y; et al. Measurement of inflammation and oxidative stress following drastic changes in air pollution during the Beijing Olympics: A panel study approach. Ann. NY Acad. Sci. 2008, 1203, 160–167. [Google Scholar]
- Fu, L.; Xu, B.-T.; Xu, X.-R.; Qin, X.-S.; Gan, R.-Y.; Li, H.-B. Antioxidant capacities and total phenolic contents of 56 wild fruits from south China. Molecules 2010, 15, 8602–8617. [Google Scholar] [CrossRef]
- Boligon, A.A.; Pereira, R.P.; Feltrin, A.C.; Machado, M.M.; Janovik, V.; Rocha, J.B.T.; Athayde, M.L. Antioxidant activities of flavonol derivatives from the leaves and stem bark of Scutia buxifolia Reiss. Bioresour. Technol. 2009, 100, 6592–6598. [Google Scholar]
- Tavares, L.; Carrilho, D.; Tyagi, M.; Barata, D.; Serra, A.T.; Duarte, C.M.M.; Duarte, R.O.; Feliciano, R.P.; Bronze, M.R.; Chicau, P.; et al. Antioxidant capacity of Macaronesian traditional medicinal plants. Molecules 2010, 15, 2576–2592. [Google Scholar] [CrossRef]
- Shi, F.; Jia, X.; Zhao, C.; Chen, Y. Antioxidant activities of various extracts from Artemisisa selengensis Turcz (LuHao). Molecules 2010, 15, 4934–4946. [Google Scholar] [CrossRef]
- Patel, R.; Garg, R.; Erand, S.; Maru, G.B. Chemopreventive herbal anti-oxidant: Current status and future perspectives. J. Clin. Biochem. Nutr. 2007, 40, 82–91. [Google Scholar] [CrossRef]
- Pereira, R.P.; Fachinetto, R.; Prestes, A.L.; Puntel, R.L.; Silva, G.N.S.; Heinzmann, B.M.; Boschetti, T.K.; Athayde, M.L.; Burger, M.E.; Morel, A.F.; et al. Antioxidant effects of different extracts from Melissa officinalis, Matricaria recutita and Cymbopogon citratus. Neurochem. Res. 2009, 34, 973–983. [Google Scholar]
- Sudati, J.H.; Fachinetto, R.; Pereira, R.P.; Boligon, A.A.; Athayde, M.L.; Soares, F.A.; Barbosa, N.B.V.; Rocha, J.B.T. In vitro antioxidant activity of Valeriana officinalis against different neurotoxic agents. Neurochem. Res. 2009, 34, 1372–1379. [Google Scholar]
- Kim, K.; Tsao, R.; Yang, R.; Cui, S. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effects of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Roberts, R.A.; Smith, R.A.; Safe, S.; Szabo, C.; Tjalkens, R.B.; Robertson, F.M. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology 2010, 276, 85–94. [Google Scholar]
- Pereira, M.A.; Grubbs, C.J.; Barnes, L.H.; Li, H.; Olson, G.R. Effect of the phytochemicals, curcumin and quercetin upon a azomethane-induced cancer and 7, 12-dimethylbenz(a)anthracene-induced mammary cancer in rats. Carcinogenesis 1996, 17, 1305–1311. [Google Scholar]
- Yang, C.S.; Kim, S.; Yang, G.Y.; Lee, M.J.; Liao, J. Inhibition of the carcinogenesis by tea; bioavailability of the tea polyphenols and mechanisms of the action. Proc. Soc. Exp. Biol. Med. 1999, 220, 213–217. [Google Scholar]
- Atoui, A.K.; Mansouri, A.; Boskou, G.; Kefalas, P. Tea and herbal infusions: their antioxidant activity and phenolic profile. Food Chem. 2005, 89, 27–36. [Google Scholar]
- Geetha, T.; Malhotra, V.; Chopra, K.; Kaur, I.P. Antimutagenic and antioxidant/prooxidant activity of quercetin. Indian J. Exp. Biol. 2005, 43, 61–67. [Google Scholar]
- Yokozawa, T.; Chen, C.P.; Dong, E.; Tanaka, T.; Nonaka, G.I.; Nishioka, I. Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2 picrylhydrazyl radical. Biochem. Pharmacol. 1998, 56, 213–222. [Google Scholar]
- Hatano, T.; Edmatsu, R.; Hiramatsu, M.; Mori, A.; Fujita, Y.; Yasuhara, T.; Yoshida, T.; Okuda, T. Effects of the interaction of tannins with coexisting substances. VI. Effect of tannins and related polyphenols on superoxide anion radicals and on DPPH. Chem. Pharm. Bull. 1989, 37, 2016–2021. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar]
- Kang, W.; Li, C.; Liu, Y. Antioxidant phenolic compounds and flavonoids of Mitragyna rotundifolia (Roxb.) Kuntze in vitro. Med. Chem. Res. 2010, 19, 1222–1232. [Google Scholar] [CrossRef]
- Puntel, R.L.; Roos, D.H.; Grotto, D.; Garcia, S.C.; Nogueira, C.W.; Rocha, J.B.T. Antioxidant properties of Krebs cycle intermediates against malonate pro-oxidant activity in vitro: A comparative study using the colorimetric method and HPLC analysis to determine malondialdehyde in rat brain homogenates. Life Sci. 2007, 81, 51–62. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar]
- Halliwell, B.; Gutteridge, J.M.C.; Aruoma, O.I. The deoxyribose method: A simple ‘‘Test-tube’’ assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 1987, 165, 215–219. [Google Scholar]
- Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two new flavonoids and other constituents in licorice root; their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 1988, 36, 2090–2097. [Google Scholar] [CrossRef]
- Puntel, R.L.; Nogueira, C.W.; Rocha, J.B.T. Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro. Neurochem. Res. 2005, 30, 225–235. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method. Enzymol. 1999, 299, 152–178. [Google Scholar]
- Sample Availability: Samples of the plant and extracts are available from the authors.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Costa, J.G.M.d.; Leite, G.d.O.; Dubois, A.F.; Seeger, R.L.; Boligon, A.A.; Athayde, M.L.; Campos, A.R.; Rocha, J.B.T.d. Antioxidant Effect of Stryphnodendron rotundifolium Martius Extracts from Cariri-Ceará State (Brazil): Potential Involvement in Its Therapeutic Use. Molecules 2012, 17, 934-950. https://doi.org/10.3390/molecules17010934
Costa JGMd, Leite GdO, Dubois AF, Seeger RL, Boligon AA, Athayde ML, Campos AR, Rocha JBTd. Antioxidant Effect of Stryphnodendron rotundifolium Martius Extracts from Cariri-Ceará State (Brazil): Potential Involvement in Its Therapeutic Use. Molecules. 2012; 17(1):934-950. https://doi.org/10.3390/molecules17010934
Chicago/Turabian StyleCosta, José Galberto Martins da, Gerlânia de Oliveira Leite, Albys Ferrer Dubois, Rodrigo Lopes Seeger, Aline Augusti Boligon, Margareth Linde Athayde, Adriana Rolim Campos, and João Batista Teixeira da Rocha. 2012. "Antioxidant Effect of Stryphnodendron rotundifolium Martius Extracts from Cariri-Ceará State (Brazil): Potential Involvement in Its Therapeutic Use" Molecules 17, no. 1: 934-950. https://doi.org/10.3390/molecules17010934
APA StyleCosta, J. G. M. d., Leite, G. d. O., Dubois, A. F., Seeger, R. L., Boligon, A. A., Athayde, M. L., Campos, A. R., & Rocha, J. B. T. d. (2012). Antioxidant Effect of Stryphnodendron rotundifolium Martius Extracts from Cariri-Ceará State (Brazil): Potential Involvement in Its Therapeutic Use. Molecules, 17(1), 934-950. https://doi.org/10.3390/molecules17010934