Exploring 2-Tetradecanoylimino-3-aryl-4-methyl-1,3-thiazolines Derivatives as Alkaline Phosphatase Inhibitors: Biochemical Evaluation and Computational Analysis
Abstract
:1. Introduction
2. Experimental
2.1. Chemistry
2.2. Biological Evaluation
2.2.1. Alkaline Phosphatase Assay
2.2.2. Free Radical Scavenging Assay
2.3. Computational Studies
2.3.1. Density Functional Theory (DFT) Calculations
2.3.2. Molecular Docking Studies
2.3.3. Chemo-Informatics Analysis of Ligands
3. Results and Discussion
3.1. Chemistry
3.2. Biological Evaluation
3.2.1. Alkaline Phosphatase Assay
3.2.2. Structure–Activity Relationship
3.2.3. Free Radical Scavenging Activity
3.3. Computational Studies
3.3.1. Density Functional Theory (DFTs) Calculations
3.3.2. Molecular Docking Studies
Molecular Docking Analysis
3.4. Chemo-Informatics Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lowe, D.; Sanvictores, T.; John, S. Alkaline phosphatase. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Coleman, J.E. Structure and mechanism of alkaline phosphatase. Annu. Rev. Biophys. 1992, 21, 441. [Google Scholar] [CrossRef] [PubMed]
- Van Loo, S.B.; Jonas, A.C.; Babtie, A.; Benjdia, O.; Berteau, M.; Hyvönen, F.; Hollfelder, F. An efficient, multiply promiscuous hydrolase in the alkaline phosphatase superfamily. Proc. Natl. Acad. Sci. USA 2010, 107, 2740. [Google Scholar] [CrossRef] [Green Version]
- Galperin, M.Y.; Jedrzejas, M.J. Conserved core structure and active site residues in alkaline phosphatase superfamily enzymes. Proteins Struct. Funct. Bioinf. 2001, 45, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Millán, J.L. Alkaline Phosphatases: Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal. 2006, 2, 335. [Google Scholar] [CrossRef] [Green Version]
- Le Du, M.H.; Stigbrand, T.; Taussig, M.J.; Ménez, A.; Stura, E.A. Crystal structure of alkaline phosphatase from human placenta at 1.8 Å resolution: Implication for a substrate specificity. J. Biol. Chem. 2001, 276, 9158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millán, J.L.; Fishman, W.H. Biology of human alkaline phosphatases with special reference to cancer. Crit. Rev. Clin. Lab. Sci. 1995, 32, 1. [Google Scholar] [CrossRef]
- Lange, P.H.; Millan, J.L.; Stigbrand, T.; Vessella, R.L.; Ruoslahti, E.; Fishman, W.H. Placental alkaline phosphatase as a tumor marker for seminoma. Cancer Res. 1982, 42, 3244. [Google Scholar] [CrossRef]
- Karhade, A.V.; Thio, Q.C.B.S.; Kuverji, M.; Ogink, P.T.; Ferrone, M.L.; Schwab, J.H. Prognostic value of serum alkaline phosphatase in spinal metastatic disease. Br. J. Cancer 2019, 120, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Z.; Chen, H.; He, H.; Ma, C. Assays for alkaline phosphatase activity: Progress and prospects. TRAC Trends Anal. Chem. 2019, 113, 32–43. [Google Scholar] [CrossRef]
- Grodner, B.; Napiórkowska, M. Characterization and inhibition studies of tissue nonspecific alkaline phosphatase by aminoalkanol derivatives of 1, 7-dimethyl-8, 9-diphenyl-4-azatricyclo [5.2. 1.02, 6] dec-8-ene-3, 5, 10-trione, new competitive and noncompetitive inhibitors, by capillary electrophoresis. J. Pharm. Biomed. Anal. 2017, 143, 285–290. [Google Scholar]
- Aziz, H.; Mahmood, A.; Zaib, S.; Saeed, A.; Shafiq, Z.; Pelletier, J.; Sévigny, J.; Iqbal, J. Synthesis, characterization, in vitro tissue-nonspecific alkaline phosphatase (TNAP) and intestinal alkaline phosphatase (IAP) inhibition studies and computational evaluation of novel thiazole derivatives. Bioorg. Chem. 2010, 102, 104088. [Google Scholar] [CrossRef]
- Ejaz, S.A.; Saeed, A.; Siddique, M.N.; un Nisa, Z.; Khan, S.; Lecka, J.; Sévigny, J.; Iqbal, J. Synthesis, characterization and biological evaluation of novel chalcone sulfonamide hybrids as potent intestinal alkaline phosphatase inhibitors. Bioorg. Chem. 2017, 70, 229–236. [Google Scholar] [CrossRef]
- Lallès, J.P. Biology, environmental and nutritional modulation of skin mucus alkaline phosphatase in fish: A review. Fish Shellfish Immunol. 2019, 89, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Hassan, G.S.; El-Messery, S.M.; Al-Omary, F.A.; El-Subbagh, H.I. Substituted thiazoles VII. Synthesis and antitumor activity of certain 2-(substituted amino)-4-phenyl1, 3-thiazole analogs. Bioorg. Med. Chem. Lett. 2012, 22, 6318–6323. [Google Scholar] [CrossRef]
- Vittoria, D.M.; Mazzoni, O.; Piscopo, E.; Caligmano, A.; Bolognese, A. Synthesis and antihistaminic activity of some thiazolidin-4-ones. J. Med. Chem. 1992, 35, 2910. [Google Scholar]
- Omar, A.M.; Eshba, N.H.J. Synthesis and biological evaluation of new 2,3-dihydrothiazole derivatives for antimicrobial, antihypertensive, and anticonvulsant activities. Pharm. Sci. 1984, 73, 1166. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, M.; Parmar, S.S.; Chaudhari, S.K.; Ramasastry, B.V. CNS depressant activity of pyrimidylthiazolidones and their selective inhibition of NAD-dependent pyruvate oxidation. J. Pharm. Sci. 1976, 65, 443. [Google Scholar] [CrossRef]
- Ragab, F.A.; Hussain, M.M.; Hanna, M.M.; Hassan, G.S. Synthesis, anticonvulsant and antimicrobial activities of certain new furochromones. J. Pharm. Sci. 1993, 82, 387. [Google Scholar]
- Hassan, H.Y.; El-Koussi, N.A.; Farghaly, Z.S. Synthesis and antimicrobial activity of pyridines bearing thiazoline and thiazolidinone moieties. Chem. Pharm. Bull. 1998, 46, 863. [Google Scholar] [CrossRef] [Green Version]
- Turan-Zitouni, G.; Sivaci, D.M.; Kaplancikli, Z.A.; Ozdemir, A. Synthesis and antimicrobial activity of some pyridinyliminothiazoline derivatives. Farmacology 2002, 57, 569. [Google Scholar] [CrossRef]
- Lee, C.L.; Sim, M.M. Solid-phase combinatorial synthesis of 5-arylalkylidene rhodanine. Tetrahedron Lett. 2000, 41, 5729–5732. [Google Scholar] [CrossRef]
- Inamori, I.; Okamoto, Y.; Takegawa, Y.; Tsujibo, H.; Sakagami, Y.; Kumeda, Y.; Shibata, M.; Numata, A. Insecticidal and antifungal activities of aminorhodanine derivatives. Biosci. Biotechnol. Biochem. 1998, 62, 1025. [Google Scholar] [CrossRef] [Green Version]
- Habib, N.S.; Rida, S.M.; Badawey, E.A.M.; Fahmy, H.T.Y.; Ghozlan, H. Synthesis and antimicrobial activity of rhodanine derivatives. Eur. J. Med. Chem. 1997, 32, 759. [Google Scholar] [CrossRef]
- Sing, T.W.; Lee, L.C.; Yeo, S.L.; Lim, S.P.; Sim, M.M. Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Biorg. Med. Chem. Lett. 2001, 11, 91. [Google Scholar] [CrossRef]
- Fahmy, H.T.; Bekhit, A.A. Synthesis of some new bis-thiazoles as possible anticancer agents. Pharmazie 2002, 57, 800. [Google Scholar] [CrossRef] [PubMed]
- Nagasaki, F.; Yamada, T.; Takahashi, E.; Kitagawa, Y.; Hatano, R. Jpn. Kokai Tokkyo Koho JP 63250371, 18/10/1988. Chem. Abstr. 1989, 110, 192810. [Google Scholar]
- Hoelzel, H.; Creuzburg, D.; Stohr, P.; Dehne, H.; Teller, J.; Kranz, L.; Luthardt, H.; Roethling, T.; Kaestner, A. Ger. DD 258168, 13/07/1988. Chem. Abstr. 1989, 111, 2681. [Google Scholar]
- Bonde, C.G.; Gaikwad, N.J. Synthesis and preliminary evaluation of some pyrazine containing thiazolines and thiazolidinones as antimicrobial agents. Bioorg. Med. Chem. 2004, 12, 2151. [Google Scholar] [CrossRef] [PubMed]
- Bodtke, A.; Pfeiffer, W.-D.; Ahrens, N.; Langer, P. Peroxidase catalyzed formation of azine pigments—A convenient and sensitive method for the identification of human cells with positive myeloperoxidase reactivity. Bioorg. Med. Chem. Lett. 2004, 14, 1509. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Hahn, H.-G.; Nam, K.D. Solid-phase synthesis of fungitoxic 2-imino-1,3-thiazolines. J. Comb. Chem. 2005, 7, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Sondhi, S.M.; Bhattacharjee, G.; Jameel, R.K.; Shukla, R.; Raghubir, R.; Lozach, O.; Meijer, L. Antiinflammatory, analgesic and kinase inhibition activities of some acridine derivatives. Open Chem. 2004, 2, 1–15. [Google Scholar] [CrossRef]
- Saeed, A.; Zaman, S.; Jamil, M.; Mirza, B. Synthesis and antifungal activity of some novel N-(4-phenyl-3-aroylthiazol-2 (3H)-ylidene) substituted benzamides. Turk. J. Chem. 2008, 32, 585–592. [Google Scholar]
- Sharma, K.; Sawnhney, S.N.; Gupta, A.; Singh, G.B.; Bani, S. Synthesis and antiinflammatory activity of some 3-(2-thiazolyl)-1, 2-benzisothiazoles. Indian J. Chem. 1998, 37B, 376. [Google Scholar]
- Sondhi, S.M.; Singh, N.; Lahoti, A.M.; Bajaj, K.; Kumar, A.; Lozach, O.; Meijer, L. Synthesis of acridinyl-thiazolino derivatives and their evaluation for anti-inflammatory, analgesic and kinase inhibition activities. Bioorg. Med. Chem. 2005, 13, 4291–4299. [Google Scholar] [CrossRef]
- Khan, I.; Ibrar, A.; Ejaz, S.A.; Khan, S.U.; Shah, S.J.A.; Hameed, S.; Simpson, J.; Lecka, J.; Sevigny, J.; Iqbal, J. Influence of the diversified structural variations at the imine functionality of 4-bromophenylacetic acid derived hydrazones on alkaline phosphatase inhibition: Synthesis and molecular modelling studies. RSC Adv. 2015, 5, 90806–90818. [Google Scholar] [CrossRef]
- Beyer, H.; Lassig, W.; Bulka, E. Die wahre Konstitution des in der Literatur beschriebenen, 2-Amino-5-methyl-1.3. 4-thiodiazins. Chem. Ber. 1954, 87, 1385. [Google Scholar] [CrossRef]
- Beyer, H.; Wolter, G. Über Thiazole, XXIX. Mitteil.: Über die Kondensationsprodukte von Thiosemicarbazid mit α-Chloracetessigester und eine neuartige Ringverengung des 2-Amino-5-methyl-6-carbäthoxy−1.3. 4-thiodiazins zum 3-Methyl-4-carbäthoxy-5-amino-pyrazol. Chem. Ber. 1956, 89, 1652. [Google Scholar] [CrossRef]
- Schmitz, E.; Striegler, H.J. Aminothiazole aus Ketonen und Rhodanamin. Prakt. Chem. 1970, 312, 359. [Google Scholar] [CrossRef]
- D’hooghe, M.; Waterinckx, A.; de Kimpe, N. A novel entry toward 2-imino-1, 3-thiazolidines and 2-imino-1, 3-thiazolines by ring transformation of 2-(thiocyanomethyl) aziridines. J. Org. Chem. 2005, 70, 227. [Google Scholar] [CrossRef]
- Iqbal, J. An enzyme immobilized microassay in capillary electrophoresis for characterization and inhibition studies of alkaline phosphatases. Anal. Biochem. 2011, 414, 226–231. [Google Scholar] [CrossRef]
- Zaman, K.A.; Khalid, A.A. Free radical scavenging activity of some Bangladeshi medicinal plants. Adv. Tradit. Med. 2015, 4, 29–32. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Beck, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5656. [Google Scholar] [CrossRef] [Green Version]
- Stec, B.; Cheltsov, A.; Millán, J.L. Refined structures of placental alkaline phosphatase show a consistent pattern of interactions at the peripheral site. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2010, 66, 866–870. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Studio, D. Discovery, version 2.1; Accelrys: San Diego, CA, USA, 2008. [Google Scholar]
- Kim, T.H.; Lee, N.; Lee, G.J.; Kim, J.N. A mild cyclodesulfurization of N-(2-hydroxyethyl)-N′-phenylthioureas to 2-phenylamino-2-oxazolines using TsCl/NaOH. Tetrahedron 2001, 57, 7137–7141. [Google Scholar] [CrossRef]
- Ejaz, S.A.; Alsfouk, A.A.; Batiha, G.E.S.; Aborode, A.T.; Ejaz, S.R.; Umar, H.I.; Aziz, M.; Saeed, A.; Mahmood, H.M.K.; Fayyaz, A. Identification of N-(4-acetyl-4,5-dihydro-5-(7,8,9-substituted-tetrazolo [1,5-a]-quinolin-4-yl)-1,3,4-thiadiazol-2-yl) acetamide derivatives as potential caspase-3 inhibitors via detailed computational investigations. Struct. Chem. 2022, 1–14. [Google Scholar] [CrossRef]
- Jadhav, P.B.; Yadav, A.R.; Gore, M.G. Concept of drug likeness in pharmaceutical research. Int. J. Pharm. Biol. Sci. 2015, 6, 142–154. [Google Scholar]
- Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef]
- Ghose, A.K.; Herbertz, T.; Hudkins, R.L.; Dorsey, B.D.; Mallamo, J.P. Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery. ACS Chem. Neurosci. 2012, 3, 50–68. [Google Scholar] [CrossRef]
- Kadam, R.; Roy, N. Recent trends in drug-likeness prediction: A comprehensive review of in silico methods. Indian J. Pharm. Sci. 2007, 69, 609–615. [Google Scholar]
- Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the Rule of 5 and drugability. Adv. Drug. Deliv. Rev. 2016, 101, 89–98. [Google Scholar] [CrossRef] [PubMed]
Compound | Alkaline Phosphatase IC50 (µM) |
---|---|
2a | 0.019 ± 0.001 |
2b | 0.193 ± 0.004 |
2c | 0.052 ± 0.011 |
2d | 0.113 ± 0.021 |
2e | 0.086 ± 0.011 |
2f | 0.015 ± 0.011 |
2g | 0.211 ± 0.003 |
2h | 0.342 ± 0.011 |
2i | 0.292 ± 0.015 |
2j | 0.136 ± 0.002 |
2k | 0.032 ± 0.001 |
KH2PO4 | 4.28 ± 0.311 |
Comp. | Optimization Energy | Dipole Moment | Polarizability (α) | HOMO (eV) | LUMO (eV) | LUMO–HOMO (ΔeV) |
---|---|---|---|---|---|---|
2a | −1806.171 | 3.755 | 310.336 | −0.226 | −0.123 | 0.103 |
2b | −1968.498 | 5.928 | 285.312 | −0.209 | −0.0365 | 0.173 |
2c | −2425.884 | 5.285 | 296.332 | −0.214 | −0.048 | 0.167 |
2d | −1628.423 | 5.399 | 309.696 | −0.207 | −0.025 | 0.182 |
2e | −1968.500 | 3.970 | 288.829 | −0.2131 | −0.038 | 0.175 |
2f | −1968.500 | 4.385 | 288.499 | −0.2134 | −0.040 | 0.174 |
2g | −1714.446 | 3.681 | 298.769 | −0.2214 | −0.107 | 0.115 |
2h | −1917.773 | 4.230 | 309.403 | −0.223 | −0.132 | 0.092 |
2i | −1699.835 | 4.326 | 299.960 | −0.185 | −0.042 | 0.144 |
2j | −2132.772 | 4.777 | 312.171 | −0.195 | −0.047 | 0.148 |
2k | −1550.211 | 6.024 | 289.314 | −0.205 | −0.024 | 0.181 |
Comp. | Chemical Potential µ | Softness S | Hardness ƞ | Electrophilicity Index ω | Electronegativity X |
---|---|---|---|---|---|
2a | −0.175 | 9.720 | 0.051 | 0.296 | 0.175 |
2b | −0.123 | 5.782 | 0.086 | 0.087 | 0.123 |
2c | −0.131 | 6.002 | 0.083 | 0.103 | 0.131 |
2d | −0.115 | 5.484 | 0.091 | 0.073 | 0.115 |
2e | −0.125 | 5.701 | 0.088 | 0.090 | 0.125 |
2f | −0.127 | 5.764 | 0.087 | 0.092 | 0.127 |
2g | −0.164 | 8.730 | 0.057 | 0.235 | 0.164 |
2h | −0.178 | 10.918 | 0.046 | 0.344 | 0.178 |
2i | −0.114 | 6.965 | 0.072 | 0.090 | 0.114 |
2j | −0.121 | 6.750 | 0.074 | 0.099 | 0.121 |
2k | −0.114 | 9.720 | 0.091 | 0.072 | 0.114 |
Compound | Binding Energy (Kcal/mol) |
---|---|
2a | 4.9 |
2b | 5 |
2c | 4.9 |
2d | 4.7 |
2e | 4.6 |
2f | 5.3 |
2g | 4.7 |
2h | 4.7 |
2i | 4.8 |
2j | 4.4 |
2k | 5.1 |
Ref. (PNP) | 5.0 |
Comp. | MW | nHBA | nHBD | LogP | PSA (A2) | Volume (A3) | Drug Score |
---|---|---|---|---|---|---|---|
2a | 470.24 | 6 | 0 | 7.05 | 79.81 | 513.39 | −1.85 |
2b | 434.22 | 3 | 0 | 8.12 | 24.49 | 470.26 | −0.56 |
2c | 468.18 | 3 | 0 | 8.71 | 24.49 | 485.93 | −0.36 |
2d | 442.30 | 3 | 0 | 8.49 | 24.19 | 516.74 | −0.70 |
2e | 434.22 | 3 | 0 | 8.24 | 24.79 | 471.18 | −0.08 |
2f | 434.21 | 3 | 0 | 8.20 | 24.60 | 470.18 | −0.09 |
2g | 445.24 | 5 | 0 | 7.25 | 63.05 | 479.62 | −0.65 |
2h | 490.22 | 7 | 0 | 6.86 | 100.71 | 506.39 | −1.51 |
2i | 444.24 | 5 | 1 | 7.23 | 53.20 | 487.09 | −0.38 |
2j | 480.21 | 6 | 1 | 7.60 | 67.20 | 496.89 | −0.69 |
2k | 414.27 | 3 | 0 | 7.92 | 24.79 | 474.93 | −0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.; Rehman, S.-u.; Ejaz, S.A.; Saeed, A.; Ujan, R.; Channar, P.A.; Mahar, K.; Sahito, R.; Albogami, S.M.; Abbas, Q.; et al. Exploring 2-Tetradecanoylimino-3-aryl-4-methyl-1,3-thiazolines Derivatives as Alkaline Phosphatase Inhibitors: Biochemical Evaluation and Computational Analysis. Molecules 2022, 27, 6766. https://doi.org/10.3390/molecules27196766
Ahmed A, Rehman S-u, Ejaz SA, Saeed A, Ujan R, Channar PA, Mahar K, Sahito R, Albogami SM, Abbas Q, et al. Exploring 2-Tetradecanoylimino-3-aryl-4-methyl-1,3-thiazolines Derivatives as Alkaline Phosphatase Inhibitors: Biochemical Evaluation and Computational Analysis. Molecules. 2022; 27(19):6766. https://doi.org/10.3390/molecules27196766
Chicago/Turabian StyleAhmed, Aftab, Sajid-ur Rehman, Syeda Abida Ejaz, Aamer Saeed, Rabail Ujan, Pervaiz Ali Channar, Khalida Mahar, Reshma Sahito, Sarah M. Albogami, Qamar Abbas, and et al. 2022. "Exploring 2-Tetradecanoylimino-3-aryl-4-methyl-1,3-thiazolines Derivatives as Alkaline Phosphatase Inhibitors: Biochemical Evaluation and Computational Analysis" Molecules 27, no. 19: 6766. https://doi.org/10.3390/molecules27196766
APA StyleAhmed, A., Rehman, S.-u., Ejaz, S. A., Saeed, A., Ujan, R., Channar, P. A., Mahar, K., Sahito, R., Albogami, S. M., Abbas, Q., Alorabi, M., Waard, M. D., & Batiha, G. E.-S. (2022). Exploring 2-Tetradecanoylimino-3-aryl-4-methyl-1,3-thiazolines Derivatives as Alkaline Phosphatase Inhibitors: Biochemical Evaluation and Computational Analysis. Molecules, 27(19), 6766. https://doi.org/10.3390/molecules27196766