Estimation of Gap Fraction and Foliage Clumping in Forest Canopies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site
2.2. Measurements
2.2.1. Ground-Based Measurements
- Scanning range 0.5–300 m.
- Horizontal scanning range of 360°, vertical scanning range at least 270°.
- Laser wavelength 532 nm. Size of the laser beam not more than 7 mm at a distance of 50 m.
- Accuracy of _target measurements at least 2 mm within a distance of 50 m.
2.2.2. Airborne Measurements
3. Results
3.1. Gap Fraction in Forest Stands
3.2. Clumping/Regularity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Levy, E.; Madden, E. The point method of pasture analysis. N. Z. J. Agric. Res. 1933, 46, 267–279. [Google Scholar]
- Warren Wilson, J. Inclined point quadrats. New Phytol. 1960, 59, 1–8. [Google Scholar] [CrossRef]
- Warren Wilson, J. Errors resulting from thickness of point quadrats. Aust. J. Bot. 1963, 11, 178–188. [Google Scholar] [CrossRef]
- Li-Cor. LAI-2000 Plant Canopy Analyzer. Technical Information; LI-COR, Inc.: Lincoln, NE, USA, 1989; p. 24. [Google Scholar]
- Leblanc, S.; Chen, J.; Kwong, M. Tracing Radiation and Architecture of Canopies. TRAC Manual Version 2.1.3; Natural Resources Canada: Ottawa, ON, Canada, 2002; p. 25. [Google Scholar]
- Korhonen, L.; Korhonen, T.K.; Rautiainen, M.; Stenberg, P. Estimation of forest canopy cover: A comparison of field measurement techniques. Silva Fennica 2006, 40, 577–588. [Google Scholar] [CrossRef]
- Kuusk, A.; Lang, M.; Kuusk, J. Database of optical and structural data for the validation of forest radiative transfer models. In Light Scattering Reviews; Kokhanovsky, A., Ed.; Springer: Berlin, Germany, 2013; Volume 7, pp. 109–148. [Google Scholar]
- Kuusk, A.; Lang, M.; Kuusk, J.; Lükk, T.; Nilson, T.; Mõttus, M.; Rautiainen, M.; Eenmäe, A. Database of Optical and Structural Data for the Validation of Radiative Transfer Models. Tartu Observatory, 2015; p. 1. Available online: http://scorpion.to.ee/bgf/jarvselja_db/jarvselja_db.pdf (accessed on 13 May 2018).
- Chen, J.; Black, T.; Adams, R. Evaluation of hemispherical photography for determining plant area index and geometry of a forest stand. Agric. For. Meteorol. 1991, 56, 129–144. [Google Scholar] [CrossRef]
- Jonckheere, I.; Nackaerts, K.; Muys, B.; Coppin, P. Assessment of automatic gap fraction estimation of forests from digital hemispherical photography. Agric. For. Meteorol. 2005, 132, 96–114. [Google Scholar] [CrossRef]
- Cescatti, A. Indirect estimates of canopy gap fraction based on the linear conversion of hemispherical photographs: Methodology and comparison with standard thresholding techniques. Agric. For. Meteorol. 2007, 143, 1–12. [Google Scholar] [CrossRef]
- Lang, M.; Kuusk, A.; Mõttus, M.; Rautiainen, M.; Nilson, T. Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method. Agric. For. Meteorol. 2010, 150, 20–29. [Google Scholar] [CrossRef]
- Pisek, J.; Lang, M.; Nilson, T.; Korhonen, L.; Karu, H. Comparison of methods for measuring gap size distribution and canopy nonrandomness at Järvselja RAMI (RAdiation transfer Model Intercomparison) test sites. Agric. For. Meteorol. 2011, 151, 365–377. [Google Scholar] [CrossRef]
- Glatthorn, J.; Beckschäfer, P. Standardizing the protocol for hemispherical photographs: Accuracy assessment of binarization algorithms. PLoS ONE 2014, 9, e111924. [Google Scholar] [CrossRef] [PubMed]
- Woodgate, W.; Jones, S.; Suarez, L.; Hill, M.; Armston, J.; Wilkes, P.; Soto-Berelov, M.; Haywood, A.; Mellor, A. Understanding the variability in ground-based methods for retrieving canopy openness, gap fraction, and leaf area index in diverse forest systems. Agric. For. Meteorol. 2015, 205, 83–95. [Google Scholar] [CrossRef]
- Kuusk, A. Specular reflection in the signal of LAI-2000 plant canopy analyzer. Agric. For. Meteorol. 2016, 221, 242–247. [Google Scholar] [CrossRef]
- Danson, F.; Giacosa, C.; Armitage, R. Two-dimensional forest canopy architecture from terrestrial laser scanning. In Proceedings of the ISPRS Working Group VII/1 Workshop ISPMSRS’07: Physical Measurements and Signatures in Remote Sensing, 12–14 March 2007 Davos, Switzerland; Schaepman, M., Liang, S., Groot, N., Kneubühler, M., Eds.; International Society for Photogrammetry and Remote Sensing (ISPRS): Paris, France, 2007; pp. 1–3. [Google Scholar]
- Danson, F.; Hetherington, D.; Morsdorf, F.; Koetz, B.; Allgöwer, B. Forest canopy gap fraction from terrestrial laser scanning. IEEE Geosci. Remote Sens. Lett. 2007, 4, 157–160. [Google Scholar] [CrossRef] [Green Version]
- Danson, F.; Armitage, R.; Bandugula, V.; Ramirez, F.; Tate, N.; Tansey, K.; Tegzes, T. Terrestrial laser scanners to measure forest canopy gap fraction. In SilviLaser 2008, Proceedings of the 8th International Conference on LiDAR Applications in Forest Assessment and Inventory, 17–19 September 2008, Heriot-Watt University, Edinburgh, UK; Hill, R., Rosette, J., Suárez, J., Eds.; SilviLaser: Edinburgh, UK, 2008; pp. 335–341. [Google Scholar]
- Calders, K.; Verbesselt, J.; Bartholomeus, H.; Herold, M. Applying terrestrial LiDAR to derive gap fraction distribution time series during bud break. In SilviLaser 2011, Proceedings of the 11th International Conference on LiDAR Applications for Assessing Forest Ecosystems, 16–20 October 2011 University of Tasmania, Hobart, Australia; SilviLaser: Edinburgh, UK, 2011; pp. 1–9. [Google Scholar]
- Seidel, D.; Fleck, S.; Leuschner, C. Analyzing forest canopies with ground-based laser scanning: A comparison with hemispherical photography. Agric. For. Meteorol. 2012, 154, 1–8. [Google Scholar] [CrossRef]
- Widlowski, J.L.; Mio, C.; Disney, M.; Adams, J.; Andredakis, I.; Atzberger, C.; Brennan, J.; Busetto, L.; Chelle, M.; Ceccherini, G.; et al. The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing. Remote Sens. Environ. 2015, 169, 418–437. [Google Scholar] [CrossRef] [Green Version]
- Kuusk, A.; Lang, M.; Nilson, T. Forest test site at Järvselja, Estonia. In Proceedings of the Third Workshop CHRIS/Proba, Frascati, Italy, 21–23 March 2005; pp. 1–7. [Google Scholar]
- AG, L.G. Leica ScanStation C10. The All-in-One Laser Scanner for Any Application; Leica Geosystems AG: Heerbrugg, Switzerland, 2011; p. 2. [Google Scholar]
- RIEGL. RIEGL VQ-1560i Data Sheet; RIEGL Laser Measurement Systems GmbH: Horn, Austria, 2017; p. 10. [Google Scholar]
- Lang, M.; Arumäe, T.; Laarmann, D.; Kiviste, A. Estimation of change in forest height growth. For. Stud. 2017, 67, 5–16. [Google Scholar] [CrossRef]
- Nilson, T. A theoretical analysis of the frequency of gaps in plant stands. Agric. Meteorol. 1971, 8, 25–38. [Google Scholar] [CrossRef]
- Lang, M.; Nilson, T.; Kuusk, A.; Pisek, J.; Korhonen, L.; Uri, V. Digital photography for tracking the phenology of an evergreen conifer stand. Agric. For. Meteorol. 2017, 246, 15–21. [Google Scholar] [CrossRef]
- Kuusk, A.; Kuusk, J.; Lang, M. Modeling directional forest reflectance with the hybrid type forest reflectance model FRT. Remote Sens. Environ. 2014, 149, 196–204. [Google Scholar] [CrossRef]
- Chen, J.; Cihlar, J. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index. Appl. Opt. 1995, 34, 6211–6222. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, J.; Leblanc, S.; Lacaze, R.; Roujean, J.L. Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sens. Environ. 2003, 84, 516–525. [Google Scholar] [CrossRef] [Green Version]
- Kucharik, C.; Norman, J.; Gower, S. Characterization of radiation regimes in nonrandom forest canopies: Theory, measurements, and a simplified modeling approach. Tree Physiol. 1999, 19, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Arumäe, T.; Lang, M. A validation of coarse scale global vegetation height map for biomass estimation in hemiboreal forests in Estonia. Balt. For. 2016, 22, 275–282. [Google Scholar]
- Marklund, L.G. Biomass Functions for Pine, Spruce and Birch in Sweden; Swedish University of Agricultural Sciences: Umeå, Sweden, 1988; p. 73. [Google Scholar]
- Repola, J. Biomass equations for birch in Finland. Silva Fennica 2008, 42, 605–624. [Google Scholar] [CrossRef]
- Keränen, J.; Maltamo, M.; Packalen, P. Effect of flying altitude, scanning angle and scanning mode on the accuracy of ALS based forest inventory. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 349–360. [Google Scholar] [CrossRef]
- Arumäe, T.; Lang, M. Estimation of canopy cover in dense mixed-species forests using airborne lidar data. Eur. J. Remote Sens. 2018, 51, 132–141. [Google Scholar] [CrossRef]
Stand | Age | N | H | LAI | ||
---|---|---|---|---|---|---|
Birch | 49 | 992 | 27 | 3.93 | 0.80 | 1.09 |
Pine | 124 | 1122 | 16 | 1.86 | 0.74 | 0.79 |
Spruce | 59 | 1689 | 23 | 4.36 | 0.90 | 1.25 |
Stand Parameter | ||
---|---|---|
Tree height | −0.737 | 0.544 |
Crown length | −0.571 | 0.326 |
−0.558 | 0.312 | |
g1 + g2 | −0.519 | 0.270 |
−0.588 | 0.346 | |
−0.445 | 0.198 | |
Stand age | −0.185 | 0.034 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuusk, A.; Pisek, J.; Lang, M.; Märdla, S. Estimation of Gap Fraction and Foliage Clumping in Forest Canopies. Remote Sens. 2018, 10, 1153. https://doi.org/10.3390/rs10071153
Kuusk A, Pisek J, Lang M, Märdla S. Estimation of Gap Fraction and Foliage Clumping in Forest Canopies. Remote Sensing. 2018; 10(7):1153. https://doi.org/10.3390/rs10071153
Chicago/Turabian StyleKuusk, Andres, Jan Pisek, Mait Lang, and Silja Märdla. 2018. "Estimation of Gap Fraction and Foliage Clumping in Forest Canopies" Remote Sensing 10, no. 7: 1153. https://doi.org/10.3390/rs10071153
APA StyleKuusk, A., Pisek, J., Lang, M., & Märdla, S. (2018). Estimation of Gap Fraction and Foliage Clumping in Forest Canopies. Remote Sensing, 10(7), 1153. https://doi.org/10.3390/rs10071153